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Abstract. A recently introduced system of self-replicating sequences
of binary numbers (strings) is generalized. It is extended to include
st rings of arbitrary length . For this purpose, first , the folding meth­
ods of st rings into two-dimensional operat ors are expanded to include
strings of arbitr ary size. Second, rules of interact ion between str ings
of different lengths are established. As a natur al consequence of these
interactions, changes in st ring length are observed. Using an effective
model of length changes, the build-up of complexity as measured by
the average sequence length in a st ring population is studied.

1. Introduction

The emergence of complex struct ures in nature from simple building blocks
is one of the most fascinating topics in science [8]. The te ndency of living
beings in par ti cular , to generate ever more complicated systems is st riking.
How is it tha t a network of self-reproducing ent it ies, mainl y based on the six
abundant elements CHNOPS [5]- t hat is, life on planet Earth- could grow
to the complexity we observe to day?

Over the last decades, molecular biology has revealed a great deal about
the underlying basic int eractions between st ruc tures that drive these ent it ies
of life [9]. One imp ortant result has been that doubl e strands of DNA carry
informa t ion from generation to generation in the form of molecular sym­
bols (t he nucleotides A, C, G, and T ) t hat , up on translation int o another
molecular system (the amino acids) , becomes functional as three-dimensiona l
site-dependent catalysts (proteins) or as st ructural support systems.

Proteins are especially interesting objects of st udy since they are able to
accelerate chemical reactions by factors ran ging from 106 to 1012 [7]. T hey
assume their phenotypic (native) form under the influence of the attrac tion
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and repu lsion the molecules exert on each other. As in other catalyt ic sys­
tems, t he three-dimensional shape of a protein that results from the specific
order of amino acids in its primary sequence is decisive.

Yet th e DNA-protein system is believed to have been preceeded by a more
primit ive RNA-based syst em that should not have required separa t ion into
conservat ion and funct ional subsystems . Instead , R A could playa double
role, act ing as both conservat ionist and catalyst . The former role could
be played by th e pr imary sequence of nucleot ides on RNA strings (differing
only in one nucleotide from DNA), whereas the latter role would be played by
the two- or three-dimensional shape a st ring can assume under appropriate
temperature condit ions. But even in a more primit ive syste m the quest ion
remains: Wh at drove this system to steadily build up complexity?

In the present cont ribut ion we want to examine the build-up of com­
plexity in a simplified system that was derived using metaphors of the RNA
paradigm. It is based on the fact t hat the major information processing
machines of today, digit al computers, use sequences of binary numb ers to
represent and manipulate information. In previous work [1, 2] we have in­
t roduced a mapping of th ese one-dimensional sequences of binary numb ers
into two-dimensiona l forms naturally able to interact with one-dimensional
forms. Bit sequences are the most pr imit ive form of information available
as operands. For the operators, we have chosen the simplest form possible
under the constra int of th e operand 's choice. These are binary matri ces.

A rest ricted class of sequences, namely those whose length is a square
number, could be assigned corresponding two-dimensional (ma trix) forms by
applying folding met hods . We then proceeded to establish rules of interact ion
between matrix and sequent ial forms of st rings derived from matrix/ vector
operat ions in mathematics. The result was a set of effect ively interact ing
binary st rings, some of which could replicate other st rings or even t hemselves.

The main weakness of the mod el thus far was its select iveness on the part
of considered st ring lengths. With t he present pap er we remove th is weakness
by generalizing folding and interactions to st rings of arbit ra ry length. As a
surprising result , we obtain lengt h-changing interact ions that are able to
build up complexity. Here we study the growth in complexity as measured
by the average lengt h in a population of st rings , start ing from a population
of smallest size st rings.

