
Complex Systems 8 (1994) 257- 293

Knowledge-Based Nonuniform Crossover

Harpal Maini
Kishan Mehrotra*
Chilukuri Mohant

Sanjay Rankal
School of Comp uter and Information Science,

4-116 Center for Science and Technology,
Syracuse University, Syracuse, NY 13244-4100, USA

Abstract . We pres ent a new "knowledge-based nonuniform crossover"
opera tor for genet ic algorit hms that generalizes uniform crossover.
We ext end this to "Dynamic knowledge-based nonuniform cross­
over ," which const antly updates the knowledge ext racted t hus far
from the environment 's feedb ack on previously generated chromo­
somes. Knowledge-based nonu niform crossover can improve on good
solutions previously obtained using ot her algorit hms. The modifica­
t ions made by knowledge-based nonuniform crossover are ort hogonal
to other changes in parameters of genet ic algorithms, and can be pur­
sued toge ther with any other proposed improvement s. Whereas most
genetic search methods focus on improving move-selection pro cedures,
after having chosen a fixed move-generation mechanism , knowledge­
based nonuniform crossover and dynamic knowled ge-based nonuni­
form crossover make the move-generation process itself time-depen­
dent. T he same parents may give rise to different offspring at different
moments in the evolut ionary pro cess, based on the past experience of
the species. Simulation result s show orders of magnit ude improvement
of knowledge-based nonuniform crossover over two-po int and uniform
crossover relati ve to thr ee NP optimization problems : graph parti­
tioning, soft -decision decod ing of linear block codes , and the t rave l­
ing salesperson problem. In particular, knowledge-based nonuniform
crossover has been applied to variant s of the graph partit ioning prob­
lem not easily solved with other methods, and found to imp rove t he
quality of the solutions. Dynamic knowledge-based nonuniform cross­
over opens up the possibility of applying genetic algori thms to In­
cremental Optimization problems, characterized by a slow change in

*Corresponding author. Electronic mail address: kt shana t op . cis . syr. edu
tElectronic mail address: mohanetop.cis . syr .edu
tElectronic mail address: r ankactop.cis . syr .edu

258 H. Maini, K. Mehrotra , C. Mohan, and S. Ranka

problem structure over time. Dynamic knowledge-based nonuniform
crossover also achieves some of the goals of diploid representat ions
with adapt ive dominance, with smaller computational requirements.

1. Introduction

Analogies with natural processes help in understanding complex systems
and suggest new methods for solving prob lems. Genetic algorithms (GAs)
and their cousins (evolut ionary programming and evolut ionary st rategies)
are st ochastic state-space search techniques drawing inspiration from natu­
ral evolut ionary mechanisms [1, 55]. T hese meth ods maintain pop ulations
of individu als that represent potential solut ions for optim ization problems.
Various modificat ions to the basic algorithms differ in the operators used to
genera te new candidate solutions and guide explora t ion of different regions
of the search space. Traditional GAs are widely applicable weak methods,
which do not always perform well in large inst ances of NP-complet e problems
such as graph part it ioning, part ly because they do not use pr ior knowledge
about the prob lem at hand. The search space is enormous, and tradit ional
operators oft en lead to offspr ing whose performa nce may be as poor as th at
of rand omly genera ted individuals.

T his pap er attempts to fill the need for operators th at are general enough
to be applicable to many problems, and whose formulat ion is assured to lead
to offspring of high fitness. We attempt to answer t he following quest ions:

• Can problem-specific knowledge be incorporated into GAs following a
single genera l methodology?

• Can the search meth od be improved by modifying t he move-generat ion
ste p itself, rather than the decision-making pro cess that selects each
succeeding generation from the previous generation and its offspr ing?

• Can GAs be efficient ly applied to incremental prob lems, in which small
changes occur over t ime in the problem parameters?

We first present a br ief introduct ion to the t radit ional genet ic algorithm
and relevant modificat ions. New crossover operators are then given, address­
ing the quest ions mentioned above. Knowledge-based nonuniform crossover
(KNUX) and dynamic knowledge-based nonuniform crossover (DKNUX) uti­
lize problem-specific knowledge as well as knowledge embodied in a previously
obtained solut ion and can improve on good solutions previously obtained us­
ing ot her algorithms. The modificat ions made by t hese operators are orthog­
onal to ot her changes in parameters of GAs, and can be pursued toget her
with other proposed improvements. In other words, the performance of many
exist ing applicat ions can be potentially improved by using an instance of
KNUX.

Later sect ions of this paper show how KNUX and DKNUX can be applied
to severa l NP-complete problems, tha t is, decoding, graph part itioning, and
traveling salesperson problems. We give simulation results demonst rating the

Knowledge-Based Nonuniform Crossover 259

superiority of these operators when comp ared to altern ative crossover opera­
tors , and showing how subopt ima l solutions obtained by other methods can
be improved up on. For inst ance, the KNUX-based GA for decoding obtains
t he same quality of solut ion as the best known alternative algorithm [4] with
computationa l requir ements an order of magnitude smaller. For graph parti­
tioning, solut ion quality obtained using a fast greedy algorithm is improved
by using KNUX. Incremental graph partit ioning problems are successfully
solved using DKNUX . We also solve a variant of th e grap h parti t ioning prob­
lem for which t rad itional algorithms are inadequate. For severa l problems,
we illust rate that the performance of KNUX is far superior to other operators
such as two-point crossover. Distributed implementations have yielded near­
linear speedups for GAs using K lUX. An analysis of schema disrupt ion and
recombinat ion is also present ed , with a variant of Holland 's Schema Theorem.
We discuss the connection with diploid represent ations (with adapt ive dom­
inance) showing t hat some of th eir goals can be achieved at a lower expense
using DKNUX.

1.1 G enetic algorithms

The state of the computation is represented in a GA by a pop ulation of
individuals, each of which represents a candidate solut ion. The traditional
representat ion is to encode each individual as a bit-st ring . A "fitness" func­
tion reflects the feedback available from the environment regarding the qual­
ity of each candida te solut ion. In each iterat ion of t he GA, the current
population produces many offspring, using "crossover" operator s. Two par­
ent individuals often give rise to one or two offspring that share aspects of
their parents' representations. Components of represent ations of offspr ing
are mutat ed with a small probability, and oth er operations such as inversion
may also be applied to preserve diversity and enable explora t ion of under­
represented regions of the search space. The number of offspring generat ed
by an individual may either be directly proportional to its fitness or may
depend on its relative fitn ess as compared to other individu als in the current
generation. Select ion mechanisms ext ract a new generation of indiv iduals
from the previous generation and their (mutated) offspring.

1. 2 Why G As work

Genetic search is accomplished through the implicit discovery of severa l re­
gions of the search space while only manipulating a few strings. Better in­
dividuals genera te more offspring, and hence cont ribute more of their genes
to the next genera tion. Each individual belongs to many overlapping con­
nected regions in the search space, called schemata , described as st rings over
an alphabet consisting of '0' , '1' , and '*', the latter being a don't care sym­
bol. For instance, the schema 1** represents that region of the search space
consist ing of strings {100, 101, 110, m j Generat ing the individual 101 can
be viewed as simultaneously generati ng an inst ance of each of the schemata
{***, l**, *O*,**l ,lO*,Ol*, l*l,lOl}.

260 H. Maini, K. Mehrotra , C. Mohan , and S. Ranka

Holland showed that the optimum way to exp lore the search space is to
allocate reproductive trials to individu als in pro portion to their fitness rel­
at ive to the rest of the population. In t his way, highly fit schemat a (whose
individual inst an ces have high average fitn ess) receive an exponenti ally in­
creasing number of trials in successive generations. Since each individ ual
contains a great many different schemata, the number of schemata that ar e
effectively being pro cessed in each generation is of the order of n3 , where n
is the population size. GAs perform well because of this process of simulta­
neously explor ing a large number of schema, a property known as implicit
parallelism. 1 GAs find good building blocks, that is, high fitn ess schemata
with a sm all number (0 or 1) of defined bits. If t he contribution to overall
fitn ess of each gene were independent of all other genes, then it would be
possible to solve the problem by hill climbing on each gene in turn . Unfortu­
nately, this is not the case in real-life problems. A purely hill climbing met hod
is good at exploitation (of t he knowledge gain ed by the search conducted so
far), but does little exploration of the search space. This is in cont rast wit h
a purely random search procedure which is good at exp lorat ion , but does no
exp loit ation . Holland showed that GAs optimally balanc e explorat ion and
exploit at ion for som e problems, maximizing expected performance.

1.3 Crossover operators

The focus of this pap er is on crossover, and we now discuss some exist ing
crossover op erators whose choice depends on the applicat ion . These are
fairl y general operators, though mor e appropriate operators are often used
for sp ecific problems where these do not work well.

1. Holland [1] suggeste d the one-point crossover (lPTX) operator, which
is defined in term s of a 'crossover po int ,' that is, a place between loci of
a chromosome where individuals can be split. Let 0;, (3" ,15 represent
st rings. One-point crossover works by select ing a point at which chro ­
mosomes 0;(3 and ,15 are cleaved , and t he parts recombined to produce
0;15 and , (3. It is referred to as one-point crossover since a sing le site is
chosen for splitting the chromosome.

2. Every crossover st ep "disru pts" a large number of schemata, br eaking
linkages between coadap ted alleles of genes in parent individuals, just
as it genera tes instances of a larg e number of schemata. In 1PTX, the
probab ility of disrupting a schema (inst antiated by a parent individual)
increases with the dist anc e between the first and last defined symbols (1
or 0) in the schema. For inst ance, h**O is far mor e likely to be broken
than **10* A reduction in the disr uptive effect has been claimed by

lImplicit parallelism does not refer to th e ability of genet ic algorit hms to be scalably
parallelized on appropriate hardware.

Kn owledge-Based Nonuniform Crossover

choosing two crossover points instead of one, as in

261

This is known as two-point crossover (2PTX) [39, 23] and often leads
to improved performance.

3. A natural generalization of two-point crossover is k-point crossover
(kPT X) where k ~ 1 is the numb er of points at which parent st rings
are broken. For example,

4. k-point crossover can be understood in terms of a "crossover mask"
[17] in which there are k + 1 contiguous segments of ident ical bits , and
th e boundary between adj acent different -valued segments represents a
crossover point . The ith bit of th e offspring is inherited from one parent
if the ith bit in the mask is 0, and from the second parent otherwise.
For instance, the mask 000011110000 represent s a two-point crossover
with the crossover point s being positions 4 and 8. Uniform crossover
(UX) [17J generalizes the crossover mask to be any bit string (of the
chromosomal length), where each bit in the crossover mask is equa lly
likely to be 1 or O. If a par ticular uniform crossover applicat ion was
such th at only the first , third, fourth , and last bits were inherited from
the first parent , the corresponding mask is 010011111110, which can
also be viewed as four-point crossover at position s 1, 2, 4, and 11. On
the average , uniform crossover produces L /2 crossings on a st ring of
length L [44] .

