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1. Introduction

Geneti c algorithms provide a st ochast ic search technique inspired by pr in
ciples of natural genetics and evolut ion. They operate through a simulated
evolut ion process on a pop ulation of st ring st ructures, each of which rep
resents a candidate solution in the search space. Evolut ion of populat ions
involves two bas ic steps: (1) a select ion mechanism that implements a sur
vival of th e fittest st ra tegy, and (2) genet ic recombin ation of the select ed
high-fitness strings to produce offspring for the new genera t ion. Recombin a
tion is effected th rough the two biologically inspired operators of crossover
and mutat ion. Select ion ensures t hat above-average st rings contribut e to a
greater numb er of offspr ing in the next generation (on average).

Genetic algorit hms (GAs) are considered suitable for application to com
plex search spaces and combinatorial optimizat ion problems, where a balance
is often sought between full exploitation of the current ly known solutio ns
and a robust explorat ion of t he ent ire search space. GAs provide an effec
t ive means for managing this t radeoff. T he select ion scheme operationalizes
exploitation , and the recombination operators effect t he explora t ion of th e
search space .

A numb er of researchers have repor ted success with GAs applied across
a wide spect rum of probl ems, including pro cess control [18], communicat ion
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network design [7], to learning mod els of consumer choice [20], nonlinear dy
namical mode ls of sociological phenom ena [11], simulat ion of rational agents
in socio-economic contexts, and scheduling of jobs on a product ion floor [4,
6, 25, 26, 38, 39].

GAs use an encoding of the search space attributes. The coding scheme is
critical to the success of GAs, and traditionally a binary st ring representation
has been used. The use of a binary representation is advocated by the Schema
Theorem and the principle of minimal alphabets [15], which maintains that
lower cardinality alphabets facilitate higher schemata pro cessing, and thus
foster t he parallelism that is implicit in genet ic pro cessing. As a consequence,
most theoretical st udies have been conducte d in terms of a binary scheme.

Emp irical results have shown t he value of high cardinality represent at ions.
In this pap er we provide extensions to a theoret ical mod el of binary-coded
genetic search [35J to enable considerat ion of higher cardinality alphabets .
An exact representation of GA search using higher cardinality alph ab ets is
presented.

The organization of t he paper is as follows. Section 2 briefly exam ines
the mot ivat ion for the st udy of non-binary GAs. Sect ion 3 then provides an
account of th e Schema Theorem and the Vose-Liepins framework. The main
results of this research are then presented in sect ion 4.

2. The case for non-binary representations

Though the use of a binary repr esent ation has been shown to maximize t he
implicit parallelism inherent in genet ic processing, a numb er of researchers
emp hasize that higher cardinality alphabets are better suited for pr act ical
applications, and have greater uti lity and intui tive appeal. They hold out
num erous successful appli cations as pro of of t he power and feasibility of non
binary encoded GAs [5]. Goldberg [13] admits:

The debate between practitioner and theoretician over this para
dox of real codings has risen almost to the point of schism. The
oreticians have wondered why pract itioners have paid so little
attent ion to the theory, and practitioners have wondered why th e
th eory seems so unable to come to terms with th eir findings. [13,
p. IJ

Most theoret ical considerations on genet ic search emanate from the
Schema Theorem-called the Fundament al Theorem of Genetic Algorithms
[15]- which also forms t he basis for minimal alphabet arguments and the
building block hypothesis. In recent years , however , the use of the Schema
Theorem to charac terize the act ual behavior of GAs has been increasingly
questioned. Grefenstette [22] and Grefenst et te and Baker [24J re-examine
schema analyses that initially cast implications on implicit parallelism. Their
arguments call into question certain widely held assumpt ions in GA theory
the k-armed bandit analogy, and consequent arguments related to th e build
ing block hypo th esis and quant ification of the implicit para llelism exhibited
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by t he genetic search process. Greffenstette [21] elaborates such crit icism
in app lying static schema ana lyses to st udy the dynamic behavior of GAs,
especially in connection with the st udy of deceptive problems; Forrest and
Mitchell [12] also express concerns with this tradit ional approach to deception
analysis. Miihlenbein [30] expresses st rong reservations to schema theorem
based interpret ations (the optimality of binary representations ar ising there
from), and ra ises a second objection-that t he schema t heorem focuses on
disruptions caused through recombination, rather than a direct considera
tion of how increasingly better substrings are formed . See also Vose [37] for
a critical appraisal of the schema theorem .

Not ing that binary representations are a primary reason for GAs not find
ing wider acceptance, Antonisse [1] provides an alternative interpret at ion of
schemata that cont ravenes the minimal alphabet principle, and argues for the
use of non-binary discrete alphabets. Wright [40] exam ines real-coded GAs
in terms of schemata analysis and notes advantages over a binary represen
tation. Goldberg [13] also st udies high-cardinality alphabets, and proposes
a theory suggesting that initial select ion pressures reduce high-cardinality
alphabets to lower-cardinality virtual alphabets t hat subsequent ly undergo
processing through genetic operators . He also examines decept iveness in ge
netic search when using such higher-cardinality represe ntations.

One approach to considering higher-level representations in genet ic search
is to interpret binary substrings as primit ives of a high-level language [10].
The direct uti lization of a non-binary representation scheme, however, pro
vides greater intuitive appeal for practical app licat ions, and a number of re
searchers have reported success wit h complex string representations [7, 23].
Grefenstette [23] directly uses a high-level represe ntation, and points out
severa l advantages over binary encodings:

First , it makes it easier to incorporat e existing knowledge, whet her
acquired from experts or by symbolic induct ive learnin g pro
grams. Second , it is easier to explain the knowledge learned
through experience. Thi rd , it may be possib le to combine severa l
forms of learni ng in a single system. [23, p. 343]

Modified operators for high-level representations have been proposed [2,23].
Some theoretical work with non-binary st ring encod ings has also been re
ported [1, 13,40]. Recent work by Vose and Liepins [35] provides a detailed
characterization of GA search and a means for a more exact analysis of the
behavior of GAs (than allowed by the Schema Theorem and schemata anal
ysis). As with most GA research, however, this work considers only a binary
represent ation . T his research aims at using the Vose-Liepins mode l of GAs
to consider higher-cardinality alphabets.

