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1. Introduction

Genetic algorithms provide a stochastic search technique inspired by prin-
ciples of natural genetics and evolution. They operate through a simulated
evolution process on a population of string structures, each of which rep-
resents a candidate solution in the search space. Evolution of populations
involves two basic steps: (1) a selection mechanism that implements a sur-
vival of the fittest strategy, and (2) genetic recombination of the selected
high-fitness strings to produce offspring for the new generation. Recombina-
tion is effected through the two biologically inspired operators of crossover
and mutation. Selection ensures that above-average strings contribute to a
greater number of offspring in the next generation (on average).

Genetic algorithms (GAs) are considered suitable for application to com-
plex search spaces and combinatorial optimization problems, where a balance
is often sought between full exploitation of the currently known solutions
and a robust exploration of the entire search space. GAs provide an effec-
tive means for managing this tradeoff. The selection scheme operationalizes
exploitation, and the recombination operators effect the exploration of the
search space.

A number of researchers have reported success with GAs applied across
a wide spectrum of problems, including process control [18], communication
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network design [7], to learning models of consumer choice [20], nonlinear dy-
namical models of sociological phenomena [11], simulation of rational agents
in socio-economic contexts, and scheduling of jobs on a production floor [4,
6, 25, 26, 38, 39].

GAs use an encoding of the search space attributes. The coding scheme is
critical to the success of GAs, and traditionally a binary string representation
has been used. The use of a binary representation is advocated by the Schema
Theorem and the principle of minimal alphabets [15], which maintains that
lower cardinality alphabets facilitate higher schemata processing, and thus
foster the parallelism that is implicit in genetic processing. As a consequence,
most theoretical studies have been conducted in terms of a binary scheme.

Empirical results have shown the value of high cardinality representations.
In this paper we provide extensions to a theoretical model of binary-coded
genetic search [35] to enable consideration of higher cardinality alphabets.
An exact representation of GA search using higher cardinality alphabets is
presented.

The organization of the paper is as follows. Section 2 briefly examines
the motivation for the study of non-binary GAs. Section 3 then provides an
account of the Schema Theorem and the Vose-Liepins framework. The main
results of this research are then presented in section 4.

2. The case for non-binary representations

Though the use of a binary representation has been shown to maximize the
implicit parallelism inherent in genetic processing, a number of researchers
emphasize that higher cardinality alphabets are better suited for practical
applications, and have greater utility and intuitive appeal. They hold out
numerous successful applications as proof of the power and feasibility of non-
binary encoded GAs [5]. Goldberg [13] admits:

The debate between practitioner and theoretician over this para-
doz of real codings has risen almost to the point of schism. The-
oreticians have wondered why practitioners have paid so little
attention to the theory, and practitioners have wondered why the
theory seems so unable to come to terms with their findings. [13,

p. 1]

Most theoretical considerations on genetic search emanate from the
Schema Theorem—called the Fundamental Theorem of Genetic Algorithms
[15]—which also forms the basis for minimal alphabet arguments and the
building block hypothesis. In recent years, however, the use of the Schema
Theorem to characterize the actual behavior of GAs has been increasingly
questioned. Grefenstette [22] and Grefenstette and Baker [24] re-examine
schema analyses that initially cast implications on implicit parallelism. Their
arguments call into question certain widely held assumptions in GA theory—
the k-armed bandit analogy, and consequent arguments related to the build-
ing block hypothesis and quantification of the implicit parallelism exhibited
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by the genetic search process. Greffenstette [21] elaborates such criticism
in applying static schema analyses to study the dynamic behavior of GAs,
especially in connection with the study of deceptive problems; Forrest and
Mitchell [12] also express concerns with this traditional approach to deception
analysis. Miihlenbein [30] expresses strong reservations to schema theorem-
based interpretations (the optimality of binary representations arising there-
from), and raises a second objection—that the schema theorem focuses on
disruptions caused through recombination, rather than a direct considera-
tion of how increasingly better substrings are formed. See also Vose [37] for
a critical appraisal of the schema theorem.

Noting that binary representations are a primary reason for GAs not find-
ing wider acceptance, Antonisse [1] provides an alternative interpretation of
schemata that contravenes the minimal alphabet principle, and argues for the
use of non-binary discrete alphabets. Wright [40] examines real-coded GAs
in terms of schemata analysis and notes advantages over a binary represen-
tation. Goldberg [13] also studies high-cardinality alphabets, and proposes
a theory suggesting that initial selection pressures reduce high-cardinality
alphabets to lower-cardinality virtual alphabets that subsequently undergo
processing through genetic operators. He also examines deceptiveness in ge-
netic search when using such higher-cardinality representations.

One approach to considering higher-level representations in genetic search
is to interpret binary substrings as primitives of a high-level language [10].
The direct utilization of a non-binary representation scheme, however, pro-
vides greater intuitive appeal for practical applications, and a number of re-
searchers have reported success with complex string representations [7, 23].
Grefenstette [23] directly uses a high-level representation, and points out
several advantages over binary encodings:

First, it makes it easier to incorporate existing knowledge, whether
acquired from experts or by symbolic inductive learning pro-
grams. Second, it is easier to explain the knowledge learned
through experience. Third, it may be possible to combine several
forms of learning in a single system. [23, p. 343]

Modified operators for high-level representations have been proposed [2, 23].
Some theoretical work with non-binary string encodings has also been re-
ported [1, 13, 40]. Recent work by Vose and Liepins [35] provides a detailed
characterization of GA search and a means for a more exact analysis of the
behavior of GAs (than allowed by the Schema Theorem and schemata anal-
ysis). As with most GA research, however, this work considers only a binary
representation. This research aims at using the Vose-Liepins model of GAs
to consider higher-cardinality alphabets.