5. Variations of UX include "HUX" [19], where the crossover mask is
enforced to contain roughly th e same numb ers of Is and Os. Spears
and De Jong suggested a parameterized uniform crossover where every
bit is selected from either parent with a fixed probability Po [44] .

Syswerda [17] defined recombination potential as the ability of cross­
over to create higher order hyperp lanes when the parents contain the
necessary lower order hyperplanes. He provided an analysis showing
uniform crossover to have a higher recombination potent ial than one­
point and two-point crossover. Spears and De Jong [44], extended
t his an alysis to po-un iform crossover. They point out th at 0.5-uni form
crossover is bet ter at schema recombination but is worse for schema
surv ival, whereas O.l-uniform crossover is worse for schema recombina­
tion but better for schema survival. With Po = 0.1, uniform crossover
is less disruptive than two-point crossover and does not have a defin­
ing length bias . This allows uniform crossover to perform equa lly well,
regard less of the distribution of imp ort ant alleles. They find that for a
population of size 1000, uniform crossover with Po = 0.2 outperforms
two-point crossover.

262 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

1.4 G As t hat use p roblem-specific kn owledge

The following techniques for using problem-specific knowledge have been sug­
gested in the literature. In later sect ions, we propose a framework wherein a
more general crossover operator accomplishes this.

Grefenstette argues in [16] t hat it is possible to exploit prob lem-specific
knowledge in almost every phase of a genet ic algorithm. Seeding the initi al
pop ulat ion with a heuristic solut ion, local search coupled with mutation, and
problem-specific recombination operators are suggested mechanisms. Grefen­
stette solved the Traveling Salesperson Problem (TSP) by using the cost of
tour edges in the const ruction of offspring.

Suh and Van Gucht [48] say that the choice of representat ion for an op­
t imizat ion problem is interlinked with the choice of crossover operator. In
particular , the representati on should allow for the definition of recombin a­
t ion operators that incorporate heuristic information about th e problem. In
combinatorial opt imizat ion, an annealing-like approach that uses distance
inform ation can enhance th e performance of recombination operators on the
TSP [48] .

Louis and Rawlins suggest exploit ing knowledge of the search space topog­
raphy in guiding genetic search [53]. They use the fitness difference between
parents and children to indicate directions to bias search, advocat ing this as
a useful comput ing technique although such direct ional information cannot
be explicit ly st ored and used in nature. They define a Masked Crossover
(MX) that uses the relat ive fitn ess of the children with respect to their par­
ents . A mask is associated wit h each parent , and each offspring is produced
by a parent dominat ing the crossover. A set of rules operates for each bit ,
cont rolling future set t ings on masks. They collect runtime stat ist ics to iden­
t ify deception using a modification of th e ANODE algorithm suggested by
Goldbe rg [9].

2. Knowledge-based nonuniform crossover

We now develop KNUX, a crossover operator th at effectively exploits the
problem-specific inform ation provid ed by the history of the genet ic search
process . The uniform crossover (UX) operator selects the bit of either parent
with equal prob abili ty. This ignores t he fact that one parent may have much
higher fitn ess than the oth er , or that one region of the search space is already
known to produ ce individuals of higher fitness than other regions. KNUX
rectifies thi s situa t ion, generalizing UX by making use of the knowledge of
fitness of various individuals already explored . Problem-dependent knowl­
edge can be garnered while genetic search is in progress. The best solut ion
up to a certain point can be used to build th e bias vector. This gives a
dynamic version of KNUX, referred to as DKNUX (Dynamic KNUX). We
obtain orders of magnitude improvement over t radit ional genetic techniques
without an increase in computationa l cost.

UX can be described in terms of a bit-vector mask, each bit of which
determines the parent from which an offspr ing inherits a value for a par-

Kno wledge-Based Nonuniform Crossover 263

ticular bit-posit ion. Genera lizing t his idea , KNUX uses a crossover mask
P = (PI , ... ,Pn), where each Pi E [0, 1] is real (the p;'s are not necessarily
equal). Each member of the string denotes a bias (probability) towards
select ing genetic material from one parent , or t he bias towards select ing a
bit-value that equals the allele in the corresponding bit-position in a special
currently known reference vector. Bias probabili ty depen ds on t he position
of the bit in th e st ring , t he relative fitness of the parent strings, and on
problem-specific knowledge. Given p and the two parent s, a = (aI, . .. , an)
and b = (bl , ... , bn), the offspring c = (C I, ... , cn) is obt ained such that if
a; bi, t hen Ci = cu , else the probability t hat Ci = a; is Pi' Allowing p to
vary dynamically as the search progresses gives us opera to r DKNUX. In t he
following sect ions we describ e a distributed implementation of a GA using
KNUX, and then show how to build bias probabilities Pi for the problems
of graph parti tioning, soft-decision decodin g of linear block codes , and the
t raveling salespers on problem.

The fitt est individu als in a population contain certain properties that
make them perform bet ter relat ive to others. This means that certain fea­
tures of these individu als can be usefully emulated by others in the popul a­
tion. Applying thi s rationale, DKNUX dyna mically exploits the performance
of th e best individu al found in the search process up to a certain t ime. In
the graph parti tioning problem, for example, t his is done by rebuilding the
appropriate probability distribution that reflects the neighborhoo d locality
relati on of a good solut ion.

2.1 Distributed population mod el

Several researchers have made very st rong cases for dist ribu ted genet ic algo­
rithms with advantages ranging from linear scalab le speedups to improved
solut ion quality due to niching [8, 13, 12, 15]. The results of a st udy con­
ducted by Collins and Jefferson [14] indicates that local mating is more ap­
propriate for art ificial evolut ion than panmictic matin g where any ind ividu al
can mate with any other. It has been observed that genet ic algorithms typ­
ically converge on a single peak of a multi-modal objective function when
severa l solut ions of equa l quality exist . Panmict ic selection-based genet ic al­
gorithms focus on one or more opt ima l solut ions in t he early generations and
eventually converge on or near that solut ion, whereas local mating allows
convergence towards more th an one soluti on.

We use a coarse-grained, distributed-po pulation genetic algorithm
(DPGA) . In thi s model, t he individu als are divided into a numb er of subpop­
ulations that exchange genet ic informat ion through an explicit exchange of
individu als; mates are selected for reproduction from the local subpop ulat ion.

The algorithm describ ed in Figure 1 implements the proposed coarse­
gra ined DP GA. The algorithm requires as input N um berS ubpopulations
(the numb er of subpopulat ions), Interconnection Matrix (which indicates the
neighborhood relation between subpopulations) , ParamsMatrix (which holds
the size of th e subpopulat ion), pcross (the crossover probabili ty), pmut (the

264 H. Meini, K. Mehrotra, C. Mohan, and S. Ranka

Algorithm DPGA (Num berSubpopulat ions, InterconnectionMatrix ,
ParamsMatrix)

• Create a number of subpopulations linked by an interconnection ma­
t rix .

• The sub populat ions are initialized randomly or altern at ively cont ain
an est imat e of a good solut ion.

• if (DKNUXlnte rval) rebuild the KNUX probability distribut ion.

• At all subpopulations do

while (generation-counter < Total-Number-Generations) do
while (Migrationlnte rval)

Transfer selected immigrants to immediate neighboring sub­
populat ions.

Gather immigrants and indi viduals into mati ng pool.
Sort and rank individu als in the current subpopulat ion mat ing

pool.

Allocate reprodu ct ive t rials to individuals in the mating poo l
such that the expected numb er of crossover operations in
which an individu al participates is virility (x , P).

while (populat ion-size-counter < N) do

Randomly select two individu als a and b for reproduction.

If random-num E [0 , 1] > pcross, t hen introduce a and b into
the next genera t ion with equal probability, else (i) apply
KNUX to a and b, producing offspring c ; (ii) mut ate c ;
(iii) perform hill-climbing on the result ant mut ant . (iv)
introduce the resul ting individual int o the next genera­
tion.

end while

end while

Figure 1: Distr ibuted-population genetic algorithm.

mut at ion probab ility), Migrat ionIntensity (t he migration intensity), Migra­
tionInterval (t he migration int erval at each subpopulation) , and DKN UX­
Interval (t he interval at which probability distribut ions are rebuil t). The
following notation is used:

• Pm = prob ab ility of mut at ing a single bit , chosen to be 0.01 in our
exp eriments;

• Pero ss = the crossover probab ility, chosen to be 0.7 in our experiments ;

• N = size of populat ion, chosen to be 320, 300, or 128 in our experi­
ments;

Kn owledge-B ased Nonuniform Crossover 265

• rank(x , P) = I{y E P : fitness(y) ;::: fitness(x)} I where P is a popula­
t ion t hat contains x ; and

• virility(x , P) = max" - !::.v . rank (x , P), with max,
0.8/ N in experiments.

2.4 and !::.V

Time complexity of DPGA

Let N = total population size, s = subpopulat ion size, t = numb er of
subpopulat ions, i = numb er of immigrants arriving at a subpopulation, n =
numb er of loci in each chromosome, and b = numb er of boundary points in a
par t ition . T he t ime complexity of select ion and ranking is O((s+i) log(s+i))
at each subpopulat ion, which is O(t (s + i) log(s + i)) for all t subpopulat ions.
This reduces to O(Nlog(s + i)) . Let F be the cost of fitness computation.
This means the overa ll time complexity of algorithm DP GA is O(N log(s +i)
+ N F) for each generation. Time complexity of algorithm DPGA increases
linearly with the number of generat ions; even for problems with ext remely
large search space, good solut ions have been obtained in 0 (100) genera t ions.

3. Applications of KNUX a nd D KNUX for opt imization

In this sect ion, we give applicat ions of KNUX and DKNUX to three NP op­
t imizat ion prob lems. These are graph part it ioning , soft-decision decoding of
linear block codes, and the Traveling Salesperson Problem. A more detailed
description of the first two applications may be found in [32] and [56].

3.1 Graph partitioning

Fast solut ions for the graph part it ioning problem are ext remely important in
parallel computing and research areas such as circuit par ti tioning for VLSI
design . For instance, parallelization of many scient ific and engineering prob­
lems requir es partit ioning the dat a among the processors in such a fashion
that the computat ion load on each node is balanced, while communication is
minimized. This is a graph partitioning problem, where nodes of the graph
represent computational t asks, and edges describe communi cat ion between
tasks; each part itio n corresponds to one pro cessor. Optimal partit ioning, if
possible, would allow optimal parallelizat ion of t he computations, with load
balanced over various pro cessors and wit h communicat ion t ime minim ized.
The computat ional graph often has the property th at adjacent vert ices are
physically proximate, and vice versa . For many applications, the compu­
tational graph can be derived only at run t ime, and requires that graph
parti t ioning be done in parallel.

