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Abstra ct . An information processing tas k th at generates combina­
to rial explosion and program complexity when tr eated by a serial al­
gorithm is investi gat ed using both genet ic algorit hms and a neur al
network model. The tas k in question is to find a target memory from
a set of stored entries in the form of "at t ractors" in a high-dimensional
state space. The representation of entries in the memory is distributed
("an auto associat ive neur al network" in th is pap er) and t he problem
is to find an attractor under a given access information where the
uniqueness or even existence of a solut ion is not always gua ranteed
(an ill-posed problem). The genet ic algorithm is used for generating
a search orbit to search effectively for a state t hat satisfies the access
condition and belongs to the target at t ra ctor bas in in the state space.
The neural network is used to retri eve the corr esponding ent ry from
t he networ k. T he results of our comp ut er simulations indicate that
the present meth od is superior to a search meth od that uses a Mar ko­
vian ra ndom walk in state space. Our techniques may prove useful in
the realization of flexible and adapt ive informati on processing, since
pattern sear ch in a high-dim ensional state space is common in various
kinds of parallel informat ion process ing.

1. Introd uction

Alt houg h great progr ess has been made wit h modern LSI computers based on
t he von Neumann typ e of seri al algorit hms, t here has been grow ing int er est
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in other types of information pro cessing such as par allel or flexible pro cessing
typically observed in biological systems. Serial algorit hms run into problems
with (1) combina torial explosion and (2) program complexity in realizing
flexible functions. Genera lly speaking, the main problem of flexible inform a­
tion pro cessing is th e fact that there are too many degrees of freedom for
sequent ial control. One way to improve flexibility in information pro cessing
is the applicat ion of nonlin ear dynamics, including chaos [1]. Nonlin ear dy­
namics has been char acterized as "emerging complex behavior genera t ion"
[2-4]. The grea t variety of possible dynamical st ructures in a chaot ic system
suggests to us th at an app licat ion to complex information processing may
avoid combinatorial explosion and/or cont rol compl exity [5- 7].

In order to make t he problem clearer and more pr actical , we sha ll con­
cent rate on a par ticular information pro cessing t ask . However, if we restrict
the informati on pro cessing cont ext too severely, it will lead to a less than
int eresting result because of an ad hoc solut ion. The t rade-off is tha t restric­
tion usually allows easier modeling and formul ation. Therefore, in setting
the cont ext, one attempts to maintain the universalit y of the applicat ion to
a wide field of pro cessing. We propose pattern search in a high-dimensional
state space [8, 9, 12], in which a set of patterns are st ored in the form of
at t rac tors [10]. An attractor is a st ate surrounded by a dom ain known as a
basin , in which all sequences converge to the at t rac tor over t ime. In more
det ail, the task is to retri eve one or more of th e stored patterns if existe nt ,
under the condit ion t hat the given access information is not compl ete or suf­
ficient to reach th e t arget pattern directly. This is an ill-posed problem in
which th e uniqueness or even the existence of a solut ion is not guar ant eed.
It is a desirable function of the inform ation pro cessor to solve this complex
problem efficient ly, and th ere are two important points with respect to the
search pro cess in the st ate space [9].

1. How can the pro cessor quickly and efficient ly find the t arget basin from
ambiguous access information?

2. If there is no stored pattern that sat isfies the access information, can the
search proc essor generate information close to the requested pattern ?

Several methods are candidates for the envisioned funct ion: (1) simulated
annealing (for an example of a rather sophist icated one, see [11]); (2) chao tic
dynamics [7, 8, 9, 12]; (3) geneti c algorithms (i.e., evolut ionary st ra tegies);
(4) neural networks; (5) cellular automata [13, 14]; and (6) mod e-comp etitive
nonlinear dyn amics [15]. In t his pap er, we employ a method th at uses both
a neural network and a genet ic algorit hm. The former has a long history
and became an especially act ive field during t he past decade as a powerful
method for parallel processing [16, 17]. Associat ed memory and classification
of highly complicated signals [18] are two prominent applications of neur al
networks. Genetic algorithms have also attracted much attent ion in recent
years , especially in the field of optimization in high dimensions [19-23].
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2. The neural network model
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To begin with, let us start with a description of the state space. Without loss
of generality, we employ a space of st ates (image pat terns) t hat consist of
20 x 20 pixels wit h one neuron correspond ing to each pixel. Neural act ivity
is restrict ed to two st at es, + 1 (firing state ) and -1 (non-firing state) . Each
pattern is specified by a 400-dimensional state vector v = (VI ,V2, . .. , V400),
and the state space consists of all possible 400-bit pat terns (the vert ices of a
hypercube in 400 dimensions). In the present mod el, each neuron is assumed
to be coupled with every other neuron, and a pair 's coupling st rengt h is
represent ed by a synap t ic connect ion matrix, the dimension of which is 400 x
400. In the state space, we store 30 pat terns as "at t ractors."