In the next section, we take a deeper look into the theoretical model
proposed by Vose and Liepins [35] to explain the behavior of binary encoded
GAs.
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3. A detailed characterization of GA search behavior:
The Vose-Liepins model

A rigorous mathematical formalism for a simple genetic algorithm has been
provided by Vose and Liepins [35]. Modeling recombination through cross-
over and mutation as dispersion operators, and selection as a focusing op-
erator, they obtain a precise characterization of the punctuated equilibrium
phenomenon often noticed in genetic search, that is, alternating periods of
rapid evolution and generations of relatively stable populations. GAs are
considered to be dynamical systems in a high-dimensional Euclidean space,
and expected population trajectories are obtained assuming infinite popula-
tions. As in many other theoretical studies, Walsh matrices also provide a
basis for the analysis of GAs.

Binary strings of a fixed length L are considered, where N = 2% represents
the total number of possible strings. The set of binary strings is also identified
with integers from 0 to N — 1. A vector s* € Ry models the tth generation,
with the ith component, s¢, being the probability of individual ¢ being chosen
for reproduction. Another vector p* € RY has its ith component equal to the
proportion of ¢ in the ¢th generation. The probability of two strings ¢ and j
combining to produce a new string k is represented by ; ;(k). The expected
proportion of a string k in the next generation is given by

E[pit =Y sisiri (k).
G

Assuming infinite populations, the law of large numbers gives
sz . E[p?'l].

For binary recombination through crossover and mutation, the following
relationship holds: 7;;(k @ 1) = Tigk jer(l), which gives 7;;(k) = Tigr,jor(0),
where @ denotes the exclusive-or operator. Given 7;;(0) for all (7,7) com-
binations, all the recombination probabilities r; ;(k) are thus obtainable. A
matrix M is defined having (7, j)th entry m;; = r;;(0). The probability
of any two strings 7 and j recombining, through single-point crossover and
uniformly random mutation, to give the string 0 is found to be

(1 — M)Q l: i X —_— —A;
M, =—"" nlzl e . Z n Ak
! 2 L-1 k=1

A =
+ ol [1—x+ 22— Z ik
L=l

where i and x are the mutation and crossover probabilities, respectively, and
n = p/(1 — p). Here, |i| is the number of 1s in the bit vector corresponding
to the integer i, and A; jx = [(2¥ — 1) ® i| — |(2F — 1) ® j|, where ® denotes
the logical-and operator. An operator M is defined as

M(s) = ((008)" M(0¢5), . .., (on_18)T M (on_15))T
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where a7 is the transpose of a and the o;s denote the permutation:

0;'(50, ce :SNﬁ1>T = <5j@0, ces 3jea(N—1)>T

A second operator, F, is a nonnegative diagonal matrix with F;; = f(7), the
objective function value for the string corresponding to the integer 7. Then,
Fp' is a vector that points in the same direction as s?, that is,
st = \Fpt where A\ = ;
’ i f@)p(d)
Using ~ to denote the equivalence relation defined by z ~ y if 3\ > 0 such
that z = Ay, we have st ~ Fpt.

Further, M(s) is a vector that has its ith component the expected propor-
tion of i in the next generation, that is, E[p**!] = M(s!). Assuming infinite
populations, we may write pt+! = M (st).

These operators form the basis of the Vose-Liepins model, and help char-
acterize GA search through the matrices F' and M. An exact representation
of the limiting behavior of a simple GA, as the population size tends to
infinity, is given by the relation

st~ FHI(sY).

Considering G to be the composition of the operators F and M, the progres-
sion of GA search from one generation to the next is given by the iterates of
G, and convergence corresponds to the fixed points of G.

It is shown that the only stable fixed point of F'is that associated with the
maximum value of the objective function. The fixed points of the quadratic
operator M have been studied via a matrix M* having (i, j)th entry mig;.
related to the differential of M, and it is proved that if M* is positive and
has its second-largest eigenvalue less than 1/2, then every fixed point of M
is stable. An explicit expression for the spectrum of M* has been derived
by Koehler [28], and the second-largest eigenvalue is shown to be 1/2 — p.
All fixed points of M are thus asymptotically stable when the mutation rate
is between 0 and 0.5. Furthermore, a conjecture relating to dynamical sys-
tems implies that the fixed point is unique, and corresponds to a population
with equal proportions of all members. Recombination is thus viewed as a
dispersion or diffusion-like operator.

The evolution of populations via the operators F' and M help explain the
punctuated equilibria observed in genetic search. Populations move under
the influence of F' toward one of the fixed points. If this is not maximally fit,
then it is an unstable fixed point, and recombination will ultimately cause a
major change in the population and move it toward another fixed point of F.

Nix and Vose [31] derive an exact model of a finite population GA as
a Markov chain, and show that for large populations the trajectory of this
model follows very closely, and with high probability, that of the infinite
population model. With nonzero mutation, a finite population corresponds
to an ergodic Markov chain, and thus has some finite probability of visiting
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every state. The steady-state distribution is, however, shown to concentrate
probabilities near the fixed points of the infinite population model (which
correspond to local optima). This implies that the GA will move from one
local optimum to another in the process of its search. Vose [37] extends this
analysis through a geometric interpretation of genetic search trajectories in
both the infinite and finite population cases.

4. Non-binary alphabets and the Vose-Liepins framework

The mathematical framework of Vose and Liepins [35] described in section 3
is based on a binary representation scheme. In this section a partial exten-
sion of this formalism is developed for genetic algorithms using a non-binary
representation. We consider simple genetic search using traditional one-point
crossover and uniformly random mutation on fixed-length strings using an
alphabet of cardinality 2°.