2. General folding of st r in gs

T he previously proposed methods for a folding of sequences of (binary) num­
bers into a two-dimensional matrix form were devised for st rings whose length
Ns is a square number. The reason is that if Ns belongs to the set of square
numb ers, Nsq = {I , 4, 9, 16,2 5, . . .}, a st ring scontaining Ns binary numbers
s., s, E {O, I} ,

Ns E Nsq (1)
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String length Folding approach

N (a) (b) (c)
2 1,2 1, 3 2, 2
3 1, 3 2,3 2,2
4 2,2 2,3 3,3
5 1, 5 2,3 3,3
6 2,3 2,4 3,3
7 1,7 2,4 3,3
8 2,4 3,4 3,3
9 3,3 3,4 4,4

10 2,5 3,4 4,4

Table 1: Matr ix size N 1 , N 2 or N 2 , N 1 for short strings using the
different approaches (a) thro ugh (c) to folding (see text).
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could naturally fit into a two-dimensional matrix of size VNS x VNS. We
considered folding methods to be applied to all st rings in the population,
irrespective of the combination of numbers. In principle, any random place­
ment of numb ers on the matrix grid is allowed and const itutes one special
folding method. A particular class of foldings, t he topological foldings, are
the result of self-avoiding random walks on t he matri x grid. Topological fold­
ings are characterized by the fact th at adjacent neighb ors in th e sequence of
numbers are also neighbors in the two-dimensional matrix.

There are three different approaches to a generalization of folding methods
to st rings of arbitra ry length N. Two of these allow for non-square matrices
of size N 1 x N2 , and two approaches allow for a non-compact folding with
empty spaces between numb ers. We shall list these app roaches here in brevity
and lat er concent rate on approach (a).

(a) Comp act folding in non-square matrices, where

(2)

(Compact foldings do not have any spacing between adjacent st ring
elements .)

(b) Non-compact folding in non-square matric es

(3)

(c) Non-compact folding in square matrices

(4)
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String number
N 0 1 2 3 4 5 6 7

2 (~) (6) (n (i)

3 mmmmmmmm
Table 2: All st ring types of syste ms N = 2 and N = 3. Compact
folding leads to operators which look the same, except for a possible
t ransposit ion.

In all three approaches a bias could be added towar d the smallest solut ion,
that is,

Ni =VN+Ei ' i = 1,2 (5)

with lEiI as small as possible. Tab le 1 gives an overview of var ious folding
methods for st rings up to N = 10.

In approaches (a) and (b) , a symmetry breaking has to occur , since only
one of two altern at ives, N I > N2 or N2 > N I , can materialize in a folding.
Both cases differ profoundly (at least in the simulat ions considered here) in
their consequences, as th e lat ter will lead to an increase of st ring complexity
whereas th e former will lead to a decrease (see sect ion 3).

If the length of a string is a prime number (as it was here for both cases
depicted in the t ab le), a somewhat special situation occurs in approach (a),
since the one-dimensional form of a st ring and the two-dimensional form
look alike, except for a possible t ra nsposit ion. In Tab le 2 we list all st rings
of length N = 2 and N = 3. Note that th e system N = 1 is t rivial; N = 4
was t reated elsewhere [1, 2].

3. Interaction of strings of different length

The basis for the interact ion of st rings was a new interpretation of mathe­
matical operat ions. We consider th e out come of an interact ion in t he form of
a new st ring generated by a cooperat ion of two st rings as being added to the
exist ing pop ulat ion of st rings . T hus we assume that both the operator and
the operand are conserved in the course of an opera t ion. The algorithm pro­
posed in [1, 2] subsequent ly correc ts for the addit ion of a st ring by destroying
another member of the popul ation. In this way, a compet it ive system is es­
tab lished in which efficient ly replicat ing st ring types become more and more
frequent , whereas other typ es die out .