In the next sect ion, we take a deepe r look into the theoretical model
proposed by Vose and Liepins [35] to explain the behavior of binary encoded
GAs.
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3. A detailed characterization of GA search behavior:
T he Vose-Liepins model

A rigorous mathematical formalism for a simple genet ic algorithm has been
provided by Vose and Liepins [35]. Modeling recombination through cross
over and mutat ion as dispersion operators, and select ion as a focusing op
erator, th ey obtain a precise characterization of the punctuated equilibrium
phenomenon often not iced in genet ic search, that is, alternat ing periods of
rap id evolut ion and generations of relatively stable populat ions. GAs are
considered to be dynamical syst ems in a high-dim ensional Euclidean space ,
and expected population tra jectories are obtained assuming infinite popula
tions. As in many other theoret ical st udies, Walsh matrices also provide a
basis for the analysis of GAs.

Binary st rings of a fixed length L are considered , where N = 2£ represents
t he total number of possible st rings. T he set of binary st rings is also identified
wit h integers from 0 to N - 1. A vector st E lRN models t he tth generation,
with the ith component , sLbeing the probability of ind ividual i being chosen
for reproduct ion . Another vector pt E lRN has its ith comp onent equal to the
proportion of i in t he t t h genera tion. The probability of two st rings i and j
combining to produce a new string k is represented by r i ,j (k ). The expected
proport ion of a st ring k in the next generation is given by

E [Pt+1 ] = L s;s~ ri,j(k) .
ij

Assuming infinite populat ions, t he law of large numbers gives

pt+1 --+ E [Pt+1] .

For binary recombination through crossover and mutat ion, the following
relat ionship holds: ri ,j (k E9 1) = r iff!k ,j ff!k (l) , which gives r i,j(k) = r iff!k ,j ff!k (O) ,
where E9 denotes the exclusive-or operator . Given r i ,j(O) for all (i , j) com
binat ions, all the recombination probabi lities r i,j(k) are thus obtainable. A
matrix M is defined having (i ,j)th ent ry mi,j = r i,j (O ). The probability
of any two st rings i and j recombining, through single-point crossover and
uniformly random mut at ion, to give the st ring 0 is found to be

(1 _ )2 [ ( £-1 )
M ij = 2J-L '/') Ii l 1 - X + L ~ 1E'/') -tli,i ,k

+ '/') Ij l (1 - X +~~ '/')tl i'i 'k ) ]
L 1 k= l

where J-L and X are the mutation and crossover probabilities, respect ively, and
'/') = J-L / (1 - J-L ). Here, Iii is the numb er of Is in the bit vector corresponding
to the integer i , and t::" i,j ,k = 1(2k

- 1) Q9 i l - I(2k
- 1) Q9 jl , where Q9 denotes

the logical-and operator. An operator M is defined as
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where aT is the t ranspose of a and the Oj S denote t he permutat ion:

O"j ( so , .. . , SN _ 1)T = (SjEElO, " " SjEEl(N_1))T

A second operator , F , is a nonnegative diagonal matrix with Fi,i = f (i ), th e
object ive function value for th e st ring corresponding to the integer i. Then,
Fpt is a vector that points in t he same direct ion as s' , that is,

1
where), = f C) (lL i 2 p 2

Using r- to denote the equivalence relation defined by x ""' y if 3), > 0 such
that x = ),y , we have st ""' Fp' ,

Further, M(s) is a vector that has its ith component the expected propor
tion of i in t he next generation, that is, E [pt+1] = M( st) . Assuming infinite
populations, we may write pt+! = M(st).

These operator s form t he basis of the Vose-Liepins mod el, and help char
acterize GA search through the matrices F and M . An exact representation
of the limit ing behavior of a simple GA , as t he population size tends to
infinity, is given by the relat ion

st+1 ""' FM( st).

Considering G to be the composit ion of the operators F and M, the progres
sion of GA search from one generation to the next is given by the iterates of
G, and convergence corresponds to the fixed points of G.

It is shown that the only stable fixed point of F is that associated with the
maximum value of t he obj ective function. The fixed point s of th e quadrat ic
operator M have been studied via a matrix M * having (i , j) t h entry miEElj,i

related to the different ial of IVI , and it is proved t hat if M * is posit ive and
has its second-largest eigenvalue less than 1/2 , then every fixed point of M
is stable. An explicit expression for the spectrum of M * has been derived
by Koehler [28], and the second-largest eigenvalue is shown to be 1/2 - u:
All fixed points of M are thus asymptot ically st able when the mutation rate
is between 0 and 0.5. Fur th ermore, a conjecture relating to dynamical sys
tems implies that the fixed point is unique, and corresponds to a population
with equal proport ions of all members. Recombination is thus viewed as a
dispersion or diffusion-like operator.

The evolut ion of pop ulat ions via t he operators F and M help explain the
punctu ated equilibria observed in genet ic search. Populations move under
the influence of F towar d one of the fixed points. If this is not maximally fit,
then it is an unst able fixed point , and recombinat ion will ultimately cause a
major change in the population and move it toward another fixed point of F.

Nix and Vose [31] derive an exact mod el of a finite population GA as
a Markov chain, and show that for large populati ons the t ra jectory of this
model follows very closely, and with high prob abili ty, that of the infinite
population model. With nonzero mutat ion, a finite pop ulat ion corresponds
to an ergodic Markov chain, and thus has some finite probability of visit ing
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every state . The steady-state distribution is, however, shown to concentrate
probabilities near th e fixed points of the infinit e population mod el (which
correspond to local optima). This implies that the GA will move from one
local optimum to another in the process of its search. Vose [37] extends t his
analysis through a geomet ric int erpr etation of genet ic search trajectories in
both the infinite and finite populat ion cases.

4. Non-binary alphabets and the Vose-Liepins framework

The mathematic al framework of Vose and Liepins [35] described in sect ion 3
is based on a binary represent ation scheme. In this sect ion a partial exten
sion of thi s formalism is developed for genet ic algorithms using a non-binary
represent atio n. We consider simple geneti c search using traditional one-point
crossover and uniformly random mutation on fixed-length st rings using an
alphabet of cardinality 2V

•

A key result of the Vose-Liepins mod el was based on a conjecture obtained
from computati onal result s. This conjectured result has since been proved
[28]. In thi s pap er, analogous results for the generalized case of alphabets of
cardinality 2V are provided. Walsh t ransforms have formed an imp ort ant part
of the theoret ical ana lysis of GAs, and th e above framework makes extensive
use of Walsh matrices. Our results are also based on an extension of th e
Walsh matrix definition to cover non-binary represent ations.

Here we consider the represent ation to be based on an alpha bet of car
dinalit y K = 2v . Though this assumption restrict s generalizability to al
phabets of arbit rary cardinality, our results nonetheless allow a comparison
of prop erties of binary and non-binary GAs and bring us a step closer to
a th eoretical basis for an alyzing non-binary GAs. Similar rest rictions have
been considered in Eshelman and Schafer [9].