A key result of the Vose-Liepins model was based on a conjecture obtained
from computational results. This conjectured result has since been proved
[28]. In this paper, analogous results for the generalized case of alphabets of
cardinality 2" are provided. Walsh transforms have formed an important part
of the theoretical analysis of GAs, and the above framework makes extensive
use of Walsh matrices. Our results are also based on an extension of the
Walsh matrix definition to cover non-binary representations.

Here we consider the representation to be based on an alphabet of car-
dinality K = 2Y. Though this assumption restricts generalizability to al-
phabets of arbitrary cardinality, our results nonetheless allow a comparison
of properties of binary and non-binary GAs and bring us a step closer to
a theoretical basis for analyzing non-binary GAs. Similar restrictions have
been considered in Eshelman and Schafer [9].

After defining the notation in the next section, generalized Walsh matrix
terms are obtained in section 4.2. Then, in section 4.3, the recombination
operator expression is derived. Properties related to the stability of the fixed
points of M are given in section 4.4. The expression for the spectrum of M
is then derived in section 4.5.

4.1 Notation

We will use the following notation throughout.

K is the cardinality of the alphabet; K = 27,
for some positive integer v.

L is the length of the non-binary string.

X is the crossover rate.

p is the mutation rate (mutation is to a different randomly
chosen allele).

n o p/(1—w).
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d;(s) is the ith digit of the string s.
) is 1if z is nonzero, and 0 otherwise.
7 6(d;(s)) is the number of nonzero digits in s, from the pth to the
qth positions.
|s| is the total number of nonzero digits in the string s.
rev(s) is the string obtained by taking the digits of s in
reverse order.
wid(s) is the defining length of the string s; that is, the number
of digits in s between the outermost nonzero digits;
wid(0) = 0.
del(z) is1if 2 =0, and 0 otherwise; that is, del(z) = 1 — 6(z).
b(s) is the binary equivalent of the non-binary string s,
obtained by concatenating the v-bit binary
representation for every digit in s.
e is a vector of ones of appropriate length.

4.2 Generalization of Walsh matrix terms

A direct method for computing the Walsh matrix terms in the binary case
has been provided by Koehler [28]:

Proposition 1. For binary strings i and j, the Walsh matrix terms are given
by
VVij — (_1)Irev(i)®jl — (_1)Irev(j)®il.
Considering non-binary strings r and s, we have
W, , = (—1)brereve)]
Representing the strings by their individual digits, we get
W,y = (—1)HEim K )@rev(b(Ti, di(o) )|
However, the second term in the exponent is
rev (b (Z di(s)Kl_1>> =Y K" rev(b(di(s))).
i=1 i=1
Switching the second index size gives
ST K rev(b(di(s))) = Y K rev(b(drs1-i(s)))-
i=1 i=1
Thus the Walsh terms may be written as
W, = (_1)|b(zf=1 di(NK )@Y L K rev(b(dr41-1(5)))|
= (—1)|Zi K e @rev(bdra—i ()]
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Since the exponent cannot have negative terms in the sum, we may move the
absolute value into the summation. Also, K*~*b(d;(r)) = d;(r). We then get

W,y = (1) Dt )8V (disa—s())

L
— H Wdi (r):dr+1-i(s)

i=1

L
= [ Waitr) s rets))-

=1

We thus obtain the following theorem:

Theorem 1. The Walsh matrix terms W, ; for non-binary strings r and s
of L digits and cardinality K = 2" are given by

L L
Wr,s = H Wdi(T)adL+1~i(s) = H Wdi(?‘)ydi(re"(s))'
=1

i=1

Note that d;(r) above represents the ith symbol (digit) of the string r.
Considering an alphabet of cardinality K, this term is obtained from the
K x K Walsh matrix, each term of which is given by Proposition 1 (where
the binary equivalent of r is used). Note further that the K* x K* Walsh
matrix is similar under both the binary and higher-cardinality encodings.
The theorem above is thus not a new definition of the Walsh matrix, but
rather a means of calculating the Walsh terms suitable for use with higher-
cardinality encodings in terms of the bit strings that define each digit of the
higher-level encoding.

4.3 The recombination operator

Considering recombination through simple crossover and mutation, the fol-
lowing relationship has been derived [35]:

75 (k ®1) = rigk jer ().

The probability ; ;(k) of any two binary strings ¢ and j yielding a string &
can thus be obtained as

rij(k) = 1i;(k ® 0) = rig jor (0)

and so we only need to be able to compute 7;;(0) in order to get all the
recombination probabilities. We note that in the higher-cardinality alphabet
case this same relationship is seen to hold by considering binary versions of
the strings.

The probabilities 7; ;(0) for the non-binary case are derived below. Con-
sider a string r mutating to the string 0. Since mutation is to different
randomly chosen allelles, the probability of a nonzero digit of r» mutating to
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the digit 0 is /(K —1). The probability of a 0 digit of r remaining the same
is 1 — . The mutation probability on a string r is thus given by

L

I [6di(r)) s + (1 = 8L - )

=1

<ﬁ)m (1=

p \™ @-pF
(1 — ,u) (K — 1)l
- ()"

Now for single-point crossover, let p be the randomly chosen crossover
point. Consider two parent strings s and ¢, and let ¢; and ¢ be the two
children resulting from crossover. Then, the number of nonzero digits in ¢;
and ¢y are given by

m(r)

Il

wu=m—§y@w»+éamm>
and

|m=m—éawm+iamm.

i=1

Defining
P P
Dsep =) 6(di(s)) = D_8(di(t)),
i=1 i=1
we may write
le1| = |s| = Asip
and

lco| = [t] + Astp-

Then considering mutation and crossover together, the probability of ¢; being
the string 0 is

-2 (k)" 0 -

if no crossover actually occurs (with probability 1 — x), and it is

L-1 |s|—As,¢
X TI i3y 4 L
_2' i T
L—1P=1(K—1> 1=n
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if crossover does take place. Thus, the probability that the child ¢; is the
string 0 is given by

(1-y) <%>Isl (1—H)L+ L)i ILZ_I (Kn_ l)lsI—As,z‘p(l _M)L_

p=1

Similarly, the probability of c; being 0 is

Il L1 [t]+As,e
’[’] I X ’]7 6P E
(=) a- — p)*.
. X)<K—1) (1= +L—1p=1(K—1> (1=w)

Since ¢; and cp result with equal probability, we have the following result.

