Complex Systems 8 (1994) 215-225

Self-Replicating Sequences of Binary Numbers:
The Build-Up of Complexity

Wolfgang Banzhaf*
Department of Computer Science, Dortmund University
and
Informatics Center Dortmund,
Joseph-von-Fraunhofer-Strafie 20, 44227 Dortmund, Germany

Abstract. A recently introduced system of self-replicating sequences
of binary numbers (strings) is generalized. It is extended to include
strings of arbitrary length. For this purpose, first, the folding meth-
ods of strings into two-dimensional operators are expanded to include
strings of arbitrary size. Second, rules of interaction between strings
of different lengths are established. As a natural consequence of these
interactions, changes in string length are observed. Using an effective
model of length changes, the build-up of complexity as measured by
the average sequence length in a string population is studied.

1. Introduction

The emergence of complex structures in nature from simple building blocks
is one of the most fascinating topics in science [8]. The tendency of living
beings in particular, to generate ever more complicated systems is striking.
How is it that a network of self-reproducing entities, mainly based on the six
abundant elements CHNOPS [5]—that is, life on planet Earth—could grow
to the complexity we observe today?

Over the last decades, molecular biology has revealed a great deal about
the underlying basic interactions between structures that drive these entities
of life [9]. One important result has been that double strands of DNA carry
information from generation to generation in the form of molecular sym-
bols (the nucleotides A, C, G, and T) that, upon translation into another
molecular system (the amino acids), becomes functional as three-dimensional
site-dependent catalysts (proteins) or as structural support systems.

Proteins are especially interesting objects of study since they are able to
accelerate chemical reactions by factors ranging from 10 to 102 [7]. They
assume their phenotypic (native) form under the influence of the attraction

*Electronic mail address: banzhaf@tarantoga.informatik.uni-dortmund.de

216 Wolfgang Banzhaf

and repulsion the molecules exert on each other. As in other catalytic sys-
tems, the three-dimensional shape of a protein that results from the specific
order of amino acids in its primary sequence is decisive.

Yet the DNA-protein system is believed to have been preceeded by a more
primitive RNA-based system that should not have required separation into
conservation and functional subsystems. Instead, RNA could play a double
role, acting as both conservationist and catalyst. The former role could
be played by the primary sequence of nucleotides on RNA strings (differing
only in one nucleotide from DNA), whereas the latter role would be played by
the two- or three-dimensional shape a string can assume under appropriate
temperature conditions. But even in a more primitive system the question
remains: What drove this system to steadily build up complexity?

In the present contribution we want to examine the build-up of com-
plexity in a simplified system that was derived using metaphors of the RNA
paradigm. It is based on the fact that the major information processing
machines of today, digital computers, use sequences of binary numbers to
represent and manipulate information. In previous work [1, 2] we have in-
troduced a mapping of these one-dimensional sequences of binary numbers
into two-dimensional forms naturally able to interact with one-dimensional
forms. Bit sequences are the most primitive form of information available
as operands. For the operators, we have chosen the simplest form possible
under the constraint of the operand’s choice. These are binary matrices.

A restricted class of sequences, namely those whose length is a square
number, could be assigned corresponding two-dimensional (matrix) forms by
applying folding methods. We then proceeded to establish rules of interaction
between matrix and sequential forms of strings derived from matrix/vector
operations in mathematics. The result was a set of effectively interacting
binary strings, some of which could replicate other strings or even themselves.

The main weakness of the model thus far was its selectiveness on the part
of considered string lengths. With the present paper we remove this weakness
by generalizing folding and interactions to strings of arbitrary length. As a
surprising result, we obtain length-changing interactions that are able to
build up complexity. Here we study the growth in complexity as measured
by the average length in a population of strings, starting from a population
of smallest size strings.

2. General folding of strings

The previously proposed methods for a folding of sequences of (binary) num-
bers into a two-dimensional matrix form were devised for strings whose length
Ng is a square number. The reason is that if Ng belongs to the set of square
numbers, Ny, = {1,4,9,16,25,...}, a string § containing Ng binary numbers
Si, 8; € {0, 1},

§={s1,82,..,SNs} Ns € Ngq (1)

Self-Replicating Sequences of Binary Numbers 217

String length Folding approach
N @) | (b) | (¢
2 1,2 1,3 2,2
3 1,3 2,3 2,2
4 2,2 2,3 3,3
5 1,5 2,3 3,3
6 2,3 2,4 3,3
7 1,7 2,4 3,3
8 2,4 3,4 3,3
9 3,3 3,4 4,4
10 2,5 3,4 4.4

Table 1: Matrix size Ni, N2 or Ny, N for short strings using the
different approaches (a) through (c) to folding (see text).

could naturally fit into a two-dimensional matrix of size v/Ng x v/Ng. We
considered folding methods to be applied to all strings in the population,
irrespective of the combination of numbers. In principle, any random place-
ment of numbers on the matrix grid is allowed and constitutes one special
folding method. A particular class of foldings, the topological foldings, are
the result of self-avoiding random walks on the matrix grid. Topological fold-
ings are characterized by the fact that adjacent neighbors in the sequence of
numbers are also neighbors in the two-dimensional matrix.