The problem may be formally stated as follows. Consider a graph G =
(V,E), where V represents a set of vert ices and E represents a set of undi ­
rected edges. The numb er of vert ices is given by n = IVI and the numb er of
edges is given by m = lE I. The graph partit ioning problem is an assignment
scheme M : V --> P that maps vertices to parti tions. Denote by B (q) t he

266 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

set of vert ices assigned to a part it ion q, that is, B (q) = {v E V : M(v) = q}.
For graphs representing t he computat ional st ructure of a physical domain ,
each vertex Vi E V , 1 :::; i :::; m , corresponds to a point in d-dimensional space
with physical coordinates (XiI ' Xi2 ' ... , XiJ and each edge is an ordered pair
(Vi , Vj) that may connect physically proximate vertices.

The weight Wi corresponds to the computation cost (or weight) of the
vertex Vi . T he cost of an edge W e(VI , V2) is given by the amount of interaction
between vert ices VI and V2 . Thus t he weight of every parti tion can be defined
as

W (q) = L Vi EB (q) Wi ·

The cost of all t he outgo ing edges from a part it ion represents the total
amount of communication cost and is given by

C(q) = L Vi EB (q), vj rLB (q) W e (Vi , Vj) + L Vj EB (q), vi rL B (q) W e (Vj , Vi) '

We would like to make an assignment such that the total comp utation
and communication time W(q) + (3C(q) spent by every node is minimized,
where (3 represents the ratio of the cost of uni t comp utat ion to t he cost of
unit communication on a given machine.j

It is well known that graph parti t ioning is NP-complete [29]. Optima lly
biparti t ioning a lOOO-node graph requires the examinat ion of a search space
of 0 (21000) , and no machine would wait to obtain such a solut ion. Obt aining
subopt imal solut ions quickly is desirable and often sat isfactory. The following
describes a knowledge-based approach to graph part itioning:

1. Obtain the vector p by first generating an init ial candidate solut ion.
From this initial solut ion, locality information about the graph can be
used to associate a prob ab ility with each component in the crossover
mask. T he init ial solut ion can be obtained by any reasonable heuris­
t ic. If coordinate information is available the Index-Based Part it ioner
(Appendix A) may be used. In the absence of coordinate informa­
tion, it is possible to use bread th-first search techniques such as the
"graph-layering" heur istic discussed in [36]. T he DKNUX operator
dynamically changes the vector p as th e algorithm steps through suc­
cessive generations; this allows successively better solut ions to bias the
crossover mechanism.

2. Each node should tend to be mapped to the same partit ion as most
of its neighbors. Bias probabilities are genera ted in such a way that
each Pi represents the fraction of nodes in the neighborhood of the ith
node that belong to t he part it ion q in a reference solut ion. In gen­
era l, the partition produced by the initi al solut ion (or reference vector)
can be used to est imate the nature of t he neighborhood of a node.

2Para meter (J cannot be done away with since optima lity of perform ance depends on
the relative costs of communicat ion and computation, which may vary between different
machines.

Knowledge-Based Nonuniform Crossover 267

PARTITION I

CHROMOSOMAL REPRESENTATION OF PARTmON

10 0 0 0 0 0 0 0 , , , , , , , ' I

Node Number I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

13

BIAS VALUES GENERATED FROM ABOVE PARTITIO N

1/3 1 1 2/3 2/3 3/5 1 1 2/4 1/4 1 I

nV O-POINT CROSSOVER

I I
Node Number I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Offspring Produced As a Result or Two-Pcim Crossover

Parem A I 0 0 0 , , I 0 , 0 I I 0 I o 0 I I

I o 0 0 I 0 0 , I 0 0 I 0 , o 0 d-
Parent B I , I 0 , 0 0 I , 0 0 , , 0 I 0 0 1 I I I 0 I I , 0 I 0 , I I 0 I o 0 1

t t
RANDOMLY SELECTED CROSSOVER POINTS

KNOWLEDGE-BASED NON UNIFORMCROSSOVER

Parem A I 0 0 0 I I , 0 I 0 I I 0 , 0 0 ,I OffspringProduced by Biasing Selectionof GenericMaterial

- I 0 0 0 , 0 0 0 I I I , 0 I 0 0 j
Parent B I I , 0 I 0 0 , I 0 0 I , 0 I 0 0 1

t t t t t t t t t t t t t t t
ALLLOCI AREPOTENTIAL CROSSOVER POII".'TS

Figure 2: An example of bias probability generat ion and crossover
operato r KNUX for graph partitioning.

Algorithm BUILD_BIAS describ es in detail th e procedure used to de­
velop bias probabilities, taking as input the graph to be partiti oned , th e
no. oj.portiti otis required , and the no. oj. nodes in the graph. Algorit hm
KNUX _GRAP H shows how the bias matrix thus const ruc ted can be
used to implement knowledge-based crossover; inputs to t his procedure
are the numb er of nodes in the graph to be part it ioned , th e bias matrix
P , and t he parents a and b to which the crossover must be applied .
The (i , j) th component of the bias matrix represents the fract ion of
neighbors nearest to node i that are assigned to partit ion j .

Figure 2 illustrates the process of building a bias vector for a 16-nod e
graph and the resul ting effect on K UX. Figures 3 and 4 present the

268 H. Maini, K. Mehrotra, C. Mohan, and S. R anka

A lgorithm B UILD _BIA S (graph, no.oj.partitions, no_ol_nodes)

• for all nodes in th e graph do

find partitions to which all immediate neighbors of current node are
assigned
build bias vector with tia.oj.partitions components with each com­
ponent Pi representing the fract ion of neighbors assigned to par ti­
t ion i

• return the bias matrix P which has no.of.nodes rows and
no.of.partitions columns. Each row of the bias matrix is the bias vector
for the corresponding node.

Figure 3: Algorithm for building bias probabilities.

Oper at or KNUX_G RAP H (no_ol_nodes, P, a, b)

• for i := 1 to na.oj.nodes do

if (ai = bi) then Pi = 1.0,
else if both P [i , bi] and P [i ,ail are 0 then Pi = 0.5,

I
. _ P [i ,ai] .

e se P, - [.] [. 1'P z, bi + P z, ai
set c; = a; wit h probability Pi or c, = bi with probabili ty 1 - Pi'

• return offspring c .

Figure 4: Crossover operator KNUX for graph partitioning.

algorithms BUILD _BIAS and KNUX _GRAPH, respectively, described
above.

3. 1. 1 Simulatio n result s

In this sect ion, we provide a comparison between different crossover operators
in algorithm DPGA: two-point crossover (2PTX) and dynamic knowledge­
based nonun iform crossover (DKNUX).

The results obtained by partitioning severa l different graphs into different
sized partitions are present ed in [56]. Table 1 and Figure 5 exhibit the results
of partitioning graphs of 66 and 258 nodes into 2, 4 and 8 parti tions. Figure
5 was obt ained by averaging the results of five runs of algorithm DPGA.
Table 1 gives the best solutions from these five runs compared with solut ions
obtained with Recursive Spectr al Bisection (RSB). All experiments were done
using algorithm DPGA wit h a total popul ation size of 320, a crossover rate of
Pc = 0.7, and a mutation rate of Pm = 0.01. The experiments were done with
two different subpopulation configurations: 16 subpopulat ions configured as
a four-dimensional hypercube and a single popu lation.

Kn owledge-Based Nonuniform Crossover 269

258108

RSB (82) -_ .

180

160~\~~--~~.=J
\40 \ ~Two-Point

500400

258102

..c= J\s~ .m2L. : .

Tw o-Point

100 200 300
258104

400

300 \ ~ DKNUX

200 . "'--
100 . . ---. -- -- -- -- " -- -- -- '; -- -- .. -- -- -- --.

a 100 200 300 400 500

u

500

500

400 500

RSB (30)

300 400

Two-Point

200 300 400
66,04

RSB (58) ...

200

i DKNUX

roo 200 300
66102

100

100

20L-_~_~_ _ ~_~_------'

o

80
, ~DKNUX

60 _..... .-.: .-.~.±.~ :.~ :.- ------- -------- -------- ---

GENERATIONS GENERATIONS

Figure 5: Partitioning 258 node and 66 node graphs into 2, 4, and 8
partitions start ing with a randomly init ialized populat ion: compari­
son between Two-Point crossover and DKJ UX.

T he results establish very clearly the excellent performance of DKNUX
in comparison with two-po int crossover and also that DK lUX is competitive
with RSB as a graph part it ioning strategy. These met hods are discussed in
detail in the rest of this sect ion.

In Tab le 1, we also show a comparison of the best solution found using
RSB versus that of DKNUX in algorithm DP GA. For the 66 node graph,
we find that DP GA with operator DKNUX outperforms RSB in te rms of
both the best and average solutions found. DKNUX out performs RSB in
under 50 genera t ions for two-way and four-way part it ioning, and does so
in about 150 generat ions for t he eight-way part it ioning case . In the case
of the 258 nod e graph, the performance of DKNUX was not as good as
th at of recursive spectra l bisect ion. This was alleviated by seeding the int ial
populat ion with a soluti on obt ained from a fast heur ist ic. Performance was
further improved by incorporat ing a hillclimbing step in algorithm DPGA
[56]. This example reminds us that GAs can also get st uck in local minima,
as do other st ochast ic opt imizat ion techniques . Increasing the populat ion
size may alleviate this problem to some extent .

Genet ic algorithms have been used in the past to find good suboptimal
solut ions to the graph par titioning problem [15, 30, 31, 33]. Exact compar-

270 H. Maini, K. Meaiotre, C. Mohan , and S. Ranka

I Number of Par titions

258 Nodes Best Cut Using DKNUX 58 132 216

Cut Using RSB 62 122 179

66 Nodes Best Cut Using DKNUX 26 49 75

Cut Using RSB 30 58 82

Table 1: A comparison of the best solutions found using DK UX and
RSB.

isons of the different algorithms are not available due to the nonexistence of
benchmark problems and results. However, our experiments with tradit ional
crossover operators used by some of these researchers gave results of lower
quality than tho se of the operators presented in t his pap er. Further , the
results achieved by our methods are better or comp arable to the best known
met hods for graph parti tioning.

3.2 Soft-decision d ecoding of linear block codes

In this sect ion we describe the problem of soft-decision decoding of linear
block codes and the role of KNUX in t his problem.

Codes are used for th e reliable t ransmission of dat a over communication
channels suscept ible to noise. Codes may be classified as eit her block codes or
t ree codes. An encoder for a block code accepts as input a k-symb ol message
sequence (usually binary) and maps it to an n symbol sequence with n > k .
Each n-symbol sequence is completely determined by a specific k-symbol
message. Block codes may further be classified as linear or nonlinear . A
linear code is defined as a vector space over a finite field. We restri ct our
attent ion to binary linear codes.