Theorem 2. The probability of any two strings s and t recombining to yield
the string 0 through single-point crossover and uniform random mutation is

o) = _2“>L RK?]— 1)|Sl {(1 ol ko L)i 1L§ (Kn— 1>—AW}

p=1

(Y {(1_X)+ 25 1>H |

Vose and Liepins [35] have formalized simple genetic recombination
through an operator M described in section 3. A related matrix, the twist
of M, denoted M*, plays an important role in their analyses, and is defined

below.

Proposition 2 (definition and properties of M*)
1. M.:] = iBg,i-
2. WM*W is lower triangular.

Property (1) in Proposition 2 is obtained for cardinality K in a manner
analogous to that for the binary case by noting that since K is assumed
to be some power of 2, we may convert any non-binary string to its binary
equivalent. The proof of part (2) closely follows that outlined in Vose and
Liepins [35] and is given in the appendix.

4.4 Stability of fixed points

The stability of the fixed points of the recombination operator M has been
studied, and the following result relates stability to the eigenvalues of M*.

Proposition 3 ([35]) If the matrix M is positive, then any fixed point of
M is stable whenever the second largest eigenvalue of M* is less than 1/2.

Based on computational results, the authors conjectured that the eigen-
value of M* would be less than 1/2 if the mutation rate is kept between 0
and .5. An expression for the spectrum of M* has been obtained in Koehler
[28]. We next derive the spectrum of M* for the non-binary case.
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4.5 Spectrum of M*
4.5.1 Preliminary expression

In obtaining the spectrum of M*, we make use of the following results deriv-
able from Proposition 2.2 above.

Lemma 1. Let C = WM*W.

1. Then the eigenvalues of M* are C;;/K fori=0,...,K* — 1.
2. The C;; values are given by

KL-1 KLi-—1
Ciz= Z Wi Z M, = (WMe),.
3=0 k=0

For binary strings (K = 2), this result has been proven by Koehler [28]. For
the non-binary case, consider the binary equivalent of the strings, and further
note that the length of this binary-converted string is K%, since K = 2% for
some integer v.

The expression for the spectrum of M* is derived from part (2) of Lemma
1 by first obtaining the row sums of M. We now prove a few identities useful
for this derivation.

4.5.2 Some useful identities

Below we give several identities that will be useful throughout the remainder
of the paper.

Proposition 4.

1. The total number of strings of length L having exactly i zeros is
L! i (L
= (1)
it (L =) ( ) i
2. The number of strings of length L having exactly g non-zeros in the

first to the pth position (counting positions from the rightmost end of
a string) is

(K —1)F!

(,2 ) (& — Lok,
p—g
Proof. If a string has i zeros, then it must have L — i nonzero digits. Now
K —1 nonzero symbols may be placed in the L —1 places in (K — 1)~ ways.
Also, the zeros may occur in ¢ places out of L in L!/[i! (L —7)!] ways. Hence
the first result.

The second result follows from the first. Considering the first p positions
only, g non-zeros imply p— g zeros, and thus the number of strings with p—g
zeros is

(p . 9) (=1
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Since the remaining L — p positions may be occupied by any of K digits, we
get the desired expression. il

The following identities form the sub-expressions in the row sum calcula-
tions.

Proposition 5.

KL—-l 2]
& ( 1) =-#
KL 1 i é(d.(t))
2, (—" 1) K P(1— )™
K"—l SE L 8(di(2)
n Y (1 _ L
% (75 =)
KLi-1L-1 |s|—As,t
7’] P
+ 2 2 (75)
2 L \x-1
ls| £=1 i 8l
_ n i =t L-p(q _
(7#5) 5 (75) K-
KE-1L-1 [tl+As,e, L-1 > or 6(di(s)
5 Y (7)) =2 () KP(1— ppt
t=0 p=1 p=1

Proof. We first prove (1). We have

KE—1 [¢] 0 1 B
] _ n . 1
2. (K—l) _"O(K—1) +”1(K—1) - +”L<K—1)

t=0

where n; = number of strings with ¢ nonzero digits. So,

KE—1 It] 0 1 L
N — _n —t B
; <K—1> _mL<K—1) +mL‘1(K—1) N +m°(1<—1>
zi(L)imM
2 \K-1

where m; = number of strings with i zeros. Using Proposition 4, part (1),
gives
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The last step results from noting that the binomial terms sum to unity.
Now consider (2). We have

L— 4
K21<L>Zf:15(d1(t))_(_n_>ot0+m+<n)ptp
2 \K-1 K-1) " B0} P

where t;', is the number of strings ¢ having ¢ nonzero digits from the first
through the pth position. Then, using Proposition 4, part (2), we have

()P = £ () o ()

() ()

= K“”(l - ,u)‘pf: (p

g=0 V9

I

) po (1 — p)P=e

Since the last binomial term sums to unity, we have the desired result.
Relation (3) is obtained similarly. We have

Kfl ( n >Ef:p+16(di(t>> B Lfth ( n )n
- ,L
2 \K—1 P\ 1

where t;‘y ;. gives the number of strings ¢ with A non-zeros from the (p + 1)st
to the Lth position. Using Proposition 4, part (2), we find that

)T = S (B e ()
=Ké§<%p><%;>
= KP(1 — p)~¢#) sz (L gp> ph(1 — p)E-P=h
= KP(1 - p)".