There are three different approaches to a generalization of folding methods
to strings of arbitrary length N. Two of these allow for non-square matrices
of size Ny X Ny, and two approaches allow for a non-compact folding with
empty spaces between numbers. We shall list these approaches here in brevity
and later concentrate on approach (a).

(a) Compact folding in non-square matrices, where
N1 X N2 = N. (2)

(Compact foldings do not have any spacing between adjacent string
elements.)

(b) Non-compact folding in non-square matrices
Ny x Ny > N. (3)
(c) Non-compact folding in square matrices

N1 x Ny > N, Ny = N,. (4)

218 Wolfgang Banzhaf

String number
N 0 1 2 3 4 5 6 7

21 () (o) ()] (1)

0 1 0 1 0 1 0 1
3 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

Table 2: All string types of systems N = 2 and N = 3. Compact
folding leads to operators which look the same, except for a possible
transposition.

In all three approaches a bias could be added toward the smallest solution,
that is,

Ni=VN+e, i=1,2 (5)

with |e;| as small as possible. Table 1 gives an overview of various folding
methods for strings up to N = 10.

In approaches (a) and (b), a symmetry breaking has to occur, since only
one of two alternatives, N; > Ny or Ny > Nj, can materialize in a folding.
Both cases differ profoundly (at least in the simulations considered here) in
their consequences, as the latter will lead to an increase of string complexity
whereas the former will lead to a decrease (see section 3).

If the length of a string is a prime number (as it was here for both cases
depicted in the table), a somewhat special situation occurs in approach (a),
since the one-dimensional form of a string and the two-dimensional form
look alike, except for a possible transposition. In Table 2 we list all strings
of length N = 2 and N = 3. Note that the system N =1 is trivial; N =4
was treated elsewhere [1, 2].

3. Interaction of strings of different length

The basis for the interaction of strings was a new interpretation of mathe-
matical operations. We consider the outcome of an interaction in the form of
a new string generated by a cooperation of two strings as being added to the
existing population of strings. Thus we assume that both the operator and
the operand are conserved in the course of an operation. The algorithm pro-
posed in [1, 2] subsequently corrects for the addition of a string by destroying
another member of the population. In this way, a competitive system is es-
tablished in which efficiently replicating string types become more and more
frequent, whereas other types die out.

An interesting interaction of strings may take place if one string is in the
two-dimensional form and the other is in the one-dimensional form. Details
have been explained in [1, 2], where we used the following squashed scalar

Self-Replicating Sequences of Binary Numbers 219

N, { 1111 J N, N,
0 1
N30 - Ay
1
Operator P % String s’ String s”’

Figure 1: The interaction of string 3, folded into operator Ps,
and string 5’ generates a new string 5" of usually different length.
Ni, ..., N4 are numbers of components.

product operation as the interaction rule between an operator/string pair
(N =Ng € J\/;q):

i=VN
" /
S /=0 21 Py pyw — © (6)
=
with
i=1,....v/N k=0,...,v/N—1
o[] is the squashing function
(1 forz>0
U[x]_{o forz <0 @

and © is an adjustable threshold, usually set to © = 1.

Here we need to generalize the above rule to include interactions of strings
of different length. A consistent generalization is possible in the following
form (see Figure 1). Suppose we have a matrix of size Ny x N, interacting
with a string of length N3. The operator locally interacts with N; elements
of the string in order to generate one product component. This operation
will be repeated N, times, after which the operator moves on to interact with

220 Wolfgang Banzhaf

the next N7 elements of the string. The product string will thus consist of
Ny elements with
N3
Ny = {—] X Na. 8
=y > (8)
[z] are Gaussian parentheses producing the next larger integer to .
In mathematical terms, the interaction reads

=M
Z Pijsg'+kN, - @} 9)

=1

" _
SitkNy = 0

. N3
= L 5dV8 k=0,...,|—|—1.
? ’ 3 4V2 01 7”Nl—‘

Non-compact foldings possess matrix positions where no-operation (nop)
symbols reside. In the context of operations used here, they are compu-
tationally equivalent to “0”. This should be seen in contrast to the “wild-
card” symbol #, used in Holland’s genetic algorithms [4], which usually means
“don’t care”.