An interest ing int eraction of st rings may take place if one st ring is in the
two-dimensional form and the ot her is in the one-dimensional form . Details
have been explained in [1, 2], where we used the following squas hed scalar
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Figure 1: The interact ion of string g, folded into operator Pg,
and st ring g' generates a new string g" of usually different length .
N 1 , .. . , N4 are numbers of components.

product operation as the interaction rule between an operator/string pair
(N = Ns E N"q):

with

(6)

i = 1, . .. ,-IN k = 0, . . . , -IN - 1.

a[ ] is the squashing function

a[x] = { I for x 2:: 0
o for x < 0

(7)

and 8 is an adjustable threshold, usually set to 8 = 1.
Here we need to genera lize the above rule to include int eract ions of st rings

of different length. A consistent genera lizat ion is possible in th e following
form (see Figure 1). Suppose we have a matri x of size N1 x N2 interacting
wit h a st ring of length N3 . The opera tor locally interacts with N 1 elements
of t he st ring in order to generate one product component. This operation
will be repeated Nz times, after which the operator moves on to interact with



220 Wolfgang B anzhaf

th e next N 1 elements of the st ring. The product string will thus consist of
N4 elements with

N4 = r~:1x u; (8)

rx1are Gaussian parentheses producing the next larger integer to x .
In mathematical te rms, the interact ion reads

S;'+kN2 = (J [j~l P;,j S~+kNl - 8] (9)
J=l

with

i = 1, ... , N z k = 0, .. . , r~:1- 1.

Non-compact foldings possess matrix positions where no-operat ion (nop)
symbols reside. In t he cont ext of opera t ions used here, they are compu­
t at ionally equivalent to "0" . This should be seen in contrast to the "wild­
card" symbol *, used in Holland 's genet ic algorit hms [4], which usually means
"don' t care" .

Let us consider an exa mple of the int eraction of a st ring

S = ( 1 a 1 a a O)T

wit h length N = 6 (corresponding operator: Ps ) with a st ring

s' = ( 1 1 1 1 1 f
of lengt h N' = 5. The operator Ps may be written as a matrix wit h size
N 1 = 3, Nz = 2:

r. = (~ ~ ~) . (10)

The result ing string S" will have Nil = 4 components :

(11)

where we had to discard part of th e operator in the second half of the com­
putation due to missing partn ers in the st ring.

We 'can immediately recognize t hat interact ions will usually change the
lengt h of a st ring, depending on the previously ment ioned symmetry breaking
feature. If N 1 > Nz, the length of the newly pro duced string will decrease:
N4 < N3 . If, on the other hand , N 1 < Nz, then the length of it will increase:
N4 > N3 ·

T he import ant part of the algorithm is shown in Figure 2. It consists
of various st eps to ensure that a competit ion between different st ring types
takes place in the system. Wh at is important in the present context is that a
populat ion of strings with varying length, which can be characterized by an
average st ring length, will react via the various react ion channels and relax
to a state with different average st ring lengt h.
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Generate M random binarystrings of length N I

~
Select a string and fold it into an operator

(a matrix) of dimensionN1X N2

~
I Select another string and apply the operator I

~
Releasethe newly producedstring, the old string

and the operator (as string) into the population

~
Remove one randomly chosen string in order to

Icompensate for the previous addition of a string

t
I

Figure 2: The important part of the algorithm for a population of M
str ings starting from minimal length N m in . The dotted line symbolizes
other parts of the algorithm not relevant in the context discussed here.

4 . The growth in complexity
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The inform ation cont ained in a bit st ring may be measured roughly by the
length of th at string . Longer st rings are certainly more capable of performing
complex tasks than are short ones. We may t herefore take the length of a
string (or its logarithm) as a very crude measure of its complexity [3, 6].

A natural consequence of the interact ion of strings of different length was
the change in this rou ghly defined complexity. As can be seen easily by
inspect ion of equat ion (8), changes in complexity are particularly dramat ic if
a string whose lengt h is a prime numb er folds into matrix form . If we allow
for length increasing folding, the complexity build-up in a popu lation seems
inevit able as soon as there exists a small number of strings with N > l.
Therefore, after start ing from a populat ion of N = 2 st rings we may observe
a continuous increase in the average st ring length that will never sto p unless
we introduce some limit on the length of st rings. Here we shall pu t the limit
at Nm ax = 100.