We now consider the expression in part (4). We know that

K¥=1L-1

> S

t=0 p=

|s| L=1 =P 6(di(s) KF -1 S 8(di(e)
_ n Ul i=1 7 i=1
_<K—1> Z<Kw1> 2 (K—l)

p=1 t=0
|s] L—1 >r_ 8(di(s)
n n Freo -
— KL-r(1 — P
(K—l) I;(K—J A=)

using Proposition 5, part (2).
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Similarly, considering part (5), we have

Ki-1L-1 [t]+As, e,
_n )
> > (755)

t=0 p=1
B L“( n )ZL; 8(ci(s)) Kil( n )Zfzpﬂ 8(di(1))
ZO\R—1 2 \Kk-1
L-1

P

n )Zizlé(dxs)) K7(i ok

= === i—p)P . R
1(K—1

We now consider another set of useful identities that relate to Walsh
matrix terms in the non-binary case.

Proposition 6.

KL-1
1. Z Wys = K% if |r| =0; 0 otherwise.
=0
KP—1 L
2. Y Waa=KPif Y 6(di(r))=0; 0 otherwise.
z=0 i=L—p+1

Proof. Consider part (1). Expressing the Walsh terms in product form
(Theorem 1), we have

KL-1 KL-1 /L
> Wea= Y (H Wdi(r),d,i(rev(x))>~

=0 z=0 =1

Since summation over z and its reverse are equivalent, the above expression
is equivalent to

KL-1 /L
5 (H Wdi(r),di(z))

z=0 \i=1

Now note that r and z are strings of length L. Consider the digits of these

strings as 71, ..., and xy,...,zy, respectively. Then in the expression
Kt-1 /L
¥ (H Wdi(rxdi(z))
z=0 i=1

there are K terms. Combine these terms in groups of K, such that z; varies
from 0 to K — 1 within one group, and all other z;s remain fixed. There will
be KL~1 such groups, and each group sum is of the form

Wipar o Wepzg(Weio + Wea - + Wi k1)
B {KWTL,IL o Wyyay ifr =0



An Analysis of Non-Binary Genetic Algorithms with Cardinality 2¥ 241

If 1 = 0, then consider the K*~2 groups where x5 varies from 0 to K — 1.
That is, consider

KWTL,ZL LR W’l‘g,za (WTz,O = WT2,1 o L WT2,K—1)
_ {0 ifrg #0
KW,z Weyey ifri=ry=0"
Continuing in this manner, we find that if ry = ry = --- = rp_; = 0, then

the remaining K groups where x;, varies from 0 to K — 1 have the form

KL_I(WrL,o + Wi+ -+ Wi k1)
B {o if 7, # 0

KL ier:rL_lz...:'rl:O’

which proves the first result.
Now consider part (2), namely,

KP—1 K?—1 /L
¥ Woe= 3 <H Wd,-(rxd,-(rev(z)))-
z=0

z=0 \i=0

Since the lower L —p digits of rev(z) are Os, the Walsh terms Wy, (r) ¢, rev(z)) =
1 for these digits. Thus, the expression is

KP—1 KP—1 L
ZO W= Y. ( II Wdz(n,d,»(rev(z»)
=

z=0 i=L—p+1
KP—1
== (Wml We, g W,L_Hmp)
z=0
- {K” gy = =y =7p=0
0 otherwise

Using steps similar to those used to obtain part (1) above gives the desired
expression. B

The following identities are necessary for obtaining the spectrum (in sec-
tion 4.5.4) from the row sums expression (derived in the next section).

Proposition 7.

K-1 8(dr(s)) __n_ )

1. Z Wdi(s)1dL—-i+1(T') ( i ) = {1 K-1 I.f dL_l_H(T‘) 7& 0
di(s)=0 K'=1 L+n ifdyi11=0
KP—1 >r 6(di(@))

n =1
2w ()
2 Wea (7

Yoie s p 6(di(r)) _

- (1 B %) ’ (1 + )P Dy SO
KL7P—1 . i

3. S Wiyke= {K if YiP 6(di(r)) =0

¥=0 0 otherwise
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Kh7p—1 > e 8(di(y))
"7 =1
yz% ryKP K_1

R ICAC)
*“%)EH (14 )PP i 8,

Proof. First consider part (1). We have

-l )5(di(5))

7
Y Wasydr i) <—
d;(5)=0 o K—1

n_\° U
= WO,dL—i-(»l(T) (ﬁ) + (ﬁ) [Wl,dL_i+1(r) 44 WK—I,dL_i“(r)]
_ 1—}-#(—1) if dL~i+1(7") #O
1+ ?77_—1([( — 1) if d[,_ﬂ_l(T) =0

The above expression results from noting that the Walsh coefficients are
terms from the K x K Walsh matrix, and that the row sums of the Walsh
matrix, leaving out the first column, equal K — 1.