Figure 6 describ es a typical communication system. As a result of noise,
the received vector components are real numb ers. Of the n codeword coor­
din ates, exactly k are linearly independent. Let i be the inform ation vector
and G = (gjm) t he generator matri x, a list ing of th e basis vectors of a
code C . Then the encoding operation yields iG = c, and, consequent ly,
Cj = I:~=1 imgjm repr esents the j th component of the codeword c. Let
r E Rn be the received vector. "Hard decision" decoding involves quan­
t izing each component of th e received vector independently to the nearest
value E {-I , I} and t hen moving to the code-vector nearest to th e result ing
sequence. "Soft-decision" decoding algorithms utilize received vecto r compo­
nents, not just their quantized est imates [6]. A maximum-likelihood decoder
finds a codeword c' that maximizes the condit ional probability of receiving
r , th at is,

Pr(c' l r) = max Pr(c I r) = maxPr(r I c)Pr(c)jPr(r)
c CEC

The above equation holds since we assume that all codewords are equally
likely to be t ransmitted. A maximum-likelihood decoder is optimal in this

Knowledge-Based Nonuniform Crossover

Message (k bits) i

I
(n bits) c I. Enco derSource

Inform at ion Code Vector
;. Mod ulator

Vector Transmitted t
Estimated Vector
Code Vector c' Demodulato r

r
Channel. and Decoder Receivedand Information

Vector i' Vector
Noise

Figure 6: A typical communicat ion system.

271

sense. If transmitted signa ls are binary antipodal (that is, elements of
{ -I ,1}n) over a discrete memoryless channel susceptible to addit ive white
Gaussian noise, and the noise affects each symbol independent ly, then P(r I
e') is maximized when the squared Euclidean dist ance between vector r and
e' , 2:, J= l(rj - Cj') 2 , is minimized [2, 5]. Thus maximum-likelihood decoding
reduces to nearest-neighb or decoding, with respect to the Euclidean metri c.
More formally, the soft-decision decoding problem reduces to the following:

Given a received real vector r = (rl ,"" rn) , find a codeword e E C that
. . . ,\,n () 2mmirmzes L.."j = l r j - Cj .

Most resear ch in decoding algorithms has focused on hard-decision de­
coding algorit hms based on algebra ic techniques. Soft-d ecision decoding has
not been studied exte nsively and unti l recently there were few efficient decod­
ing algorit hms for linear block codes of large block length. The problem of
decoding an error correct ing code is known to be NP-hard . It is ind eed desir­
ab le and often preferab le to obtain suboptimal solutions to such a problem.
To dat e, the recent ly developed A*-based decodin g algorithm [4] is probably
the most successful algorit hm for soft-decision decodin g. We have been able
to obtain comparable results using an instan ce of KNUX, with an order of
magnitude lower comp ut at ional requirements.

3 .2. 1 GA for soft -decision decoding

In this sect ion, we present an inst ance of algorit hm DP GA, configured as
a single panmi ctic population, referred to as GADEC [32], that performs
soft-decision decoding of linear block codes.

Not at ion:

• n = block lengt h;

• k = dimension of th e linear code;

• Y = signal to noise ratio (decibels) ;

• r = received vector an element of iRn
;

272 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

I Components of Permuted Received Vector r ' ~ -2.1~

I Bias Probability (1 + exp(-2rU(J2))- 1 ~ 0.0012~

Table 2: An example of bias probability generat ion at a signal-to-noise
ratio of 2.0 dB for a code of dimension 4.

Operator KNUX_D EC O D E(a, b, r ')

• for i := 1 to k do

Let t he ith component of t he offspring be either 1 or - 1, with

{

0
Pr (Ci=I) = 1

l+exp(~2T:;(72)

if a; = b; =-1
if a; = b,
if a; # b;

and Prf c, = -1) = 1- P (Ci = 1)

• return offspring c.

Figure 7: Crossover operator KNUX for soft-decision decoding.

• r' = th e result of permuting r so tha t the first k positions are t he most
reliab le (high magni tude) linearly independent posit ions of r ;

• h = (sgn(rD, .. . , sgn (rU) E {-I , I}\

• fitness(x) = - L~=l (r; - coded(x);)2 , the negated Euclidean distance.

The main features of t he algorit hm are highlighted below:

1. The init ial population contains h and also N - 1 randomly genera ted
vecto rs in { -I , l }k.

2. Crossover and mutation operate only on the information bits, which
means that all the ind ividuals in th e population are always feasible
solut ions.

3. Since received vector components with greater magnitudes are more
reliab le [4], the received vector is reordered so that the most reliab le
k linearly independent bits come first . A choice between inherit ing a
bit from one of two parents is ma de at each compo nent of an offspring
using operator KNUX_DECODE (Figure 7). The locati on of bits on
th e problem encoding is irrelevant , resul ting in better performance than
'one-point ' or ' two-point' crossover operators [17, 18, 19J.

4. Bias probabilities for operator KNUX are determined by the compo­
nents of the permuted received vect or r ' , Algorithm KNUX _DECODE
shows how the bias values th us const ructed can be used to implement

Knowledge-Based Non uniform Crossover 273

knowledge-based crossover by comp ut ing (1+ exp(-2rU(j2))-1 . Table
2 gives an example for a code with k = 4.

5. Genetic search is guided by the principle of increasing fitness, that is,
decreasing Euclidean distance to the received vecto r.

6. The select ion st ra tegy used is "Linear Ra nking" [22], shown to result in
accurate opt imization, avoids local minima [21]. The relative (fit ness­
dependent) ra nk of each individual determines the number of repro­
ductive t rials in which the indi vidual participates.

7. Only the fitter of two possible offspring is preserved ; also, t he algorit hm
explicit ly enforces t he surv ival of t he best indi vidu al in the current
genera tion into the next generation. Conservat ive select ion policies
and uniform crossover coupled with a technique for exploit ing problem­
specific knowledge lead to very good perform ance.

3.2.2 Simulation results and discussion

We pr esent simulat ion results at various signal-to-noise ratios for the ex­
tended bin ary quadratic residue code [104,5 2]. This is a large code, with a
search space of size 252 . Results pr esented in Figure 8 and Table 3 are for a
single popul ation of size 300, a crossover rate of 70%, and a mutati on rate
of 3%.

Although the genet ic algorit hm is used to mini mize t he squared Euclidean
distance 'L']=l(rj - C'j)2 between vecto rs r and c' t he overa ll performance of
decoders is measured in terms of the bit erro r probabil ity. The bit erro r
probabili ty (Pb) is defined as the average fraction of information bits in error
up on decoding. We present gra phs and dat a to illustrate th e relat ion between
H and the number of genetic algorit hm generations. The probabili ty H is
est imated by simulat ing the t ransmission of severa l codewords (ab out 1000)
at many different signal-to -noise ratios.

Figure 8 indicat es that bit erro r probability drops rapidly for the first
five generations and th en settles into a steady rate of impro vement . Bit
err or pro bability cont inues to decrease with increasing numb er of genera­
t ions, though at a slower rate; it is possible to balance solut ion quality with
computational efficiency by choosing a combinat ion of solut ion quality and
maximum number of generations as termina t ion criteria for the GA. When
the number of genera tions is increased from 50 to 100, for inst ance, bit erro r
probabili ty drop s by about 30% to 40%.

Figures 9 and 10 exhibit the relation between bit error probabili ty and
the signal-to -noise ratio , afte r 50 and 100 generati ons, respectively. Some of
th ese errors would necessarily be made by any maximu m-likelihood decoder ,
and reflect cases where a codeword ot her tha n the t ra nsmitted codeword was
foun d to be closer to t he received vecto r r ia This "lower bound" is also

3For instance, there is a finite probability that all the message bits are so severely
corrupted by the communicati on cha nnel that even a th eoretical max imum likelihood
decoder will recover a codeword different from the transmitted codeword.

274 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

- - - --~ ~- ~ - ~ -~ ~ - ~ -~ - - --- -

"1.5dB" ­
"l.75dB"
"2.0dB" --­

"2.25dB"
"2.5dB" - -

0.05

0.045

0.04.e 0.035
:.0
'" 0.03.De 0.0250..
....

0.02g
"'-l 0.015

a:I 0.01

0.005

0
10 20 30 40 50 60 70

Number of Generations
80 90 100

Figure 8: Bit error probability in the later stages of evolution.

0.1

"GADEC" -+--­
"Low erBound" ., .. .

,e
:.0 0.01

'".De
0..
.... ' .0
t: 0.00 1"'-l
~

a:I

0.0001
1.4 1.6 1.8 2 2.2

Signa l to No ise Ratio (dB)
2.4 2.6

Figure 9: Bit error probability vs. signal-to-noise rat io in code after 50
generat ions [104, 52]. The lower bound represents errors what would
necessarily be made by an optimal decoder and reflect cases where a
codeword other than the transmit ted codeword is closer in Euclidean
distance to the received vector.

present ed . The difference between the two curves, given in Figures 9 and 10,
is often used to gauge the performan ce of a subopt imal decodin g algorithm.
The lower boun d on the average fract ion of bits of error is referred t o as MLD
in Table 3. In Ta ble 3 we present bit error probability and relat ed stat ist ics
afte r 50 and 100 genet ic algorit hm generat ions.

Remarkable results are obtained using GADEC , as seen by exa mining
the ratio of the bit erro r probability to the maximum likelihood decod ing
lower boun d . As reported in Table 3, Pbl M LD varies from 1.65 to 2.2 after

Knowledge-Based Nonuniform Crossover 275

Signal-to-Noise Ratio, dB 1.5 1.75 2.0 2.25 2.5

Bit Error Probability
(uncoded data) .0462 .0418 .0375 0334 .0296

Number of Codewords
Evaluated 30000 30000 30000 30000 30000

Number of Generations 100 100 100 100 100

Pb, Bit Error Probability
(coded data) 0.0165 0.00873 0.00563 0.00217 0.00183

MLD Lower Bound 0.00904 0.00404 0.00267 0.00135 0.00083

Ratio, Pbl M LD 1.82 2.16 2.10 1.65 2.2

Number of Codewords
Evaluated 15000 15000 15000 15000 15000

Number of Generations 50 50 50 50 50

Pi , Bit Error Probability
(coded data) 0.019730 0.010838 0.007769 0.00420 0 0.002569

MLD Lower Bound 0.008307 0.004039 0.002676 0.001336 0.000810

Ratio, Pbl M LD 2.37 2.28 2.90 3.14 3.17

Table 3: Simulation results using GA with K UX for the [104,5 2]
code.

Signal-to-Noise Ratio, dB 1.5 2.0 2.5

Bit Erro r Probabili ty, KNUX 0.0165 0.00563 0.00183

Pb , Bit Error Probability, UX 0.151 0.116 0.0851

Pb, Bit Error Probabi lity, 2PTX 0.130 0.098 0.065

Table 4: Comparison between different crossover operators for GAs
applied to soft-decision decoding. All dat a are for 100 generations
and 30,000 evaluat ed codewords, for coded data.

100 generat ions . Increas ing the number of generations resu lts in fur ther
decreases in Pbl NI LD , at the expense of mor e computation .