After defining th e notation in the next sect ion, generalized Walsh matrix
terms are obtained in sect ion 4.2. Then, in section 4.3, th e recombin ation
oper ator expr ession is derived. Properti es related to th e stability of th e fixed
points of M are given in sect ion 4.4. The expression for the spectrum of M
is then derived in sect ion 4.5.

4.1 Notation

We will use th e following notation throughout .

K is th e cardina lity of the alphabet; K = 2v ,

for some positive integer v.
L is th e length of the non-binary st ring.
X is the crossover rate.
f.i is the mutat ion rate (mut ation is to a different randomly

chosen allele) .
17 f.i /(l -f.i ).
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is th e ith digit of the st ring s .
is 1 if x is nonzero, and 0 otherwise.
is the numb er of nonzero digits in s, from the pt h to t he
qth posit ions.

lsi is the total numb er of nonzero digits in the st ring s .
rev(s) is the st ring obtained by taking the digits of s in

reverse order.
wid(s) is the defining length of th e st ring s; t hat is, the numb er

of digits in s between the outermost nonzero digits;
wid (O) = O.
is 1 if x = 0, and 0 otherwise; that is, del(x) = 1 - 6(x).
is t he binar y equivalent of the non-binary st ring s,
obtained by concatenat ing the v-bit binary
represent ation for every digit in s.

e is a vector of ones of appropriate length.

4.2 Generalization of Walsh matrix terms

A direct method for comput ing the Walsh matrix terms in the binary case
has been provided by Koehler [28]:

Proposition 1. For binary strings i and j , the Walsh matrix terms are given
by

W i ,j = (_ l ) lrev(i)<8>j l = (_ l )lrev(j)<8>i l.

Considering non-binary strings 7' and s , we have

W r ,s = (- 1)Ib(r )<8>rev (b(s )) I.

Representin g the strings by their individual digits , we get

W r ,s = (_ l) l b (E~= l di ( r )Ki - l) <8>rev(b(E~= l di( s)Ki-l ) )1

However, the second term in the exponent is

Swit ching the second index size gives

L L

2:: K L
-
i rev(b(di(s))) = 2:: Ki- 1 rev(b(dL +1_i(S))).

i= l i= l

Thus t he Walsh terms may be writ ten as

W r ,s = (- 1)Ib (E~=l d;(r )K i- l ) <8>E~= l K i- l rev(b(d L+l-i(S))) 1

= (- 1) I E~=l Ki~ l (b (d; (r))) <8>rev (b(dL+ l_i (S) ) ) I.
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Since the exponent cannot have negat ive terms in the sum, we may move t he
absolut e value into the summation. Also, K i- 1b(di (r )) = di( r). We then get

Wr,s = (_ l) L~=l lc4(r)®rev (dL+l -i (S)) 1

L

= IT Wc4(r ),dL+l _i (S)
i = l

L

= IT W c4 (r),c4 (rev(s))'
i = l

We thus obtain the following theorem:

Theorem 1. Th e Walsh matrix terms Wr,s for non-binary strings rand s
of L digits and cardinality K = 2v are given by

L L

Wr,s = IT Wdi(r),dL+l_;(S) = IT Wd;(r),d;(rev(s))'
i = l i= l

Note that di( r) above represents the ith symbol (digit ) of the st ring r .
Considering an alphabet of cardinality K , thi s term is obtained from the
K x K Walsh matrix, each term of which is given by Pr oposition 1 (where
the binary equivalent of r is used). Note further t hat the K L x K L Walsh
matrix is similar under both the binary and higher-cardinality encodings.
The th eorem above is thus not a new definit ion of the Walsh matrix , but
rather a means of calculating the Walsh te rms suitable for use with higher
cardinality encodings in terms of the bit str ings that define each digit of the
higher-level encoding.

4.3 The recombination operator

Considering recombination through simple crossover and mutation, the fol
lowing relationship has been derived [35J:

r i ,j (k EB I) = ri ffik ,j ffik( I) .

The probability r i ,j(k) of any two binary st rings i and j yielding a st ring k
can thus be obtained as

and so we only need to be able to compute r i ,j(O) in order to get all th e
recombinat ion probabilities. We note that in the higher-cardinality alphabet
case this same relationship is seen to hold by considering binary versions of
the strings.

The probabilit ies r i ,j(O) for t he non-bin ary case are derived below. Con
sider a st ring r mutating to the st ring O. Since mutation is to different
rand omly chosen allelles, the probability of a nonzero digit of r mut ating to
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the digit 0 is J-l / (K -1). The probability of a 0 digit of r remain ing th e same
is 1 - u. The mutation probabili ty on a st ring r is thus given by

m (r) = g[8(d;(r ))K~ 1 + (1 - 8(d;(r)))( 1 - J-l )]

( )
Ir l

= _ J-l _ (1 - J-l )L- lrl
K - 1

(
J-l ) Ir l (1 - J-l )L

= 1 - J-l (K - l )lr l

(
'T/ )Irl

L= - - (1 - J-l) .
K - 1

Now for single-point crossover, let p be the randomly chosen crossover
point. Consider two parent st rings s and t , and let Cl and Cz be the two
children result ing from crossover. Then, the number of nonzero digits in Cl
and Cz are given by

p p

ICl l = Is l- L 8(d;(s)) + L 8(d;(t ))
;=1 ;=1

and
p p

Iczl = It l - L 8(d;(t )) + L 8(d;(s)).
;=1 ;=1

Defining

p P

~s,t ,p = L 8(d;(s)) - L 8(d;(t )),
;=1 ;=1

we may writ e

and

Icz l = ItI+ ~s , t ,p .

Then considering mutation and crossover together , t he prob ability of C1 being
th e st ring 0 is

(
'T/ ) lsi(1 - X) - - (1 - J-l )L

K - 1

if no crossover actua lly occurs (with probab ility 1 - X) , and it is

X L - 1 ( 'T/ ) I s l -~$ , t , p
- L - - (l - J-l) L
L -1 p=l K - 1
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if crossover does t ake place. Thus, t he probabi lity t hat the child C1 is the
st ring 0 is given by

(1 - X) (_TJ_) lsi (1 - J-L )L + _ X_ I: (_TJ_)ISI-C..,t,p(1 - J-L )L.
K - 1 L - 1 p=1 K - 1

Similarly, the pr obabi lity of C2 being 0 is

( TJ )ItI L X L-1 ( TJ )Itl+C..,t,p L
(1 - X) -- (1 - J-L ) + - L - - (1 - J-L) .