Let us consider an example of the interaction of a string

s=(1 010 0 0)
with length N = 6 (corresponding operator: P;) with a string
f=(111 1 1)

of length N’ = 5. The operator P, may be written as a matrix with size
Ny =3,N, =2:

P38 3) w

The resulting string s” will have N” = 4 components:

1
0
"
s'=111 (11)
0
where we had to discard part of the operator in the second half of the com-
putation due to missing partners in the string.

We can immediately recognize that interactions will usually change the
length of a string, depending on the previously mentioned symmetry breaking
feature. If Ny > Nj, the length of the newly produced string will decrease:
N4 < Nj. If, on the other hand, N; < N, then the length of it will increase:
Ny > Nj.

The important part of the algorithm is shown in Figure 2. It consists
of various steps to ensure that a competition between different string types
takes place in the system. What is important in the present context is that a
population of strings with varying length, which can be characterized by an
average string length, will react via the various reaction channels and relax
to a state with different average string length.

Self-Replicating Sequences of Binary Numbers 221

Generate M random binary strings of length N

!

Select a string and fold it into an operator
(a matrix) of dimension N, X N,

Select another string and apply the operator

Release the newly produced string, the old string
and the operator (as string) into the population

!

Remove one randomly chosen string in order to
compensate for the previous addition of a string

Figure 2: The important part of the algorithm for a population of M

strings starting from minimal length Nyi,. The dotted line symbolizes
other parts of the algorithm not relevant in the context discussed here.

4. The growth in complexity

The information contained in a bit string may be measured roughly by the
length of that string. Longer strings are certainly more capable of performing
complex tasks than are short ones. We may therefore take the length of a
string (or its logarithm) as a very crude measure of its complexity [3, 6].

A natural consequence of the interaction of strings of different length was
the change in this roughly defined complexity. As can be seen easily by
inspection of equation (8), changes in complexity are particularly dramatic if
a string whose length is a prime number folds into matrix form. If we allow
for length increasing folding, the complexity build-up in a population seems
inevitable as soon as there exists a small number of strings with N > 1.
Therefore, after starting from a population of N = 2 strings we may observe
a continuous increase in the average string length that will never stop unless
we introduce some limit on the length of strings. Here we shall put the limit
at Npax = 100.

Since we are concerned with the build-up of complexity, we shall present
only simulations where the length of strings is observed. Thus we neglect
the lower level of the system and the resulting detailed sequences of binary

222 Wolfgang Banzhaf

100 F P i

80

£ {
i=) !
=4 1
K H
2 ®r
k7
D
o
[
2 !
< 40 | | p_up=0.5p_down=05 — B
! p_up =1.0 p_down=0.0 ----
p_up=0.1 p_down=0.9 -----
20 .
0 1 1 1 1
0 200000 400000 600000 800000 1e+06
Sweeps

Figure 3: Development of average string length for a system with
M = 10° strings, starting all strings with length N = 2. Three
parameter settings that characterize different folding scenarios were
used. Even for low probability of complexity increasing folding pup,
the average length of strings increases.

numbers, and defer a study of related issues to a later paper. In other
words, we only consider an effective model here, concentrating on the most
important aspect, the change in complexity.

We shall introduce two parameters pup, and paown, Which determine the
probabilities that a complexity-increasing or a complexity-decreasing folding
is applied.

Figure 3 shows a typical run for a population with M = 100,000 strings for
some parameter settings. At the beginning, the string population consists of
strings of length Np,;, = 2 only. If the complexity-increasing folding is applied
exclusively, the system quickly ends up at the allowed maximum for string
length. If, on the other hand, pgown 7# 0, a length distribution results that
is, after a certain growth period, in the average length of strings, constant
with small fluctuations. We can observe that even for small values of pyp
the average length of strings increases. Note that the average level must also
crucially depend on Nyay.