For a fixed bit err or probab ility, it is possible to compute the difference
in SNR between the lower bound maximum-likelihoo d decoding curve and
the curve obtained from algor it hm G ADEC, as in Figur es 9 and 10. T his
difference is at most 0.55dB afte r 50 generations of genetic search and reduces
to at most 0.35dB afte r 100 generat ions .

3 .2.3 Comparisons wi th other operat or s a nd algorithms

In Tab le 4 we pr esent a comparison of results obtained using KNUX , uniform
crossover (UX), and two po int crossover (2P T X) in algorit hm GADEC. In
the case of two point crossover the algorithm was mo dified to produce two

276 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

0.1

"GADEC" -<>­
"LowerBound" .., ...

0.01

0.001

2.62.41.8 2 2.2
Signal to Noise Rat io (dB)

1.6

0.000 1 '---_ _ -1- '---_ _ -1- '---_ _ -1-__---'

1.4

Figure 10: Bit error probability vs. signal-to-noise ratio code after 100
generat ions [104,52] .

offspring. Simulation results show th at KNUX is super ior to UX and 2PTX
by at least an order of magnitude.

We now compare our GA with the recent ly proposed A*-based decoding
algorithm, prob ab ly the fastest soft-decision decoding algorit hm to date [4].
In t he A*-based algorithm, a linear code is represented as a t rellis wherein
each path represents a codeword . The suboptimal version of algorithm A*
restricts the list of nodes to be expanded for explorat ion based on limited
memory and prunes search paths which are est imated to contain the required
solut ion wit h a probabili ty less than some t hreshold 8.

The bit error probability values obtained for the [104, 52] code using a
subopt imal version of algorithm A* are almost indistinguishable from those
of algorithm GADEC after 100 generations of search. In addit ion, the dB
difference for the A* algorithm is at most 0.25 for 8 = 0 and 0.50dB with
8 = 0.25 as compared with GADEC which has a dB difference of at most
0.35 after 100 generat ions. The perform ance of 100 generations of algorithm
GADEC is therefore bet ter than tha t of A* with 8 = 0.25 and very close to
that of A* with 8 = o.

It is imp ortant to keep in mind that algorithm GADEC could be iterated
further , until convergence, or perh aps reinit ialized wit h new genet ic material
to cont inue the search even beyond 100 generations. This is a very significant
advantage of genet ic search techniques und er tho se situa t ions where one is
willing to expend comput at ion t ime for the sake of improved performance.

Anoth er important advant age is the very low memory complexity of algo­
rithm GADEC, which is O(kN), compared to that of algorithm A* which,
in the worst case, has a memory complexity th at is exponent ial in the di­
mension of the code, O(n2 k

) .

Perhaps the most significant advantage of GADEC over th e A*-based
approach is the fact that geneti c algorithms are scalably parallel, suitable for
implementation on a wide range of parallel architectures including massively

Kn owledge-Based Nonuniform Crossover 277

parallel ones. T here is also sufficient evidence to conclude that a distribu ted
population version of algorithm GADEC would lead to better performance
[8, 13]. On the other hand , an A*-based algorithm is limited in speedup
because it is necessary to compute the maximum node value at each level
of t he t rellis before pro ceeding to th e next one. Elsewhere [56], we provide
a comparison of KNUX wit h systemati c exhaustive search and pur e random
search to conclusively show that genet ic recombination and select ion indeed
play an important role in obt aining solut ions of high quality.

3.3 The Traveling Salesperson Problem

The Traveling Salesperson Prob lem (TSP) is a well-studied combinatorial
opt imization problem which involves finding a minimal length tour of n cit ies
that visits each city exact ly once. Several researchers have at tempted its
solut ion with genet ic algorit hms [16]. We show in thi s section how the KNUX
and DKNUX philosophy of using problem-specific knowledge embodied in a
good solution can be used to improve the performance of a crossover operator
that has been used in the past . T he choice of solut ion represent at ion and
crossover operator are clearly related. We represent tours as sequences of
cit ies, where the it h element in a sequence is the it h city to be visited by
the t raveling salesperson. Grefenst ette's crossover operator (referred to as
'GREF ' here) can be described as follows [16]:

REPEAT

1. Randomly choose an unvisited city as the current city for
th e offspr ing tour .

2. Consider t he four edges incident on the current city in the
parents, ignor ing edge direction. Define a probability dis­
tribution over th ese edges based on edge cost such that the
probabili ty associat ed with an edge incident to a previously
visited city is zero. Each parental edge is assigned a proba­
bility

c;
Pi= - 4- ­

L j = l Cj

where c; is the reciprocal cost of edge i .

3. Select an edge based on thi s distribution. (If none of the
parent al edges leads to an unvisited city, create an edge to
a randomly chosen unvisited city.)

U TIL all cit ies have been visited.

Operator KNUX _GREF is based on GREF, and associates probabi lity Pi
with a function of both th e incident edge costs of the parents and the best
solut ion found so far. Let b denote the best solut ion found so far. The costs
associated with the edges are modified as follows:

I { c, if edge i is absent in b
ci = 2e; if edge i is present in b .

278 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

48 Cilies 24 Cities
2150

GREF- 2100 GREF-
K.'i UX -GREF .. KNUX-GREF ..

2050

J
2000

1950

!' 12400 1900

12200 1850

12000 1800

11800 1750
10 20 30 40 lO 60 70 80 90 100 10 20 30 40 lO 60 70 80 90 100

Genermions X f GenerationsX 5

2 1 Citie s 17 Cities
2700

GREF - 2650 GREF -
KNUX-GREF ..

2600
KNUX-GREF o.

mo
t

2500
~ 2450 .~

s 2400 '-.:
2350

2300

2250
20 30 40 lO 60 70 80 90 100 10 20 30 40 l O 60 70 80 90 100

Generauons x S Generations X 5

Figure 11: Tour lengths in the TSP: a comparison between GREF
and DKNUX_GREF.

KNUX_GREF is identical to GREF except in ste p 2, where edge i is assigned
the probability

I c~
Pi = -4-- ,

L j = l Cj

instead of Pi defined earlier.
KNUX_GREF that updates P;
iteration .

DK UX_GRE F is a dynamic variant of
based on t he best result found aft er each

3.3.1 Experimental r esults

Exp erimental results obtained by applying GREF and KNUX_GREF to TSP
are shown in Figure 11. We show experiments on four symmet ric TSPs with
17, 21, 24, and 48 cit ies, respectively. Figure 11 shows the results of t he
average over five runs of Algorithm DP GA configured as a hypercub e of 16
subpopulations each of size 20. We find that operator KNUX_GREF is signif­
icantly better than operator GREF in all cases. Tab le 5 shows the minimum
tour length obtained using operator GREF and operator KNUX_G REF. We
see that KNUX _GREF is significant ly bet ter by this criterion as well,

Number of Cit ies

Minimum Tour Length Using GREF

Minimum Tour Length Using KNUX_GREF

Table 5: A comparison of the best solut ions found using GREF and
KNUX_GREF: t raveling salesperson problem.

Kn owledge-Based Non uniform Crossover 279

4. Solution improvem ent using KNUX and DKNUX

KNUX and DKNUX can be used to improve the quality of solutions obt ained
using other algorithms. In this sect ion we discuss the relat ive performance of
K UX and DKNUX when one member of the init ial populat ion is a heur is­
t ic solut ion obtained using a greedy or hill climbing method. T he quality
of solut ions obtained by KNUX depends on the quality of t he heur istic esti­
mat e used to derive bias pr obabilities. It is therefore important to obt ain a
good, fast heur ist ic est imate of a solut ion. In t he case of incremental graph
par t it ioning, available solut ions (part it ions) provide a natural est imate.

For example, for th e graph bipartitioning problem, the initial solution
could be the one given by the Ind exed-Based Parti t ioning (IBP) algorithm
(see App endix A), bu t after every No generations, the current "best" solut ion
is used to generate the P matrix.

The philosophy is that the population and, in part icular , the fitt est sur­
viving members of t he pop ulat ion embody a wealt h of knowledge about the
search process. This knowledge can be exploited using the operators KNUX
and DKNUX.

4 .1 St art in g w ith a fast heuristic solution t o grap h partitioning

It is possible to seed the init ial pop ulation of DPGA with a solut ion obtained
by IBP. This can then be improved up on using DKNUX. T he IBP algorithm
uses coordinate information in graphs to establish a spat ial proximity be­
tween graph nodes. In t he absence of coordinat e information, it is possible
to assign pseudo-coordinates to the nodes of a graph by using a breadth-fir st
search procedur e as discussed in [25]. We have experimented with graphs
that have 258, 167, 144, and 66 nodes (illust rated in Appendix B), while
init ializing the populat ion with a solut ion obt ained by the IBP met hod [36].

In Figure 12 we compare the performance of the crossover operators in
terms of the best solut ion obtained and by also considering th e numb er of
generations it takes to achieve a solut ion of a particular quality. The solut ions
obtained using DKNUX and KNUX exhibit a perfect load balance in all cases
and are either better than or comparable to those obtained using RSB. Also,
K UX and DKNUX are far superior to two-point crossover as describ ed in
great er detail in [56].

Table 6 gives a comparison showing the best solut ion obtained using
DKNUX with that of the solut ion obtained using RSB.

4.2 Star t ing w ith a good solu t ion t o gra p h partitioning

Recursive Spectral Bisect ion (RSB) is a heur istic that has been widely re­
ported to give very good solut ions to t he graph par t itioning problem. This
eigenvalue method does not use coordinate informat ion and can thus be ap­
plied to graphs where such knowledge is not available. The disadvantage
is that it is slower than the Index-Based Part it ioning method even though
it yields bet ter solut ions. DKNUX can be exploited to refine the solutions

280 H. Maini , K. Mehrotra, C. Mohan, and S. Ranka

159108 139108
280

260
Two-Point 190 Two-Point
DKNUX 180 DKNUX

240 RSB 128) 170 \
RSB (II]

220 160

~ 200 ~ 150
;;; s 140e 180 u

130
160 120
140 110
120 100

0 100 200 300 400 500 a 100 200 300 400 500
1<0,_ 139102

200 Two-Point
75
70 Two-Point

180 DKNUX DKNUX8(75) --- 65
160 60

RSB (30)

s 140 ~ 55 :
;;;, ;;; 50

e 120 e 45
100 40

80
. ...

J5
30 ---------- -- --- --- - -- -.- ---

60
100 200 300 400 500 100 200 300 400 5000 0

139t04
120 Two-Point _

130
Two-Point

110 OKNUX 120 DKNUX ...
100 RSB(33) on

110
RSB69

~
90 :

~ 10080 .;;;
70

;;;
90,e 60 u
80

50
40 70

30 60

0 100 200 300 400 500 a 100 200 300 400 500

GENERATION S GENE RAn ONS

Figure 12: Partitioning a 118 node graph incremented by 21 nodes
and 41 nodes into 2, 4, and 8 parti tions: a comparison between Two-
Point , DKNUX, and RSB.

given by RSB . Table 7 shows that DKNUX can yield a significant improve­
ment over RSB solut ions.