K - 1 L - 1 p=1 K - 1

Since C1 and C2 result with equal probabili ty, we have the following result.

Theorem 2. The probability of any two strings s and t recombining to yield
the string 0 through single-point crossover and uniform random mutation is

r _ (1 - J-L )L [(_TJ ) 151{ _ _X L-1 (_ TJ )-C..,t'p}
sA O) - 2 K _ 1 (1 X) + L _ 1 L K - 1

p=1

+ (K ~ 1) ItI { (1 - X) + L~ 1~ (K ~ 1) c..,t,p}] .

Vose and Liepins [35] have formalized simple genet ic recombination
through an operator £if described in sect ion 3. A related matrix, the twist
of M , denoted M*, plays an important role in their analyses, and is defined
below.

Proposition 2 (definition and properties of M *)

1. Mtj = Miff!j ,i'

2. W M*W is lower triangular.

Prop erty (1) in Prop osition 2 is obtained for cardinality K in a manner
analogous to that for t he binary case by noting t hat since K is assumed
to be some power of 2, we may convert any non-binary st ring to its binary
equivalent. The proof of part (2) closely follows that outlin ed in Vose and
Liepins [35] and is given in the appendix.

4.4 St ability of fixed points

T he stability of the fixed points of the recombinat ion operator £if has been
studied, and the following result relates stability to t he eigenvalues of M *.

Proposition 3 ( [35]) If the matrix M is positive, then any fixed point of
£if is stable whenever the second largest eigenvalue of M * is less than 1/2.

Based on computational results, th e aut hors conjectured t hat the eigen
value of M* would be less th an 1/2 if the mutat ion rate is kept between 0
and .5. An expression for the spectrum of M* has been obtained in Koehler
[28]. We next derive the spectrum of M* for t he non-binary case.
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4.5 Spectr u m of M *

4 .5 .1 P r el iminary expression

In obtaining t he spectrum of M* , we make use of t he following results deriv
able from Proposition 2.2 above.

Lemma 1. Let C = WM*W.

1. Th en the eigenvalues of M* are Ci,d K L for i = 0, . . . , K L - 1.

2. Th e Ci,i values are given by

K L _ 1 K L-1

c., = L Wj,i L Mj,k = (W Me)i .
j=O k=O

For binary strings (K = 2), this result has been proven by Koehler [28]. For
the non-binary case, consider the binary equivalent of t he st rings, and furt her
not e that the length of this binary-converted string is K L , since K = 2V for
some int eger v .

The expression for the spectrum of M * is derived from part (2) of Lemma
1 by first obtaining the row sums of M . We now prove a few ident it ies useful
for this derivation.

4.5.2 Some useful identities

Below we give severa l identi ties that will be useful throughout the remainder
of the paper .

Prop osition 4 .

1. Th e total numb er of strings of length L having exactly i zeros is

(K _1)L-1 . L! . = (K _ l)L-i (L)
2!( L-2) ! 2

2. Th e number of strings of length L having exactly g non-zeros in the
Erst to the pth position (counting positions from the rightmost end of
a string) is

( p ) (K -l)9KL - P.
p-g

Proof. If a st ring has i zeros, then it must have L - i nonzero digit s. Now
K -1 nonzero symbo ls may be placed in the L - i places in (K _ l )L- i ways.
Also, the zeros may occur in i places out of L in Li / [i! (L - i) !] ways. Hence
the first result .

The second result follows from the first . Considering the first p positions
only, g non-zeros imply p - g zeros, and thus the numb er of st rings with p - g
zeros is

( p ) (K - 1)9.
p-g
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Since t he remaining L - p positions may be occupi ed by any of K digits, we
get the desired expression. •

The following ident it ies form the sub-express ions in the row sum calcula
tio ns.

P r op osit ion 5.

K
L-l

) Itl
1. ~ (K~ 1 = (1 - fL )- L.

K L _l ( TJ ) I:;=18(di (t ))
2. L - - = K L- P( l - fL )- P.

t=O K-1

K L _ l ( TJ ) I:L
_ 8(d;(t))

3. L -- ,_p+l = K P(l - fL )P-L
t=O K-1

4. K~1 ~ (_TJ_) Is l-~s" ,p

t=O p=1 K - 1

(
TJ ) lsiL- l ( TJ )-I:P

= l 8(di (S))= - - L --' K L-P(l - fL) - P.
K -1 p=1 K -1

K
L

- l L- l ( TJ ) I t l+~s .' . P L - l ( TJ )I:P
- 8(d;(s))

5. L L -- = L - - ,_1 K P(l - fL)p-L.
t=O p=! K - 1 P=! K - 1

P r oof. We first prove (1). We have

K~! (_TJ_) ItI = no (_TJ_) 0 + nl (_TJ_)1 + .. .+ nL (_ TJ_) L

t=O K -1 K - 1 K-1 K -1

where n i = number of strings with i nonzero digit s. So,

KL

_ ! ( TJ ) Itl (TJ)O (TJ) 1 ( TJ )LL - - < m). - - + m L - l - - + · · · + m o --
t=O K-1 K- 1 K - 1 K -1

L ( TJ )i
= L K -1 mL- i

,=0

where mi = numb er of st rings with i zeros. Using Pr oposition 4, par t (1),
gives
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The last step results from noting that t he binomi al terms sum to unity.
Now consider (2). We have

K
L
- 1 ( TJ )L~=1 8(di (t ) ) ( TJ )0 0 (TJ) PL -- = -- t + ...+ -- tP

t=O K - 1 K - 1 P K - 1 P

where t~ is th e numb er of strings t having i nonzero digit s from the first
through the pth position. Then, using Proposition 4, part (2), we have

K~l (_TJ_)L~= 1 8 (di (t) ) = t (P) (K _ 1)9K L-P ( _TJ_) 9
t=O K - 1 9= 0 9 K - 1

=~ (~) K L- pC~ ~r
= K L- P(l - ~) -P t (P) ~9(1 - ~)P-9 .

9=0 9

Since the last binomial term sums to unity, we have the desired result .
Relation (3) is obtained similarly. We have

KL _1 ( _TJ_) L~=P+l 8(di(t)) = L-p th ( _TJ_) h
L K - 1 L p,L K 1
t=O h=O

where t;,L gives the numb er of strings t with h non-zeros from the (p+ l) st
to the Lth posit ion. Using Propositi on 4, part (2), we find t hat

K
L-

1 ( TJ )LL_ +18(di(t)) L-p (L -P) (TJ) hL -- '-P = L(K-1)h K P --
t=O K - 1 h=O h K - 1

= KP~ (L- P ) (~)h
h=O h 1 ~

L- p
= K P(l - ~) - (L-p) L (L - P)~h ( l _ ~)(L-p) -h

h=O h
= K P(l - ~)p-L.