Now consider part (2). We have

KP—1 >or_ b(diz)
X W (—1)

KP—1 @) ;g\ ) N CHO)
_Z< ) (K—l) "'(K—1>

[Wdly(z);dL("')Wd2:(z)vdl,—1(r) W ),a, (T)J

KP—1 n @)
- Z {[(1{-1) Wdl(z),dltrevm)}

=0
5(d2($))

( WdQ(x),dz(rev('r)) o
6(dp(x))

( dp(x),dp(rev(r))

[Wgz,ﬂrl (@),dp1 (rev(r)) - WdL(z),dL(rev(r))] }

However, the last bracketed expression equals 1, since the (p + 1)st to Lth
digits of z are 0 (since z = 0 to KP—1). Then, using part (1), our expression

becomes
P 8(di(rev(r
n ) =1 (di(rev(r))) (1 n)L7§ :le §(d;(rev(r)))

S 8(di(r)) L _
— <1 il n ) L=p (1 +,’7)P'Zi:L_p5(d1("))'
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Next, considering part (3),

KE-p—1 KL-p—1 /L
Z; Wegr = (H Wdf-(mdi(rev(ym)))
y:

y=0 i=1

note that in yKP?, the lower (i.e., the rightmost) p digits of y are 0 (multipli-
cation here is modulo K). Thus, as y varies from 0 to KX7P — 1, yK? varies
from KP to K¥ — 1. That is, the lower p digits of yKP are zero. Hence,
writing yK? = ¢, the above expression becomes

Kt-r-1 Kbt-1 /L
Y. Wegre= ) <H de),di(rev(q)))
y=0 q=KP \i=1

Note that rev(g) has its upper p digits equal to 0, so we need consider only
the lower L — p digits of r. Letting r; be the string » with upper p digits 0,
we get

KL-p_1 KL-1 (L-p
Y Wore = Y | I Watrn)ditrevi)
y=0

q=KP \i=1
KL-p_1 [L—p
= Z War)aita) | -
¢=0 \i=1
Using Proposition 6, part (1), we then get
L—p
KT _ [ K'=P if all digits of r; are 0
Z Wr,yKP - p .
=0 0 otherwise
Finally, consider part (4). The left-hand side of the expression is
K%—l w ( n )Ziif’adz(yn
— TrvET
y=0
:KLZ“( n >Zf;fé<di<r)) [L Wi (m)}
= K—1 ] i(T),@L+i-1\Y
K221, g NS o g \5da) N\ @@
a y; (K—l) (K—l) "'<K—1>

[Wdl ()1 (rev(yKP)) - - - WdL_p(r),dL_p(rev(yKP))]
[WdL—p+1(T),dL—pH(reV(yK”)) s WdL(")adL(reV(pr))]

The last bracketed expression equals 1, since dp_pi1(rev(yKP)) to
dr(rev(yKP)) constitute the upper p digits of rev(yK?); that is, the lower
p digits of yKP, which are all 0s. Hence the expression becomes

KL‘P—IW N\ Dt 6:w))
y;) “”’KP<K~1>



244 Siddhartha Bhattacharyya and Gary J. Koehler

i, n @)
N Z (ﬁ) Wdl(yk"),dﬂrev(r))

di (y)=0
K-1 7 8(dL—p(y))
2 (H) War_,wKP)di_plrev(r)) | -
dep(y):O
Using Proposition 7, part (1), this equals
B (1 n )Zf;” 8(di(r)
- K-1

4.5.3 Row sums of M

(1 +p)bP 580 g

The elements of M are

ral®) = _zﬂ)L {(Kn— 1)15| (1 =E L)i 1 5 (Kn_ 1)_%’?)

p=1

() e S E ) ™)

p=1

To obtain the row sums of M, we sum the above expression from ¢ = 0 to
K* —1. Now,

) a0+ () a -]

t=0

- KLM (L)lsl (1-%)

2 \K-1
(L-—mb, K g M
g 1=X ; (K—l)
Y o _
_ gt 2#) (Kn_l) 1y + 8 2x)

using Proposition 5, part (1).
Also, combining Proposition 5, parts (4) and (5), we get

(I_M)L X KL~1L4( n )M_ASM, KL—IL—I( n >|t|-As,L,p
7 I-1|% =\K-1 t 2 kg

t=0 p=1 o
Y’ T [sl- 327, 6(di(s))
_(=m" x 7 . K¥P(1—p)™
2 L=1|giK=1
-1 S 6(di(s)
’I’] i=1 .
+ X (713) el =ap L}
p=1

L—1 [s|=>°F_, 8(di(s))
_ X ’]7 i=1 _ L—p
o 2(L—-1) [Z (K - 1) = &p)
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L1 S0 6di(s)
7 Bl _ p
- p; (K - 1) (K~ Kp) ]
N =N 3 10 o L gl
T E-1) ,{2(}(—1) R =i
L1 S0, 8(d:(s)
n i=1 o p
" 1; (K = 1) (K~ K }

-1 Isl—= 3157 6(di(s))
__ X _ A -
T aL-1) (E(K T [(K—l)

n Z:;l 5(di(s))
* (#59)
K-1

% L—1
=7 ) (K — Ku)PG(p, s
2(L-1) pzz:l( ) )
where
Is| -3 6(di(s)) S 8(dis))
17 1 T] i=1
G(p’s):(K—1> +(K—1)

Then combining the two expressions obtained above, we get the expression
for the row sums:

K (=) . ool w* g
3 rall =g 2 SR (S
T 2:;<K — KuPG(p,s).

4.5.4 Expression for the Spectrum

The following terms comprise prominent sub-expressions in the derivation of
the spectrum.

Proposition 8.

KL 21 5(di(s)) 7|
B I (R e e

Ki—1 Yr_ 8(di(s))
2 Z W,s( 1) ‘
L—P

={KL‘P (1__K77_1)| (1 4+ )Pl 1f26d(r

=1
0 otherwise
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Kh—1 ls|= 327, 8(ds(s))
e i W<—_1> 1

Irl L
[legt oo o

i=L—p+1
0 otherwise

Proof. First consider part (1). The left expression is

Kr—1 L 8(di(s))
) Wrs< _1) :

KL

! i 8di(s)) [ L
n i=1
Was o O
—0 (K — 1) |i7;l;[1 di(s),dr,—iy1( )]

S
Kf - n 6(d1<s>>}
= a1 (s),dp(r) <—>
& e \ g —1

(5)=

6(d>(5))
1
{ Z Wy (s), . (r) <K 1) }

da( s):O

—1 n 6(dr(s))
Z WdLs)dLr><K 1) :

dr(s)=0

|

o

Using Proposition 4, part (1), this expression becomes

= (1)