Since we are concerned with the build-up of complexity, we shall present
only simulations where th e length of st rings is observed. Thus we neglect
the lower level of the system and the resul t ing detailed sequences of binary
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Figure 3: Development of average st ring length for a system with
M = 105 st rings, start ing all st rings wit h length N = 2. Three
parameter set t ings that characte rize different folding scenarios were
used. Even for low probability of complexity increasing folding Pup,
the average length of st rings increases.

numb ers , and defer a study of relat ed issues to a later pap er. In other
words, we only consider an effective model here, concentrating on the most
important aspect, t he change in complexity.

We sha ll introduce two paramet ers Pup and P down, which determine the
probabilities that a complexity-increasing or a complexity-decreasing folding
is applied .

Figure 3 shows a typical run for a population with M = 100,000 st rings for
some parameter set ti ngs. At the beginning, the string population consists of
strings of length N m in = 2 only. If the complexity-increas ing folding is applied
exclusively, the system quickly ends up at the allowed maximum for st ring
length. If, on the other hand, Pd own =1= 0, a length distribution results th at
is, after a certain growth period, in the average length of strings, const ant
with small fluctuations. We can observe that even for small values of Pup

the average length of st rings increases. Note that the average level must also
crucially depend on Nm ax .

Figures 4(a)-(e) give a more det ailed account of what is happ ening in a
population of st rings. They show the distributi on of st ring lengths at cert ain
moments in t ime for a run with P up = P down = 0.5. The drive toward higher
complexity is clearly visible. The distribution st abilizes after approximately
106 it erations through the algorit hm. As can be seen clearly, st rings of an
integer length t imes 10 are favored by the syste m. The reason is that in the
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Figure 4: Dist ribution of str ing lengths for the simulat ion of Fig­
ure 3, P up = P down = 0.5, after (a) 10,000, (b) 50,000, (c) 100,000,
(d) 500,000, and (e) 1,000,000 sweeps through the algorithm.

present pap er length of st rings was const ra ined to N = 100. Since most of
the st rings have maxim al length in th is run , int eractions usually apply matrix
operators of dimension 10 x 10. In connect ion with the interaction rules of
t he syste m, t his leads to residual concentra t ion peaks at the above-mentioned
numb ers.

F igur e 5 shows the result ing distribution for th e third parameter set t ing
in Figure 3. Here, to o, some st rings have reached maximum length.

5. Summary

In this pape r we have extended the range of a previously proposed RNA­
inspired algorit hm to st rings of arbit rary length and to interact ions of st rings
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Figure 5: (a) Total distribution of string lengths in the simulat ion of
Figure 3 for Pu p = 0.1, P down = 0.9 after 1,000,000 sweeps through
the algorithm. (b) Partial distribution of string lengths from N = 30
to Nmax = 100 for the same run as (a).

with different length . We have found that, as a result of normal int eractions,
strings of different lengths were produced. By observing the growth in the
average length of st rings in a population st art ing with minimal-length strings
we have demonstrated th e drive of the proposed syste m to build up complex­
ity.

The observed phenom enon is not constrained to t hesubset of compact
folding methods reported in the simulat ion; rather, it seems to be a constant
theme through these kinds of algorithms. Even using a very small probability
Pup led to an increase in th e average st ring length. It thus seems to be
more of an inherent feature of the algorithm than a product of par ticular
circumstances.

Note , however , that we did start wit h st rings of small length , avoiding
the tri vial strings N = 1, which are identi cal to the building blocks of all
st rings. St arting a system from N = 1 st rings seems to be possible but was
omitted here for the sake of clari ty.

The first results on th e build-up of complexity presented here can only
be a start ing point for a more thorough investigation of the phenomenon.
Certainly, the "bit" level of st rings has to be included in order to gain a
comprehensive picture. Since st rings in two-dimensional form work on one­
dimension al st rings by repeatedly applying the same operations, we expect
that self-similar st ructures will play a prominent role.
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