We now consider the expression in part (4) . We know that

K~l~ ( _TJ_) IsI-I'>" "p

t=O p=l K - 1

= ( _TJ_) lsi~ ( _TJ_) - L~=l 8(di(S)) K~ l ( _TJ_)L~~l 8(di(t))

K - 1 p=l K - 1 t=O K - 1

(
TJ ) lsi L-1 ( TJ ) - L P=l 8(di(s) )= -- L --' K L- P(l - ~) -P

K -1 p=l K -1

using Proposition 5, part (2).
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Similarly, considering par t (5) , we have

K~l ~ (_'TJ_) Itl+L'>s ,t ,p

t=O p= l K -1

= ~ (_'TJ_) L:;~ l 8(d;(s) ) K~l (_'TJ_) L:~~P+ l 8(d;( t))

p=l K - 1 t=O K - 1

L- l ( 'TJ )L:P~l 8(d;(s))
= L - - ' K P(i - f,l ) p- L . •

p=l K - 1

We now consider anot her set of useful ident it ies that relate to Walsh
matrix terms in the non-b inary case.

Proposition 6 .

KL_ l

1. L W r,x = K L if Irl = 0; 0 otherwise.
x=O

K P-l L

2. L W r,x = K P if L 6(di (r )) = 0; 0 otherwise.
x = O i=L-p+l

Proof. Consider part (1). Expressing th e Walsh terms in product form
(T heorem 1), we have

Since summation over x and its reverse are equivalent, t he above expression
is equivalent to

Now note that r and x are st rings of length L . Consider the digits of these
st rings as rl , ... , r L and Xl, .. . , XL , respect ively. Then in th e expression

th ere are K L terms. Combine th ese terms in groups of K , such th at Xl varies
from 0 to K - 1 with in one group , and all other Xi S remain fixed. There will
be K L - l such groups, and each group sum is of the form
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If T 1 = 0, then consider the K L - 2 grou ps where X 2 varies from 0 to K - 1.
That is, consider

KWr L,XL . .. W r3,x3 ( W r2,O+ W r2,1 + ... + W r2,K-1 )

{
0 if T2 -=J 0

= K 2W rL,XL ' .. W r3,X3 if T1 = T2 = 0 .

Continuing in this manner, we find that if T1 = T2 = . . . = TL- 1 = 0, then
the remaining K groups where XL varies from 0 to K - 1 have the form

K
L

-
1(W

r L,O+ W r L,l + ... + W r L,K-1)

= {~L ;~ ~~ ~ ~L- 1 = . . . = T1 = 0 '

which proves the first result.
Now consider part (2), namely,

[(P- 1 KP - 1 ( L )

[; W r,x = [; gW di (r ),di (rev (x )) .

Since t he lower L - p digits of rev(x) are Os, the Walsh terms W di(r ),di (rev (x )) =
1 for these digits . Thus, t he expression is

:~1 W r,x = :~1 (=L~+1 W~ (r) ,~ (rev (x)) )
KP-1

= L (Wr L,Xl W r L_ 1 ,X2 ' " W r L_ p+1 ,XP)
x=o

if T L-p+1 = . . . = T L-1 = T L = 0
otherwise

Using ste ps similar to t hose used to obtain part (1) above gives the desired
expression. •

The following identi ties are necessary for obtaining the spec trum (in sec
tion 4.5.4) from the row sums expression (derived in the next sect ion).

Prop osition 7.

if dL- i +1 (T) -=J 0
if dL - i +1 = 0

if 2.: f,:r 8(di (T ) ) = 0
otherwise

tc - 1 ( T) ) 8(dds)) { 1 _ ----'L
1. L W di (s),dL_ H ,(r ) K _ 1 = 1 +; -1

di(s)=O

[( P-1 (T)) 2.:;=1 8(di(X))

2. L w., K - 1
x= o

(
T) ) 2.:~=L - P 8(di(r)) ( )P- 2.: L 8(d(r))= 1 - - - 1 + T) .~ L -p·

K - 1
KL -p-1

{

KL-p
3. L Wr,y[(P =

y=O 0
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KL -p-1 (TJ) 2:~=7 6(di(Y))

4. L W r,yK P K _ 1
y= o

(
TJ) 2:~:,P 6(di(r» L- _ " L- p 6(d(r»

= 1 - K _ 1 (1 + TJ ) P L." ,~ l ' .

Proof. First consider part (1). We have

K - 1 ( TJ ) 6(di(S»

L W di (S),dL_ H l (r ) K - 1
di(s)=O

= WO, dL_i+l (r ) (K ~ 1) 0+ (K ~ 1) [W1,dL_ H ,(r ) + .. .+ W K - 1,dL_ H ,( r )]

= { 1 + Jt-I (- 1) if dL- i+1(r ) =I 0
1 + Jt-I(K - 1) if dL- i+l(r) = 0 .

The above expression results from noting that the Walsh coefficients are
terms from the K x K Walsh matrix, and that the row sums of the Walsh
matrix, leaving out the first colum n, equal K - 1.

Now consid er part (2). We have

K P- 1 (TJ) 2:;~ 1 6(di (x»

L W r,x K -1
x=o

= K~l ( _TJ_) 6(d1(X» ( _TJ_) 6(d2(X» . . . ( _TJ_) 6(dp(X»

x=o K-1 K -1 K -1

[W d1,(x ),dd r )W d2,(x ),dL_,(r ) . . . W dd x ),d, (r)]

KP- 1 { [ ( TJ ) 6(d1 (c) ]
= E K - 1 W d,(x) ,d,(rev (r »

[ (
TJ ) 6(d2 (X» ]

K - 1 W d2(x ),d2(rev (r » . . .

[ (
TJ ) 6(dp(X» ]

K - 1 W dp(x ),dp(rev (r »

[Wdp+,( x ),dp+l {revfr) . .. W dd x ),dd rev (r» ] }

However , th e last bracketed express ion equals 1, since t he (p + l)st to Lth
digits of x are 0 (since x = 0 to K P- 1). Then, using part (1), our expression
becomes

(
'l"1) 2:;-1 6(di(rev(r») P= 1 + - '-' - (1 + TJ)L-2:i=16(di (rev (r » )

K-1

(
TJ) 2:~~L-P 6(di(r» ( )P_" L 6(d(r))= 1 +-- 1 + TJ L." ,~ L - p , .