Now considering part (2), the left expression may be written as

KE_1 7 6(di(s))
> W (hy)
KL—P_1 KP—1 R CHO)
> 3 Wrswwio (75)
KL p_q KP—1 >or 6(di(s)
Z Wr yKP Z WTZ <—_1> 1 :

Using Proposition 4, part (2), for the second summation above gives

i YL, sdir) .
e MM{O_?%J T (L gy iy SO
y=0

Using the result of Proposition 4, part (4), this becomes

L B
KL (1 B L)Zm_p 8(di(r)) 1+ n)p-zf:kp 8(di(r))

K—-1 ;
0, otherwise
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But if

L—

25 i(r)) =0,

then
L L
Y. 8(di(r)) = é(di(r)) =1rl.
i=L—p i=1
Thus, we get

=1
0 otherwise

I Lp

_ { KL-r <1 — %) (L+n)Pr 5 3 6(di(r) =
Finally, consider part (3). The left expression is

K1 Isl—327_, 8(d:(s))

()

-1
n

; Woo (s

ol el )Zl 7 8(d: ()

n
y§::0 I;O Wr,z+yKP (?_—1

KP—1 KL-P_1 S 8(ds ()
n i=1

) Zf:p-{»l 8(di(s))

Using Proposition 4, part (4), this becomes
KE-1
Ui
S (2
= TAK -1

KP—] L-rg di(r
= > W {(1 - L)Z’Z‘ RIS v "6<dz<r>>]
z=0

>l5| >, 6(di(s))

K-1
Now using the identity of Proposition 6, part (2), we have

e - n\Is=2Th 6(di(s)
%, W (x27)

5P 5(di(r ~
n )21:1 (di(r)) (1 4 n)L_P“ZiL:lp 5(di(r))

it > 8(di(r)) =0

i=L—p+1
0 otherwise
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But if

L—p+1

Zé(dr

we get

L-p
> a(dh(r)) = L a(eh(r)) = I
Hence, the result. B

The expression for the spectrum may now be obtained using the above
results. Let Ss denote the sth row sum of M. Then from the expression for
the row sums of M derived in section 4.5.3, we have

ZWTSS = ZWM
-5t (%) =0T W (1)

-1
X
e (K - K#)p WT,SG(p, 5)
2(L-1) :4:; ;

First consider the last term. We have
Brsli
S (K — KuP Y WeoGlp, )
p=l1 s

B (o= 2 o)

- i=1

v (1220 gy 'T|del< > 5(d<)>ﬂ

i=L—p+1

= LZ_II KP(1 — p)Pk? (1 = —%) ey {da (z; 6(di(7’))>
+ del (_ﬁj 5(di(r)))}
= KY(1 - Kp)lr Lg_l {del (i(i ) + del (_XL: 6(di(7~))>} ,

When r = 0, this expression equals K*2(L — 1). When r > 0, the last
summation equals Nygne (1 + 0) + wid(r) + ner (0 + 1), where

Nyighy = number of trailing Os in r,
niere = number of leading 0Os, leaving out the leftmost digit, in r,
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and wid(r) is the same as the defining length of r.
Thus, we have

gﬁK—KWVXNMJWMO=K%1—KMWM—1—WMWH

So, when r =0,
=Wt = L 0x 4 gy
+( _DK%( 1).

Then by Lemma 1, part (2), the eigenvalue of M* corresponding to r = 0 is
obtained by dividing the above expression by K, which gives

I—% | 1—=3%
= g e T
5 Ty TX

When r > 0,

— L Ir]
3 W5, = K" (IT“) (-0 (1- ) @+mer

i Q(L—X_l_)KL(l — Kp)"'(L — 1 — wid(r))

zKlu;X)O_ K#)M

K-1

+( _DK%I—KMM@—l—WNﬂ)

Again, by Lemma 1, part (2), the eigenvalues of M* are obtained by dividing

this expression by K* giving

1_XO_ Ku
2 K-1

Il
)+ s~ KRN -1 - wid),

which is decreasing in |r| and in wid(r) when p < 1/K.
The second-largest eigenvalue corresponds to 7 = 1 and is

1;X(1_A§?J"F%Li1ﬂl_KﬂxL_1)

This simplifies to

1 K K—2
2 [ e S
2[ K—1" XK”(K—lﬂ’

which is less than 1/2 for u < 1/K.

Thus, the second-largest eigenvalue of M* is less than 1/2 for p < 1/K.
By Proposition 3, this implies that for our non-binary, higher-cardinality
representations, the fixed points of the recombination operator M are stable
irrespective of the crossover rate when p < 1/K.
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5. Summary and future directions

The theoretical model proposed by Vose and Liepins [35] provides a detailed
characterization of the search behavior of binary encoded GAs. Formalizing
the genetic operators of crossover and mutation as dispersion operators, and
fitness-proportionate selection as a focusing operator, they provide a precise
description of the punctuated equilibria that are typically observed in genetic
search experiments. A crucial conjecture relating to the asymptotic stability
of the fixed points of the search operators has since been proved by Koehler
[28]. In this paper, we have extended these results for GAs employing higher
cardinalities of 2" that include Koehler’s [28] result as a special case.

As in other studies [9], the analysis presented here considers alphabets
with cardinality restricted to powers of 2. The results obtained allow com-
parison of binary versus higher-cardinality string encodings. A complete
generalization to alphabets of arbitrary cardinality is currently being pur-
sued.