We have experimente d with graphs of size 309, 279, 243, 213, 139 nod es.
These graphs are given in Appendix B. Figure 13 shows the excellent per­
formance of DKNUX in improving on RSB solutions. The figure also shows
t ha t two-point crossover is able to make only an insignificant improvement .

I Numb er of Par ti tions

167 Nodes
Best Cut Using DKNUX 20 63 109

Cut Using RSB 20 59 120

144 Nodes

Best Cut Using DKNUX 33 65 120

Cut Using RSB 36 78 119

Table 6: A comparison of the best solut ions found using DKNUX and
RSB: sta rt ing with a population initialized with an IBP solution.

Knowledge-Based Nonuniform Crossover 281

Two-Point
DKNUX

____ ~ ~ _. _. _ ~~~ (9)i) __. . ~ : ; .

243108

Two-Point
DKNUX
RSB (41)

Two-Point
DKNUX
RSB (154)

400

400 500

200 300
243t02

200 300
243104

100

96

u

160

155
~ " " .Vi

a 150

145

140
1000

98

38 - "'"',· '..·..···..··· · · · ·· 1

213108
160

Two-Point
DKNUX

155 RSB(l 5 1)

~ 150
Vi
5
u 145

140

0 100 200 300 400 500
213104

88
Two-Point

86 DKNUX

~ 84 RSB (82)

Vi
82u
80

78

76

74
0 100 200 300 400 500

213t02

44 Two-Point
DKNUX

42
RS8 (4 1)

~
~•• • _ •• • _ • • • _ . .. _ n • • • __ •• __ ••

a 40

36

100 200 300 . 400 500
100 200 300 400

GENERATIONS GEN ERATIONS

Figure 13: Partitioning 213 and 243 node graphs into 2, 4, and 8 patt i­
tions: the effect of operator DKNUX on improving solutions obtained
thr ough RSB,

5. DKN U X for inc remental optimization

Problems involving autonomously changing landscap es frequent ly ar ise when
fitness is defined in terms of autonomous agents whose behavior can change
independent of the search activity, If typ ical GAs are applied to such prob­
lems, strong pressures to converge resul t in a loss of diversity needed to
respond to such changes, KNUX and DKNUX are useful in the context of
changing fitn ess landscap es,

For a large class of irregular and adaptive data par allel applicat ions , such
as adaptive meshes [24], the computational st ructure changes from one phase
to another in an increment al fashion, In incremental graph part it ioning prob­
lems, the partit ioning of the graph needs to be updated as the graph changes
over t ime; a small number of nodes or edges may be added or deleted at any
given instant, A solut ion of th e previous gra ph par ti tionin g problem can be
utilized to partition the updated graph, and t he t ime requir ed for such repar­
t it ioning is often much less than the t ime required to apply a parti tioning
algorithm all over aga in to the ent ire up dated graph,

In order to par ti tion increment ally changing gra phs , we have experi­
mented with adding a different number of nodes to gra phs of sizes 249, 183,
119, 118, and 78, We report result s for two sets of increment al gra ph par ti-

282 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

I Number of Part it ions

139 Nodes
Best Cut Using DKNUX 28 65 100

Cut Using RSB 30 69 113

213 Nodes
Best Cut Using DKNUX 41 77 138

Cut Using RSB 41 82 151

243 Nodes
Best Cut Using DKNUX 43 88 141

Cut Using RSB 47 95 154

279 Nodes
Best Cut Using DKNUX 36 78 139

Cut Using RSB 37 88 155

Table 7: Improving the solution found through Recursive Spectral
Bisection.

tioning problems in Table 8 and Figure 12. In the first experiment , we start
with a graph of 118 nodes and increment it by 21 nodes in a region chosen
randomly within the grap h.

The incremented graphs are par titioned into 2, 4, and 8 parti t ions. The
result s are shown in Figure 12. DKNUX achieves excellent results in all
t hree cases , and achieves in 100 generations a cut size that 2PTX is unable
to match even after 5000 generations. Similar results (see Figure 12) are
obtained in the second incremental problem in which 41 nodes are added in
a randomly chosen local area. In [56] we show that DKNUX per forms just
as well in this case.

We find tha t the average over five runs of the algorithm (as given in Figure
12) are bet ter t han or wit hin a few edges of th ose obtained by reparti tioning
the graph using the recursive spectral bisection heurist ic. In addit ion, the
best solut ion found using DKNUX is better than t hat obtained t hrough RSB
in all bu t one case.

6. Understanding KNUX

Most individuals in a GA have a transitory existence, and hence, propert ies
of GAs are proved in terms of abstractions called schemata t hat represent
a collection of individuals (see section 1.2). Holland argues that schema
observed to have a higher average fitness are allocated an exponent ially in­
creas ing number of trials. Thi s st rategy is opt imal in th e sense th at viewing
the problem as the k-armed band it problem, one can show th at the st ra tegy
maximizes payoff. The way the schema averages are estimated is implicit
in the genet ic algorit hm and is done through a simultaneous sampling of
severa l schemata while manipulat ing only a few chromosomes. KNUX and

Knowledge-Based Nonuniform Crossover 283

I Number of Parti t ions ITTIill
118 plus 21 Nodes
Best Cut Using DKNUX 31 61 103

Cut Using RSB 30 69 113

118 plus 41 Nodes
Best Cut Using DKNUX 31 66 120

Cut Using RSB 33 75 128

183 plus 30 Nodes
Best Cut Using DKNUX 37 72 133

Cut Using RSB 41 82 151

183 plus 60 Nodes
Best Cut Using DKNUX 44 83 160

Cut Using RSB 47 95 154

Table 8: A comparison of the best solutions found using DKNUX and
RSB applied to incremental graph part itioning.

DKNUX consider some schemata as having a higher average fitness than oth­
ers , with problem-dependent knowledge being used to determine wha t kinds
of schemata are to be assigned a higher average fitn ess. Again, thi s is im­
plicit in the genet ic algorithm as a result of the KNUX mechanism . DKNUX
changes th e est imate of schema fitness as the search progresses, abandoning
some regions of the search space in favor of others. Thi s is done by utilizing
the best performing individu al and the inform ation embodied in its st ructural
makeup .

We provide an analysis of th e schema theorem pertaining to KNUX for
graph bip arti tioning to bet ter underst and the forces driving this crossover
operator. In this process we develop a variant of t he schema theorem that
leads to the "high-survivability building block" hypoth esis.

6.1 Schema disruption and recombination

We begin by examining a t radit ional GA with individu als represented as
binary st rings, and with schema being st rings ranging over the alpha bet
{I , 0, *} . The following notati on is used:

• o(S) = numb er of fixed positions in schema S.

• m = length of binary st rings (chromosomes) in the populatio n.

• F (t) is the population at iteration t , and IF (t)I = N is the population
size.

• 5(S) = numb er of bits between the first and last fixed positions in
schema S.

284 H. Maini , K. Mehrotra, C. Mohan, and S. Ranka

• 'Ij;(S, t) = number of st rings in populat ion P(t) matched by schema S
in generation t .

• av (S , t) = average fitness of all st rings in the population mat ched by
schema S in generation t .

• F (t) = total fitness of all strings in populat ion P(t).

• Pc = crossover prob abi lity.

Assuming fitn ess proportionate select ion it follows that

'Ij; (S, t + 1) = 'Ij; (S, t) a~~,/) N = 'Ij; (S, t)a;~~(t~)

where Fav(t) = F(t)/ N . This reproductive growth equation says that the
number of strings in the population matched by schema S grows as the rat io
of the average fitness of schema S t o th e average fitness of the population.
Considering the disruptive effect of crossover and mutation on a schema S,
we get

Above-average schema with short defining lengt h and low order are hence
sampled at exponent ially increasing rates.

T his leads to the building block hyp othesis, which says that a GA seeks
near-optimal performance t hrough the juxtaposition of short , low-order, high­
performan ce schemata, called building blocks.

6 .2 Schema theorem for KNUX

The above analysis is due to Holland and assumes a one-point crossover
opera tor. We adapt his analysis for KNUX. Crossover is accomplished by se­
lect ing a bit from either parent a or b with some probabi lity. This probability
is computed using the nature of a graph node 's neighborhood .

We now consider the disrupt ive effect of KNUX on schema S . Let Pr,

be the prob ability that the bit in the schema-defined position is selected
during crossover. In th e case of graph bipartit ioning, if the schema-defined
position is 1, then Pr , = Pr(ci = 1), and if the schema-defined position is
0, then Pr, = Pr (e; = 0). The probability Pr, thus depends on th e posi­
tioning of the immediat e neighbors in the graph partitioning problem and
depends on t he reliability of received vecto r coordinates in th e soft-decision
decoding problem. The probab ility th at schema S survives KNUX is at
least Il Pr , where t he pro duct is taken over all o(S) positions. T he cross­
over disruption probabi lity is therefore at least Il Pr , (where t he product is
taken over o(S) terms corresponding to schema-defined posit ions) instead of
1 - Pco(S)/ (m - 1). In algorithms utilizing KNUX, we use ranking select ion
instead of fitn ess proporti onate select ion [22]. Individuals are assigned a rank

Knowledge-Based Nonuniform Crossover 285

based on their fitn ess and we interpret this rank as a var iable or assigned fit­
ness value [21]. Therefore, instead of using the fitness rat io av(S, t) / Fav(t),
we use F (S , t) = L i ESn p (t) rank(i , t) / L iEP(t) rank(i , t) where rank(i , t) =
rank of individu al i in generat ion t . Hence, the reproduct ive growth equa­
tion takes the form

?/! (S , t + 1) ?- ?/! (S, t) F(S , t) P c IIr; (1 - Pm t (S)

Clearly, ?/! (S , t) increases exponent ially if Il Pr, is large and if the con­
tr ibut ion of the mutation term (1 - Pm) o(S) is small. This allows us to
re-interpret the building block hypot hesis as saying that , "above average,
low-order, high-survivabili ty schema are allocated an exponent ially increas­
ing numb er of t rials."

It has been argued t hat surv ival and recombinat ion abilit ies are mutually
opposing criteria and that t radeoffs are often needed [44]. We believe t hat
KNUX alleviates thi s problem. The nonuniformity in KNUX allows the
operato r to be more effective at both schema recombination and surv ival,
at least for certain kinds of schema . KNUX can recombine and disrup t
some schema better than two-point and parameterized uniform crossover.
T his is in cont rast to two-point crossover which is less disru ptive and less
recombinative over all schema of a fixed order , and 0.5-uniform crossover
which is more recombinat ive and more disruptive for all schema of a fixed
order.