K -1



An An alysis of Non-Binary Genetic Algorithms with Cardinality 2V 243

Next , considering part (3) ,

note that in yKP, t he lower (i.e. , the rightmost ) p digit s of y are 0 (mul tipli
cat ion here is modulo K ). T hus , as y var ies from 0 to K L- p - 1, yKP varies
from K P to K L - 1. That is, t he lower p digit s of yKP are zero . Hence,
writ ing yKP= q, the above express ion becomes

Note that rev(q) has it s up per p digits equal to 0, so we need consider only
the lower L - p digit s of r. Letting r 1 be the st ring r with upper p digits 0,
we get

K L-p-1 K
L

- 1 ( L- P )
L Wr,yKP = L II W di (r , ),di (rev (q))
y=o q=KP i=l

K~-l OJ W di (r1),di (q)) .

Using Proposition 6, part (1) , we then get

if all digit s of r 1 are 0
otherwise

Finally, consider par t (4) . T he left-hand side of the express ion is

K
L

- P-1 (TJ) "Lt:t 6(di(Y ))

L W r,yK P K - 1
y=o

K L-p - 1 TJ "Lt:: 8(di(r)) [ L ]

L (K _J II W di (r ),dL+i-1 (yK P)
y=o ,= 1

K~- l ( _TJ_) 8(d1(Y)) ( _TJ_) 8(d2(y)) . .. ( _ TJ_) 6(dL- P(y ))

y= O K -1 K -1 K-1

[Wd1(r ),dl (rev (yK P)) .. . Wd L_p(r),dL_p(rev(YKP)) ]

[WdL_ p+d r ),dL_ p+! (rev (YK P)) . .. Wddr),dL(rev(yKP)) ]

T he last br acket ed expression equals 1, since dL-p+1 (rev( yKP)) to
dd rev( yKP)) const itute the upper p digits of rev( yKP); that is, t he lower
p digit s of yKP, which are all Os. Hence the expression becomes

K
L

-P -1 (TJ) "Lt:: 8(di(Y))

L Wr,yKP K - 1
y=o
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Using Proposition 7, par t (1), this equals

(
TJ) 2:~:t 8(d;(r)) t.__", L- p8(d;(r))

= 1 - K _ 1 (1+ TJ ) P L., .~ 1 . •

4.5.3 Row sum s of M

The elements of M are

To obtain th e row sums of M , we sum the above expression from t = 0 t o
K£ -1. Now,

Ki=1 (1 - p, )L [(_ TJ_ ) lsi (1- X) + (_TJ_) ItI (1 - X)]
t=O 2 K -1 K-l

= KL (1 - p,)L (_TJ_) lsi (1 - X)
2 K -l

(1 - p,)£ KL_1 ( TJ ) Itl
+ (I -X) L - -

2 t=O K -l

= K L(I - p,)L (_TJ_) lsi (1 _ X) + (1 - X)
2 K -1 2

using Proposition 5, part (1).
Also, combining Proposit ion 5, par ts (4) and (5), we get

(1 - p, )L X [K
L
-1 £-1 ( TJ )Isl- t>"t ,p KL_1L- 1 ( TJ ) Itl- t>s, t'p]-'----------'---"------ L L - + L L -

2 L - 1 t=O p=1 K - 1 t=O p=1 K - 1

(1 - p,)L X [L- 1 ( TJ ) Isl- 2:P= 18(di (s))= -- L - - ' K £- P(I - p,) - P
2 L - 1 p=1 K - 1

£ -1 ( TJ ) 2:P~l 8(di (S)) ]+ L - - ' K P(1 - p,y -£
p=1 K - 1

= 2(L~ 1) [~ (K ~ 1) Is l - 2:~= 1 8(di(S)) (K - Kp,)L- p
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where

_(_TJ_) Isi- L~,:t o(<1; (s)) (_TJ_) L;=lo(<1; (s))
G(p,s) - K -1 + K - 1

Then combining t he two expressions obtained above, we get the expression
for th e row sums:

J( L -1 (1 ) (I) L [s]

L: 7'5,t(0) = ~X + K
L

-/' (K~I) (I -X)
t=O

L-1

+ 2(£X_ 1) :; (K - K/-L)PG(p,s).

4 .5.4 Expression for the Spectrum

The following terms comprise prominent sub-expressions in the derivat ion of
the spectrum.

Proposition 8 .

L _ p

if L: 8(d,(7' )) = 0
; = 1

J( L _1 (TJ) L~= l o(di(s)) ( TJ )Ir i L- r
1. L: w - - = 1 - -- (1+TJ) II.

5=0 r,s K - 1 K - 1

K L _1 (TJ) L;=lo(<1;(s))

2. L: Wr,s K _ 1
s=o

= fK
O

L_ p (1 - K~ It l(1+TJ)p- lrl
l otherwise
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KL_l ( TJ) Isl - I:;~ 1 6(di(S))

3. :L W r,s K _ 1
s= o

_ {KP (1 - _ TJ_ )lr
l
(1 + TJ)L- p- 1r l

- K -1

o

L

if :L 8(di (r )) = 0
i=L-p+1

otherwise

Proof. First consider part (1). The left express ion is

KL _l (TJ) I:~~ 1 6(di(S))

:L Wr,s K -1
s=o

KL - l ( TJ ) I:~~ 1 6(di(S)) [ L ]
= ~ K - 1 gW di (s),dL_i+,(r )

[
~l W d1(s),dL(r ) (K ~ J6(d

1(S))
]

d,(s)=O

[
~l W d2(s),lh (r ) (K ~ 1) 6(d

2(S))
] . . .

d2(S)=0

[
~l W dd s),dL(r ) (K ~ J6(dL(S)) ] .

dL(s)=O

Using Proposition 4, part (1) , this expression becomes

( )
Ir l

= 1 - _ TJ _ (1 + TJ)L-I r l.
K-1

Now considering part (2) , the left expression may be written as

KL_l (TJ) I:;=16(di(s))

:L w., K -1
s=o

_ KL -p-l KP- l ( TJ ) I:;~ l 6(di(S))

- :L :L W r,x+yK P K - 1
y= o x= O

_ KL-p-l KP- l (TJ) I:;=16(di(S ))

- :L Wr,yKp :L Wr,x K _ 1 .
y= o x= O

Using Proposition 4, par t (2), for th e second summat ion above gives

KL-p -l [ ( )I:
L

6(di(r)) L ]= ~ W r,yK P 1 - K ~ 1 ,~L-p (1 + TJ y -I:i=L_ p6(di (r )) .

Using the result of Propositi on 4, par t (4) , this becomes

{
(

'I"J ) I:L
6(di(r)) L= K L- p 1 - K ". 1 ,~L-p (1 + TJY - I: i=L- p 6(di(r)) .