Figures 4(a)—(e) give a more detailed account of what is happening in a
population of strings. They show the distribution of string lengths at certain
moments in time for a run with pyp, = Paown = 0.5. The drive toward higher
complexity is clearly visible. The distribution stabilizes after approximately
108 iterations through the algorithm. As can be seen clearly, strings of an
integer length times 10 are favored by the system. The reason is that in the

Self-Replicating Sequences of Binary Numbers 223

00 1000
110,000 — 1250000 —
5000
a0
0
¢ i =
]
3 om0 3
! fw
2000
20
1000
oLl "
S © 70 8 % 10 o 1 2 % 4 © 70 8 % 100
Length Lengin
2000 5000
12100,000 — 12500,000 —
4500
4000
1500
as00
g g 3000
@ 3
T 1000 T 2500
é E 2000
1500
50
1000
’ likalua | B l
. ‘ll i HlelllllllllhJunlluml|| | o . [Iq..[m IRTIR A J_J,:l I
© 10 2 % 4 0 6 70 8 % 100 © 10 20 % 4 50 6 70 8 % 10
Length Tengdi
5000
121,000,000 —
4500
000
3500
g 3000
3 as0
1500
1000
) Lol
o I.I.liu||||| I 1
© 1 2 2 44 s e 7 s % 100
Lengin

Figure 4: Distribution of string lengths for the simulation of Fig-
ure 3, pup = Pdown = 0.5, after (a) 10,000, (b) 50,000, (c) 100,000,
(d) 500,000, and (e) 1,000,000 sweeps through the algorithm.

present paper length of strings was constrained to N = 100. Since most of
the strings have maximal length in this run, interactions usually apply matrix
operators of dimension 10 x 10. In connection with the interaction rules of
the system, this leads to residual concentration peaks at the above-mentioned
numbers.

Figure 5 shows the resulting distribution for the third parameter setting
in Figure 3. Here, too, some strings have reached maximum length.

5. Summary

In this paper we have extended the range of a previously proposed RNA-
inspired algorithm to strings of arbitrary length and to interactions of strings

224 Wolfgang Banzhaf

11,000,000 —

2 1=1,000,000 —
2000

1500

Number o stings.
Number of strings

1000

500

| |h LUl Lol] "

0 30 a0 50 60 70 8 % 100 60 70
Length Length

Figure 5: (a) Total distribution of string lengths in the simulation of
Figure 3 for pyp = 0.1, pgown = 0.9 after 1,000,000 sweeps through
the algorithm. (b) Partial distribution of string lengths from N = 30
t0 Nmax = 100 for the same run as (a).

with different length. We have found that, as a result of normal interactions,
strings of different lengths were produced. By observing the growth in the
average length of strings in a population starting with minimal-length strings
we have demonstrated the drive of the proposed system to build up complex-
ity.

The observed phenomenon is not constrained to the subset of compact
folding methods reported in the simulation; rather, it seems to be a constant
theme through these kinds of algorithms. Even using a very small probability
pup led to an increase in the average string length. It thus seems to be
more of an inherent feature of the algorithm than a product of particular
circumstances.

Note, however, that we did start with strings of small length, avoiding
the trivial strings N = 1, which are identical to the building blocks of all
strings. Starting a system from N = 1 strings seems to be possible but was
omitted here for the sake of clarity.

The first results on the build-up of complexity presented here can only
be a starting point for a more thorough investigation of the phenomenon.
Certainly, the “bit” level of strings has to be included in order to gain a
comprehensive picture. Since strings in two-dimensional form work on one-
dimensional strings by repeatedly applying the same operations, we expect
that self-similar structures will play a prominent role.

Acknowledgments

Part of this work was performed during my stay at Mitsubishi Electric Cor-
poration in Japan. I am grateful to Drs. T. Nakayama and K. Kyuma for
making my visit possible. Valuable discussions with Mr. T. Iwamoto, Dr. W.
Fontana, and Dr. M. Schmutz are gratefully acknowledged. I am indebted
to Dr. J. Bell for carefully reading an earlier version of this manuscript.

Self-Replicating Sequences of Binary Numbers 225

References

1]

2]

B8l

[4]

W. Banzhaf, “Self-Replicating Sequences of Binary Numbers,” Computers and
Mathematics, 26 (1993) 1-8.

W. Banzhaf, “Self-Replicating Sequences of Binary Numbers—Foundations I
and II: General and Strings of Length N = 4,” Biological Cybernetics, 69
(1993) 269-281.

C. H. Bennett, “Dissipation, Information, Computational Complexity and the
Definition of Organization,” in Emerging Synthesis in Science, edited by D.
Pines (Reading, MA: Addison Wesley, 1988).

J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor: Uni-
versity of Michigan Press, 1975).

H. J. Morowitz, Energy Flow in Biology (New York: Academic Press, 1968).
R. G. Palmer, “Broken Ergodicity,” Advances in Physics, 31 (1982) 669-735.

B. Robson and J. Garnier, Introduction to Proteins and Protein Engineering
(Amsterdam: Elsevier, 1986).

SFI Studies on the Sciences of Complezity (Reading, MA: Addison-Wesley,
1988-1992).

J. D. Watson, Molecular Biology of the Gene, 3rd edition (Menlo Park, CA:
W. A. Benjamin, 1976).