Parameterized uniform crossover does not differentiate between schema of
a fixed order, and two-point crossover does not different iate between schema
of a fixed order and defining length. KNUX does differentiate between
schema of a fixed order; building block recombination and disrupt ion is inde­
pendent of defining length. In some sense, this flexibi lity in recombining the
right buildi ng blocks is what genet ic algorithms are all about and KNUX is
the first recombination operator that exploits this mechanism . The question
then arises: how are bias probabilities to be determined? What schema are
to be recombined more effect ively than others and what schema are to be
disrupted less frequently t han others? The approach taken in KNUX is to let
problem-specific knowledge guide this decision-making process. In addit ion,
allowing bias probabilities to vary dynam ically exploits both problem-specific
information and information garnered about the search so far.

Example. Consider schema *h***** ** and schema ********Oh th at re­
combine to give schema d ****Oh . This would happen with prob ability ap­
proximat ely 0.7 for several variants of paramet rized uniform crossover [44].
If Pi is the bias probability for the ith locus, schema d ****Oh would be
reconst ruct ed with a probab ility of at least pz(l - P7)(1 - Ps)· Wh enever
pz(l - P7)(1 - Ps) exceeds 0.7 (which would happ en when pz = 0.9, P7 = 0.1,
and Ps = 0.1, for example), KNUX would recombine these schemas with a
higher probability th an both parametri zed uniform and two-point crossover .

Let us now consider the case of survival of a schema . Consider schema
1***11*****, a third order schema whose survival probabi lity is shown [44]

286 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

to be about 0.9 und er O.l-uniform crossover, which is bet ter (overa ll) than
two-point crossover . The surv ival probabili ty of this schema under KNUX is
at least PIP5P6. Whenever this product exceeds 0.9, schema survival occurs
with a higher prob abili ty in KNUX than in both Ill-uniform and two-point
crossover .

6.3 Diploidy, dominance , and DKNUX

Unlike most (art ificial) genetic algorithms that use hap loid representations,
advanced organisms are diploid . It has been claimed that diploidy helps
maintain the same amount of genetic diversity with much lower mutation
rat es than haploid representat ions [1, 57]. Furth ermore, the dominance rela­
t ionship between alleles can change when the environment changes (modeled
by a change in the fitness function), so that recessive alleles preserved in
t he dip loid represent ation allow the population to adapt much more quickly
to minor or major changes in the environment. However , diploid repre­
sent at ions double the storage requirement s (per chromosome) , increasing th e
computat ional expense associated with each crossover and mutat ion step, and
requiring addit ional representation in each chromosome to encode th e domi­
nance relationship as well as addi t ional pro cedures that govern the changes in
(adapt ive) dominance relationships when the environment changes (requiring
increased manifest ation of previously recessive alleles) .

DKNUX is a less expensive alternative that achieves some of the goals
of diploidy and adaptive dominance. Dominance as well as the associated
domin ance-mutation rate are impli citly encode d in the reference vector used
by DKNUX at each crossover ste p. Unlike biological organisms which must
out of necessity represent dominance relationships separately in every indi­
vidual, computer implementations (using DKNUX) can encode these in a
single reference vector accessible to all individuals, decreasing sto rage and
computat ional requirements. Changes in the environment may result in pre­
viously fit individuals being downgraded, and these result in changes to the
reference vector. Mut ation is no longer t he main driver in allowing the pop­
ulation to adapt to a new environment. Additional parameters that govern
changes in dominance are no longer required. Fur th ermore, changes in the
reference vector reflect changes in desirabili ty of schema, rather than indi­
vidual alleles as is the case with diploid representations that use a separate
dominance parameter for each gene.

7. Conclusion

It is a truism that weak or generic methods are outperformed by specialized
algorithms t hat utilize maximum available knowledge about a given domain.
For instance, a t raditional GA would be outperformed by algorithms tailored
to work well on the graph parti tioning problem. Unfort unately, t his leaves
t he user with very lit tle direction about what to do when faced with a new
problem. Ideally, a general algorithm adapts itself and "learns" about th e

Knowledge-Based Nonuniform Crossover 287

environment , progressively improving in performance. This is one goal of
KNUX, which may be considered a general-purpose method of incorporating
knowledge specific to an application, with lit tle user interaction.

In some applications, the ready availability of knowledge or reasonably
good solut ions constitutes one reason to select symbolic comput ing systems
(such as rule-based expert systems) over "soft computing" systems such as
neural networks or GAs. KNUX provides a method of ut ilizing such knowl­
edge in the context of GAs, with th e ability of improving on solut ions ob­
tained by other meth ods.

DKNUX opens up the field of applying GAs to Incremental Optimization
problems, characterized by a slow change in problem structure with time. In
this respect , DKNUX also achieves some of the goals of diploid representa­
tions with adapt ive dominance, with smaller computational requirements .

In genera l, heuristi c search algorithms consist of move-generation followed
by move-selection from any given state. GAs and other stochast ic approaches
often focus on improving the move-select ion mechanism , aft er having chosen a
fixed move-generation mechanism. KNUX differs from other mod ificat ions in
making th e move-generation process itself t ime-dependent. The same parents
may give rise to different offspring at different moments in th e evolut ionary
pro cess, based on the past experience of the species.

KNUX and DKNUX bridge some of th e gaps between evolut ionary st rate­
gies and genet ic algorithms in the use of "st rategy" variables that determine
genetic expression, and in maintain ing a st rong behavioral link between suc­
cessive genera t ions.

We have given simulation results showing th at KNUX yields impr ove­
ments (of orders of magnitude in some cases) over two-point and uniform
crossover, relative to three NP opt imization problems: graph parti tioning,
soft-decision decoding of linear block codes, and the Traveling Salesperson
Problem. We have also applied KNUX to variants of the graph par ti tion­
ing problem that cannot be solved easily using non-GA approaches, and to
improve the quality of solutions obtained using non-GA methods.

GAs have evolved considerably in recent years , with a large number of
"species" of GAs taking hold. The usefulness of a new mod ificat ion to GAs
must hence be ju dged by virtue of its adaptability, th at is, the ease with
which it can be combined with other improvements (both past and future)
without pro ducing a monster. We believe t hat the modification suggeste d
by KNUX stands thi s test , that these modifications are ort hogona l to oth er
cha nges in parameters of genet ic algorit hms, and can t herefore be purs ued
together with any other proposed improvements.

R eferences

[1] J. H. Holland, Adaption in Natural and Artificial Systems (Ann Arbor: Uni­
versity of Michigan Press, 1975).

[2] G. C. Clark and J. Bibb Cain, Error Correcting Coding for Digital Commu ­
nications (New York: Plenum Press, 1988).

288 H. Maini, K. Mehrotra, C. Mohan , and S. Ranka

[3] R. E. Blahu t , Theory and Practice of Error Control Codes (Reading, MA:
Addison-Wesley, 1984).

[4] Y. S. Han , "Efficient Soft Decision Algorithms for Linear Block Codes Us­
ing Algorit hm A*," Doctoral Dissertation , Technical Report SU-CIS-93-29,
School of Computer and Information Science, Syracuse University (August
1993).

[5] K. H. Farell, L. D. Rudolph , and C. R. P Hartmann , "Decoding by Local
Optimizat ion," IEEE TIT, IT-29(5) (Sept ember 1983).

[6] D. J. Taipale and M. B. Pursley, "An Improvement to Generalized Minimum
Distance Decoding," IEEE TIT, 37 (1) (January 1991).

[7] S. Forrest and M. Mitchell, "The Performance of Genet ic Algorithms on Walsh
Polynomials: Some Anomalous Result s and their Expl anat ion," Proceedings
of the Fourth International Congress on Genetic Algorithms (San Mateo, CA:
Morgan Kaufmann, 1991).

[8] R. Tanese, "Dist ributed Genetic Algorithms," pages 434-439 in Proceedings
of the Third Int ernational Congress on Genetic Algorithms, edited by J. D.
Schaefer (San Mateo , CA: Morgan Kaufm ann, 1989).

[9] D. E. Goldb erg , "Genet ic Algorithms and Walsh Polynomials: Par t I, A
Gentle Int roduction," Complex Systems, 3 (1989) 129-152.

[10] D. E. Goldb erg , "Genetic Algorithms and Walsh Functions: Part II , Decep­
t ion and Its Analysis," Complex Syst ems, 3 (1989) 153- 17l.

[11] B. Manderick and P. Spiessens, "Fine-Grained Parallel Genet ic Algorit hms ,"
pages 428- 434 in Proceedings of the Third International Congress on Genetic
Algorithms, edit ed by J. D. Schaefer (San Mat eo, CA: Morgan Kaufm ann,
1989).

[12] M. G. Schleuter, "An Asynchronous Parallel Genet ic Optimi zation St rategy,"
pages 422- 428 in Proceedings of the Third International Congress on Genetic
Algorithms, edited by J. D. Schaefer (San Mateo, CA: Morgan Kaufm ann,
1989).

[13] H. Miihlenbein, "Parallel Genetic Algorithms, Populat ion Genet ics and Com­
binatorial Optimi zation ," pages 416-422 in Proceedings of the Third Interna­
tional Congress on Genetic Algorithms , edited by J . D. Schaefer (San Mateo ,
CA: Morgan Kaufmann, 1989).

[14] R. Collins and D. Jefferson, "Select ion in Massively Parallel Geneti c Algo­
rithms," pages 249-256 in Proceedings of the Fourth International Congress
on Genetic Algorithms (San Mateo, CA: Morgan Kaufmann , 1991).

[15] J . P. Cohoon, W . T Mar t in, and D. S. Richa rds "A Mult i-Population Ge­
neti c Algorithm for Solving the k-Par t ition P roblem on Hypercubes," pages
244- 248 in Proceedings of the Fourth International Congress on Genetic Al­
gorithms (San Mateo, CA: Morgan Kaufmann, 1991).

Knowledge-Based Nonuniform Crossover 289

[16] J . J. Grefenstette, "Incorporat ing Problem Specific Knowledge into Genetic
Algorithms," in Genetic Algorithms and Simulated Annealing, edited by
L. Davis (San Mateo, CA: Morgan Kaufm ann , 1987).

[17] G. Syswerda, "Uniform Crossover in Genetic Algorithms," pages 2-9 in Pro­
ceedings of the Third International Congress on Genetic Algorithms, edit ed
by J. D. Schaefer (San Mateo, CA: Morgan Kaufmann, 1989).

[18] J . D. Schaffer, L. J . Eschelman , and D. Offut , "Spur ious Corr elations and
Premature Convergence in Geneti c Algorithms," pages 102-115 in Founda­
tions of Genetic Algorithms , edited by G. Rawlins (San Mateo, CA: Morgan
Kaufmann, 1991) .

[19] L. Eschelman, "The CHC Adaptive Search Algorithm: How to Have Safe
Search When Engaging in Nont radit ional Genetic Recombination," pages
265-284 in Foundations of Genetic Algorithms, edited by G. Rawlins (San
Mateo, CA: Morgan Kaufmann , 1991).

[20] Z. Michalewicz, "Genetic Algorithms + Data Structures = Evolut ion Pro­
grams" (Berlin: Springer Verlag , 1992).