0, ot herwise
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But if

L- p

2: 8(di(r)) = 0,
i=1

then

L L

2: 8(di (r )) = 2: 8(di (r )) = Irl·
i= L-p i= 1

Thus, we get

L-p

if 2: 8(d1(r)) = °
i= 1

otherwise

Finally, consider part (3). The left expression is

K
L_

1 ( TJ) Isl-L:;=1o(d;(s))

2: W r ,s K -1
s=o

= KL _ 1 W ( _TJ_ ) L:t=P+1o(di(s))

2: r,S K-1
8= 0

_ J( L- P- 1 KP-1 ( TJ ) L:t: t o(di(y))

- 2: 2: W r,x+yK P K - 1
y=o x= o

_ K P-1 [K
L

- P- 1 ( _ TJ_) L:t: t O(d;(Y)) ]- 2: W r,x 2: Wr,y+yKP K .
x= o y=o - 1

Using Proposition 4, part (4), t his becomes

K
L-1

(TJ) Isl- L:;=1O(di (S))

2: W r,s K - 1
s=o

J(P- 1 [( ) L: L- po(d;(r)) ]
= ~ W r,x 1 - K ~ 1 ,= 1 (1 + TJ ) L- p- L:t=7 o(d;(r )) .

Now using t he identi ty of Proposition 6, part (2), we have

J(L-1 W ( _TJ_) Isl- L:;=1o(d;(s ))

2: r,s K-1
s=o

( )

L:t~t o(di(r )) L-p
KP 1 - _ TJ_ - (1 + TJ)L- p- L:i~1 o(di (r))

K -1
L

if 2: 8(di (r )) = °.
i=L-p+1

o otherwise
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But if

L-p+l
L 6(di (r )) = 0,
i=1

we get

Siddh artha Bhattacharyya and Gary J. Koehler

L- p L

L 6(di (r )) = L 6(di (r )) = 11' 1·
i=1 i=1

Hence, th e result .•

The expression for th e spect rum may now be obtained using the above
results . Let Ss denot e the st h row sum of lVI . Then from the expr ession for
the row sums of M derived in sect ion 4.5.3, we have

(1 X)
L Wr,sSs = - 2- L w..

s s

+ K
LC_/L) (1 - X)~WT, S (K ~ It

l

L-1
+ 2(L

X
_l) f;(K - K/-iY~Wr,sG(P , s)

First consider the last term. We have

L-1
L(K - K/-iYL Wr,sG(p, s)
p=1 s

L-1 [ ( ) Ir l ( L-P)= L(K - K/-iY KL - p 1-~ (1 + 77y - ITI del L 6(di (r ))
p=1 K 1 ,=1

+ K L- p (1 - ~) Irl (1 + 77y- lr l del ( t 6(di(r)))]
K 1 i=L-p+l

L-1 () ITI [ ( p )= L K P(1 - /-iYkL -
p 1 - _ 77_ (1 + 77)p- ITI del L6(di (r ))

p=1 K 1 ,=1

+ del C~1 6(di (r ))) ]

= K
L

(1 - K/-i)1 7'1~ [del (~ 6(di (r))) + del C~1 6(di(r ) )) ] .

When r = 0, thi s expression equals K L2(L - 1). When r > 0, the last
summa tion equals n righ t (1 + 0) + wid(r) + nJeft(O+ 1), where

n right = numb er of t ra iling Os in 1' ,

n left = number of leading Os, leaving out the leftmost digit , in 1' ,
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and wid(r) is the same as t he defining length of r .
Thus, we have

L - 1

2.J K - Kp.)P L Wr,sG(p, s) = K L(I - K p.)lrl[L - 1 - wid(r)] .
p= l s

So, when r = 0,

L Wr,sSs = (1 ~ X)K L + K L(1 -2P. )L(1 - X)(1 + TJ )L
s

+ 2(L~ 1) K
L2

(L - 1).

Then by Lemma 1, par t (2) , the eigenvalue of M * corresponding to r = 0 is
obt ained by dividing the above expression by K L , which gives

I - X I - X
- 2- + - 2- +X = 1.

When r > 0,

(
1 L) ( ) Irl.z;: Wr,sSs = K L -2P. (1 - X) 1 - K ~ 1 (1 + TJ )L- 1rl

+ X K L(I - Kp.)I'·I(L - 1 - wid(r))
2(L - 1)

= K d 1 - X) (1 - K p. ) Ir
l

2 K - l

+ X K L(I - K p.)lrl(L - 1 - wid(r)) .
2(L - 1)

Again, by Lemma 1, par t (2), the eigenvalues of M * are obtained by dividing
this expression by K L giving

1 - X ( K p. ) Ir l X- - 1 - - - + (1 - Kp.)lrl(L - 1 - wid(r))
2 K - 1 2(L - 1) ,

which is decreasing in Ir l and in wid(r ) when p. < 1/ K.
T he second-largest eigenvalue corresponds to r = 1 and is

1- X ( K P.) X
- 2- 1 - K _ 1 + 2(L _ 1) (1 - Kp.)(L - 1).

This simplifies to

~ [1 _~P. _XKP. ( K - 2 ) ] ,
2 K- l K - l

which is less than 1/ 2 for p. < 1/ K.
T hus, the second-largest eigenvalue of M * is less than 1/ 2 for p. < 1/ K .

By Proposition 3, this implies tha t for our non-binary, higher-cardinality
represent ations, the fixed points of the recombinat ion operator iII are st able
irrespective of the crossover rate when p. < 1/ K .
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5 . Summary and future directions

The theoret ical model propo sed by Vose and Liepins [35] provides a det ailed
characterization of t he search behav ior of binary encoded GAs. Formalizing
t he genetic operat ors of crossover and mutation as dispersion opera tors, and
fitness-prop ort iona te select ion as a focusing operator , they provide a precise
descrip tion of t he punctuat ed equilibria that are typically observed in genetic
search experiments . A cru cial conjecture relat ing to the asymptot ic stability
of the fixed point s of the search operators has since been proved by Koehler
[28]. In this pap er , we have exte nded these results for GAs employing higher
cardinalit ies of 2V that include Koehler 's [28] result as a special case.

As in ot her studies [9], the analysis presented here considers alphabets
with cardina lity restrict ed to powers of 2. T he results obt ained allow com
parison of bin ary versus higher-cardinalit y st ring encodings. A complete
genera lization t o alphabets of ar bit ra ry cardinality is current ly being pur
sued.