Walsh functions have been invaluable in the theoretical analyses of bi-
nary GAs [16, 17]. This paper provides an extension of the Walsh matrix
terms when considering higher-cardinality representations. This, together
with other identities derived in the process of our analysis, should prove
useful in the study of non-binary GAs. Analysis of modified crossover and
mutation operators and of deceptiveness in non-binary GAs are important
areas for future research.

The obtained higher-cardinality representation model also allows the gen-
eralization of the Markov chain model of genetic search provided in Nix and
Vose [31]. Aytug and Koehler [3] use this Markov chain model to obtain
bounds on the run-time complexity of binary GAs. Suzuki [33] analyzes eli-
tist selection through a Markov chain analysis and obtains bounds on the
probability that the optimal string is attained in a given number of genera-
tions. Our results also allow the extension of such analyses to the non-binary
case.

Appendix

The proof of the second part of Proposition 2 follows that for the binary case.
Consider

WMW)i; = Wik, > M o Wi, s

k3 k4
= Z Wi,ka Z Mk3®k41k3 Wk4,j'
k3 kg

Now C' = WMW gives N2M = WCW (N being K%), so M o« WCW. The
above expression may thus be written as

(WM*W)i5 ¢ Y Wiks > Wisakai Chybs Wha ks Wha -

k3, ka k1,ka
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Combining the second and third Walsh terms and rearranging gives

(WM*W)i,j X Z m«,k3Wkl®k2»kackl;k2 Z I/Vkl,k‘;wk%]"

k1,k2,k3 ka

Since the last summation terms equals N when j = ky, and 0 otherwise, we
have

(WM W)ij o< 3 Cika D Wik Wieska ka-
ko k3
Again, noting that the last summation equals N when i = j & ks, and 0
elsewhere, we get
(WM*W)L]' X Cj,‘i@j- (Al)

Now consider C' = WMW. In the expression for M (Theorem 2), com-
bining the i and x terms as suitable constants ¢; and ¢ allows us to write

Is| L-1 (Is]=As,t.p)
]V[s,t =C <L> + Co Z <L>
p=1

K-1 K -1
[t] L-1 (It]=As,t,p)
Ui n P
+a (15) ta L, (251)
L-1 L-1
= f(IsD) + D_ h(ls] = Asep) + F(1E]) + D2 Rt + D)
P=1 P=1
where f and h are functions appropriately defined. We may thus write
L—1
Cij= > Wir Wiy | F(IRal) + f(lk2) + D (k] = Dy ko k)
k1,ko k3=1
L-1
+ Z h(|k2| + Akl-kz,ks) i
k3=1

The indices here are chosen to match the proof for the binary case [35].
Now the term

> Wit Wi i F([Ral) =D Wi, f(1Ra]) D Wiy
kq ko

k1,k2

where the last term equals 0 when j > 0. Similarly,

Z Wi,klwkg,jf(|k'2|) = (0 when 7 > 0.

k1,k2

Thus, considering 7,7 > 0, we have

L-1
Cij = Z VVi,klI/szJ Z h(]kll - Akl~k2~k3)

k1,k2 k3=1
L—1
+ ) WirsWipg Y h([Ka| + Ak, korhs)- (A.2)

k1,k2 ks=1
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Consider the second sub-expression in (A2) and let
ky = |k2| + Ay o s

Note that k4 represents the number of non-zeros in an offspring of recom-
bination. Calling this offspring ks (i.e., ks = |ks|), the strings k; and ko
can be expressed in terms of k5. With this change of indices, the second
sub-expression of (A2) above can be written as

L-1 L
Z Z h(k4) Z Wi)kIszyj

k3=1 k4=0 k1,ka
[k2|+Aky kg kg =ka
L=i & KL—1 (Kks-1) (KF—ks—1)
=> Y (k) >0 > X
k3=1 kq4=0 ks=0 k=0 k7=0

ks |=Fkq

Wi,(k5 mod K‘Cseek7K’°a)W(K’°3 ks K—F3 |@ke),j

L-1 L KL_1
= Z Z h(|kal) Z Wi,(ksmodK’C3)WK’°3[k5K—’°3J,j
ka=1ks=0 ks=0
|ks|=ka
(K*3-1) (KE—F3—1)
Z Wks,j Z VVi,kmkS-
k=0 k7=0

Now, using Proposition 6, part (2), we have

Kk3—1 L
3 Wiey=K™if Y 6(dy(5)) =0, and 0 otherwise.
ke=0 p=L—k3+1

Next consider
KL—k3_1 KL-ks_1 [ L
Z Wi,k7K’°3 = Z H de(i),dp(rev(kmks))
k7=0 kr=0 =0

and let rev(k;K*) = r. Note that r has its upper k3 digits equal to 0, so the
Walsh terms are equal for p = (L — k3 4+ 1) to L. The expression above can
thus be written as

KL-k3_1 KL=k3_1 [L—ks
Yo Wikars = D | I] Watrdoteentr))

k7=0 r=0 p=0

KL-k3.1 L—k3
ST Wiprrs = KF™if S 6(dy(i)) =0, and 0 otherwise.
k7=0 p=0

Using Proposition 6, part (1), the second sub-expression of (A2)

L-1

> WikaWipg > h(lkal + Ay o)

k1,ka k=1
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equals 0, except where the upper k3 digits of j are 0 and where the lower
L — k3 digits of 7 are 0. Thus, the expression takes nonzero values only where
j < ged(i, N). Similarly, the other sub-expression of (A2)

L—-1
> Wika Wiy Y h(lk1] — Dy oks)
k1,k2 k3=1

is nonzero only for 7 < ged(j, N).

Now, returning to (Al), since C;; = 0 when ¢ > ged(j,N) and j >
ged(z, N), it remains to be shown that j > 7 implies Cj;g; = 0. This is
obtained exactly as for the binary case (Vose and Liepins, 1991) and so the
proof is complete.
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