[21] D. Whit ley, "T he GENITOR Algorithm and Selection Pressure: Why Rank­
Based Allocation of Reproduct ive Trials is Best ," pages 116-121 in Proceed­
ings of the Third International Congress on Genetic Algorithms, edited by
J . D. Schaefer (San Mat eo, CA: Morgan Kaufmann, 1989).

[22] J . E. Baker , "Reducing Bias and Inefficiency in the Select ion Algorithm,"
Proceedings of an International Conference on Genetic Algorithm s and their
Appl ications (Hillsda le, NJ : Lawrence Erlbaum, 1985) .

[23] L. Booker, "Improving Search in Geneti c Algorithms," in Genetic Algorithms
and Simulated Annealing, edited by L. Davis (San Mat eo, CA: Morgan Kauf­
mann , 1987).

[24] A. Choudhary, G. C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka,
and J . Saltz , "Software Support for Irregular and Loosely Synchronous Prob­
lems," in Proceedings of the Conference on High Perform ance Computing for
Flight Vehicles (1992).

[25] Y -C. Chung and S. Ranka, "Mapping Finite Element Graphs on Hyper­
cubes," The Journal of Supercomputing, 6 (1992) 257-282.

[26] F. Erca l, Heuristic Approaches to Task Allocation for Parallel Computing,
Ph.D. Thesis, Ohio State University (1988).

[27] G. C. Fox, "A Graphical Appro ach to Load Balancing and Sparse Matrix
Vecto r Mult iplication on t he Hypercube," Numerical Algorithms for Modern
Parallel Computers, edited by M. Schultz (Berlin: Springer-Verlag, 1988).

[28] G. C. Fox, M. Johnson, G. Lyzenga, S. Ot to, J. Salmon , and D. Walker ,
Solving Problems on Concurrent Processors (Englewood Cliffs, NJ : P rent ice
Hall, 1988).

290 H. Maini, K. Mehrotra, C. Mohan, and S. Ranka

[29] M. R. Garey and D. S. Johnson , Computers and Intractability (San Francisco:
Freeman , 1979).

[30] D. R. Jones and M. A. Beltramo, "Solving Partit ioning Problems with Ge­
net ic Algorithms," pages 442-450 in Proceedings of the Fourth Int erna tional
Congress on Genetic Algorithms (San Mateo , CA : Morgan Kaufm ann , 1991).

[31] Gregor von Laszewski, "Intelligent Structural Operators for t he k-Way Graph
Par ti tioning Problem," pages 45- 52 in Proceedings of the Fourth Intern ational
Congress on Genetic Algorithms (San Mateo, CA : Morgan Kaufm ann , 1991).

[32] H. S. Maini, K. G. Mehro tr a, C. K. Mohan , and S. Ranka, "Genet ic Al­
gorithms for Soft-Decision Decodin g of Linear Block Codes," Evolutionary
Computat ion, 2(2) (1994) 145-164.

[33] N. Mansour , Phys ical Optimization Algorithms for Mapping Data to
Distributed-Mem ory Mult iprocessors, Ph. D. Thesis, School of Computer and
Information Science, Syracuse University (1992) .

[34] H. Miihlenbein, "Parallel Genet ic Algorit hms, Populati on Genetics and Com­
binatorial Optimizat ion," pages 416-422 in Proceedings of the Third Intern a­
tional Congress on Genetic Algorithms, edited by J. D. Schaefer (San Mat eo,
CA : Morgan Kaufmann, 1989).

[35] S. Nolt ing, "Nonlinear Adaptive Fini te Element Systems on Distribut ed Mem­
ory Computers," pages 283-293 in Proceedings of the European Distributed
Memory Computing Conference (1991).

[36] C.-W. Ou , S. Ranka, and G. Fox, "Fast Mapping and Remapping Algorithm
for Irr egular and Adap tive Problems," Technical Repor t (J uly 1993).

[37] A. Pothen, H. Simon , and K-P. Liou , "Part it ioning Sparse Mat rices with
Eigenvectors of Graphs," SIAM Journ al on Matrix Analysis and Applications,
11 (3) (1990) 430- 452.

[38] H. Simon, "Part it ioning of Unst ructured Mesh P roblems for Parallel Pro­
cessing," in Proceedings of the Conference on Parallel Methods on Large
Scale Struc tural Analysis and Physics Applications (Oxford: Permagon Pr ess,
1991).

[39] W. M. Spears and K. A. DeJong, "An Analysis of Mult ipoint Crossover," in
Foundat ions of Genetic Algorithms, edited by G. Rawlins (San Mateo , CA :
Morgan Kaufmann , 1991).

[40] R. D. Williams, "Per formance of Dynamic Load Balancing Algorithms for
Unst ructured Mesh Calculat ions," Concurrency: Practice and Experience,
3 (5) (1991) 457-481.

[41] D. Goldberg and K. Deb, "A Comparit ive Analysis of Selection Schemes Used
in Geneti c Algorithms," in Foundations of Genetic Algorithms, Part I (San
Mateo, CA : Morgan Kaufmann , 1989).

Knowledge-Based Nonun iform Crossover 291

[42] Y. Davidor, "Epistats is Variance: A Viewpoint on GA-Har dness," in Foun­
dations of Genet ic Algorithms, Part I (San Mateo, CA: Morgan Kaufmann ,
1989).

[43] J . H. Holland "Genetic Algorithms and The Optimal Allocation of Trials,"
SIAM Journal of Computing, 2(2) (June 1973) .

[44] W . M. Spears and K. A. De Jong, "On t he Virtues of Parameterized Uniform
Crossover," pages 230-242 Proceedings of the Fourth International Congress
on Genetic Algorithms (San Mateo, CA: Morgan Kaufmann, 1991) .

[45] K. A. De Jong , "An Analysis of the Behavior of a Class of Genetic Adaptive
Systems," Doctoral Thesis, Depart ment of Computer and Commu nicat ion
Science, University of Michigan (1975).

[46] K. A. De Jong and William Spears "On t he State of Evolut iona ry Compu­
t ation," pages 618-626 in Proceedings of the Fifth Internat ional Congress on
Genetic Algorithms (San Mat eo, CA: Morgan Kaufmann , 1993).

[47] J . J. Grefenstette, "Lamarckian Learning in Multi-Agent Environments,"
pages 303-311 in Proceedings of the Fourth International Congress on Ge­
netic Algorithms (San Mateo, CA: Morgan Kau fmann , 1991) .

[48] J . Y. Suh and D. V. Gucht , "Incorporat ing Heuristic Information into Ge­
net ic Search," pages 100-107 in Genetic Algorithms and Th eir Applications:
Proceedings of the Second International Conference on Genetic Algorithms,
edited by J . J . Grefenstette (Hillsdale, NJ, Lawrence Erlbaum, 1987).

[49] J . David Schaffer and A. Morishima, "An Adaptive Crossover Distribution
Mechani sm for Genetic Algorithms," pages 36-40 in Proceedings of the Second
International Conference on Genetic Algorithms, edited by J . J . Grefenstet te
(Hillsdale, NJ , Lawrence Erlbaum, 1987).

[50] J ames R. Levenick, "Insert ing Introns Improves Genetic Algorithm Success
Rate: Taking a Cue from Biology," pages 123- 127 in Proceedings of the
Fourth International Congress on Genetic Algorithms (San Mateo, CA: Mor­
gan Kaufmann, 1991).

[51] A. O. Sperry, V. C. Blasquez, and W . T . Garrard, "Dysfunct ion of Chro­
mosomal Loop Attachment Sites: Illegit imate Recombination Linked to Ma­
t rix Association Regions an Topoisomerase II ," Proceedings of the Nat ional
Academy of Science (USA) , 86 (14) (1989).

[52] D. Beasley, D. R. Bull , and R. R. Martin, "Reducing Epist asis in Combi­
natorial P roblems by Expansive Coding," pages 400-407 in Proceedings of
the Fifth International Congress on Genetic Algorithms , (San Mat eo, CA:
Morgan Kaufman n, 1993).

[53] S. J. Louis and G. Rawlins , "Designer Genet ic Algorithms: Genet ic Algo­
rit hms in Str ucture Design," pages 53-60 in Proceedings of the Fourth Int erna­
tional Congress on Genetic Algorithms (San Mateo, CA: Morgan Kaufmann,
1991).

292 H. Meini , K. Mehrot ra, C. Mohan , and S. R anka

[54] D. B. Fogel, "On the Philosophical Differences between Evolutionary Algo­
rithm s and Genetic Algorithm s," Proceedings of the Second Annu al Confer­
ence on Evolutionary Programming, La Jolla, CA (February 1993).

[55] T. Back, G. Rudolph , and H. P. Schewefel, "Evolut ionary Programming and
Evolution Strategies: Similariti es and Differences," in Proceedings of the Sec­
ond Annual Conference on Evolutionary Programming, La Jolla, CA (Febru­
ary 1993).

[56] H. S. Maini, K. G. Mehrotra, C. Mohan, and S. Ranka, "Genetic Algorithms
for Graph Parti tioning and Incremental Graph Partitioning," Supercomput­
ing94 (November 1994).

[57] R. E. Smith and D. E. Goldberg, "Diploidy and Dominance in Artificial Ge­
netic Search," Complex Sys tems, 6 (1992) 251-285.

Appendix A: Index-based partitioning algorithm

Index-based algorit hms to parti tion graphs have been describ ed in [36] . An
ind ex-b ased partitioning (IBP) algorit hm includes three ph ases: indexing,
sort ing, and coloring. The ind exing scheme is based on converting an N ­
dim ensional coor dinate into a one-dimensional ind ex such that proximity in
the multi-dimensional space is maintained . Row-m ajor ind exing and shuf­
fled row-m ajor ind exing are two of several ways of ind exing pixels in a two­
dim ensional grid. These two indexing schemes are shown in Figure 14 for a
graph in which the set of vert ices are arranged in an 8 x 8 grid .

A simple example of interleaving indices follows. Suppose index; = 001,
index 2 = 010, and index3 = 110. T hen t he interleaved index would be
001011100. In the above case the number of bits in each dim ension are equal.
This could easily be gener alized to cases where the sizes are different . For
exa mple, if index, = 101, index 2 = 01, and index-; = 0, then the interleaved

00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

(a)

00 01 04 05 16 17 20 21
02 03 06 07 18 19 22 23
08 09 12 13 24 25 28 29
10 11 14 15 26 27 30 31
32 33 36 37 48 49 52 53
34 35 38 39 50 51 54 55
40 41 44 45 56 57 60 61
42 43 46 47 58 59 62 63

(b)

Figure 14: (a) Row-major and (b) shuffled row-major indexing for an
8 x 8 image.

Knowledge-Based Nonuniform Crossover 293

index would be 100110. This is done by choosing bits (right to left) of each
of t he dimensions one by one, st arting from dimension three. When the bits
of a particular dimension are no longer available, t hat dimension is no longer
considered. After indexing is done, an efficient sort ing algorithm can be
applied to sort these vert ices according to their indices. Finally, this sorted
list is divided into P equal sublists .