Walsh functions have been invaluable in t he theoretical analyses of bi
nary GAs [16, 17]. This paper provides an extension of th e Walsh mat rix
terms when considering higher-car dinalit y representatio ns. This, together
with ot her ident iti es derived in th e pro cess of our analysis, should prove
useful in the study of non-binary GAs. Analysis of modified crossover and
mutat ion operators and of deceptiveness in non-binary GAs are imp ort ant
areas for future research.

The obtained higher-cardinality represent ati on mod el also allows the gen
era lizat ion of t he Markov chain model of genetic search provided in Nix and
Vose [31]. Aytug and Koehler [3] use this Markov chain model to obt ain
bounds on the run-t ime complexity of binary GAs. Suzu ki [33] ana lyzes eli
t ist select ion thro ugh a Markov chain analysis and obtains bounds on the
probability that the opt imal st ring is at tained in a given number of genera
tions. Our results also allow th e exte nsion of such analyses to the non-binary
case.

Appendix

The proof of t he second part of Proposition 2 follows that for th e binary case.
Consider

(W M *W )i,j = :LW i,k3:L M~3,k4 W k4,j
k3 k4

= :LW i,k3:L Mk3 ffJk4,k3 W k4,j ·
k3 k4

Now C = WMW gives N 2 M = W CW (N being K L ) , so M ex WCW . The
above expression may thus be written as

(W M*W)i,j ex :L W i,k3 :L Wk3 ffJk4,k, C k"k2 W k2,k3 W k4,j ·
k3,k4 k"k2
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Combining the second and third Walsh terms and rearranging gives

(VV NI* W) i,j ex 2::= Wi,k3 WklEBk2,k3Ckl,k2 2::= Wk1,k4Wk4,j·
kl,k2 ,k3 k4

Since the last summation terms equals N when j = k1 , and 0 otherwise, we
have

(W M *W)i,j ex 2::= c.; 2::= Wi,k3WjEBk2,k3'
k2 k3

Again, noting that the last summation equals N when i = j EB k2 , and 0
elsewhere, we get

(W M*W)i ,j ex Cj,iEBj . (A.1)

Now consider C = W M W. In the expression for M (T heorem 2), com
bin ing the p, and X terms as suitable constants C1 and C2 allows us to write

_ ( 'rJ ) lsi £-1 ( 'rJ ) (lsl- I'>, ,<,.)
Ms,t - C1 K _ 1 + C2 2::= K - 1

p=1

(
'rJ ) ItI £-1 ( 'rJ ) (Itl - 1'>8,<,p)

+ C1 K _ 1 + C2 2::= K - 1
p=1

£ -1 £ -1

= f( lsl) + 2::= h(ls l - 6 s,t,p) + f (lt l) + 2::= h( ltl + 6 s,t,p)
P=1 P=1

where f and h are functions appropriat ely defined. We may th us write

Ci ,j = 2::= Wi,klWk2,j [f (lk11) + f( lk2 !) + I: h(lk11- 6 kl,k2,k3)
kl ,k2 k3=1

+ E1h( lk2 1 + 6 kI,k2'k3)] .

The indices here are chosen to match the proof for th e binary case [35].
Now the term

2::= Wi,klWk2,jf(lk11) = 2::= Wi,kJ( lk11) 2::= Wk2,j

~~ ~ ~

where the last term equals 0 when j > O. Similarly,

2::= Wi,klWk2,jf (lk21) = 0 when i > O.
kl,k2

Thus, considering i , j > 0, we have

£ -1

Gi,j = 2::= Wi,k1Wk2,j 2::= h(lk11- 6 kI,k2,k3)
kl ,k2 k3 =1

£ -1

+ 2::= Wi,klWk2,j 2::= h(lk2 1 + 6 k1,k2,k3)'
kj ,k2 k3=1

(A.2)
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L - 1 L

I: I: h(k4 )

k3= 1 k4=0

Consider the second sub-expression in (A2) and let

k4 = Ik2 1 + f:::.. k 1,k2,k3·

Note that k4 represents the numb er of non-zeros in an offspring of recom
bination. Calling t his offspr ing k5 (i.e., k« = Ik51), t he st rings k: and k2

can be expressed in terms of k5 . With t his change of indices, the second
sub-expression of (A2) above can be written as

k"k2
Ik21+ 6" , .k2.k3=k4

L-1 L KL_1 (Kk3- 1) (KL_k3-1)

= I: I: h(lk4 1) I: I: I:
k3= 1 k4= 0 ks=O k6= 0 k7=0

Iksl= k4

W i ,(ks mod Kk3ffJk7Kk3) W(Kk3 lksK-k3 JffJk6),j

L - 1 L KL _1

= I: I: h(lk4 1) I: W i,(ksmodKk3)WKk3[ksK- k3J,j

k3=1 k4=0 ks=O
Iksl= k4

(K k3-1) (KL - k3_1)

I: W k6,j I: W i ,k7K k3'
k6= 0 k7= 0

Now, using Proposition 6, part (2), we have

K k3 _ 1 L

I: Wk6,j = K k
3 if I: 8(dp (j )) = 0, and °otherwise.

k6=0 p=L-k3+1

Next consider

and let rev(k7K
k3) = r, Note t hat r has its upp er k3 digit s equal to 0, so the

Walsh terms are equal for p = (L - k3 + 1) to L. The expression above can
thus be written as

KL- k3_ 1 KL- k3_1 ( L - k3 )

I: Wi ,k7Kk3 = I: II W dp(i ),dp(rev (r ))
k7=0 r=O p=O

K L-k3 - 1 L -k3

I: W i,k7,Kk3 = K L
-

k
3 if I: 8(dp(i )) = 0, and °otherwise.

k7= 0 p=O

Using Proposit ion 6, part (1), the second sub-expressio n of (A2)

L -1

I: Wi,k, W k2,j I: h( lk2 1 + f:::.. k , ,k, ,kJ
k, ,k2 k3=1
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equals 0, excep t where t he upp er k3 digits of j ar e 0 and where the lower
L - k3 dig its of i are O. T hus , t he expression takes nonzero values on ly where
j < gcd( i , N) . Similarl y, the other sub- expression of (A2)

£ -1

L W i ,kl W k2,j L h(lk1 1 - fi k1,k2,k3 )

k"k2 k3= 1

is non zero onl y for i < gcd (j, N).
[ow, returni ng to (AI) , since C i ,j = 0 when i 2: gcd(j, N) and j 2:

gcd (i , N ), it remains to be shown that j > i impli es Cj,i ffij = O. This is
obtained exactly as for t he binary case (Vose and Liep ins , 1991) and so t he
proof is comp lete.
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