We employ

(

400 )
vi(t +1)= 8 2:. Tijvj(t)

J=1

(1)

as the t ime development rule of this neural network model, where each neu­
ron is represented by a discrete variable Vi = ± 1, and Tij is the synapt ic
connect ion matrix. The mapp ing 8 is a step function. With respect to the
30 pat terns used for actual simulat ions, the overlap between them is rela­
t ively large, as can be observed from Figure 1. Thus, retri eval performance
is bad if an autocorre lat ion connect ion matrix is used. We therefore use
orthogonalizat ion of patterns [24, 25J by introducing adjoint state vectors
vl (a = 1,2 , . .. , 30) defined by

vl. v{3 = 000(3, vl = 2:. aa-yv -'(l a = 0 -
1

, 0 00(3 = V a . V (3 (2)
-y

where a is the inverse matrix of a 30 x 30 correlat ion matrix, the elements of
which are defined by the scalar produ cts between two pattern vectors . T he
synapt ic connect ion matrix is now defined as

30

T = 2:. V a I8i vl ,
00= 1

(3)

also known as the pseudo-inverse of t he autocorrelation matrix. The matrix
T;j is symmet ric, so the energy function E = -L,ijViTijVj is a Lyapu nov func­
tion for this system. Since t he numb er of stored patterns is much smaller
than t he tot al number of neurons, the resulting basins of attract ion in state
space tend to be quite large, and it is expected that much information is dis­
tribut ed among t hese basins. We call this information "seeds" for the access.
The "seed" contains many partial features of target patterns (att ractors) .
Once some seed cont aining the partial feature of an attractor is given to the
neural network , it is ent rained into the att rac tors, as if one ret rieved the
specified feature by glancing at the shape of a face. However, in t he present
art ificial neural network model, it should be noted that efficiency of retr ieval
st rongly depends on the topological st ructure of the basins in the st ate space .
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Figure 1: Thirty memor y patterns consist ing of 20 x 20 pixels (neu­
ron s). We assume the fourth pattern among t he face pat tern s (third
row in the figur e) to be the t arget of the memor y search.

By introducing t he state space of the neural network, our ill-posed prob­
lem of pattern search becomes more practical. Suppose th ere is an accessor
who wants to find a face from a data base comp osed of many different faces
using ambiguous access information such as the feature of eye shape . In our
simulation, we search the state space for face patterns that have a specific
eye-shap e feature. Face patterns consist of 400 bits of inform ation , bu t the
eye-shape feature consists of only 40 bit s. We gave eye-shape dat a (40 bit s)
of the fourth face pat tern in the third row of Figure 1 as access inform ation.
The search algorithm is describ ed in th e next sect ion.

3. The genetic algorithm

In thi s sect ion, we consider the application of a geneti c algorithm [26] to
generate an effective search orbit in the st ate space .

Let us define a gene st ring as consisting of 401 elements, where the first
element Xo is a header containing the evaluat ion value of the gene and th e
other 400 elements Xi are a state vector. We introduce a certain number of
these genes and taken together they form a gene pool. Here, as in most GAs,
two different kinds of operations are performed: "mutat ions" and "recombi-
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nations." The form er are operations that randomly change a certain number
of components of a gene. The lat ter are operati ons in which two or mor e
genes int eract to genera te a new gene string compose d of a certain number
of elements from each parent st ring. In bo th operations, the elements are
chosen using random number generators .

In the following , we give a bri ef description of the possible operatio ns.

3.1 Mutation

Mutations in the pr esent pap er cons ist of the following three op erations.
T hey are :

1. Single flip: choose a gene; generate a random number 1 :S n l :S 400;
flip compo nent n l .

2. Complement : choose a gene; generate two random numbers 1 <
n l , n2 :S 400; flip all compo nents between n l and n2 .

3. Inversion: choose a gene ; generate two random numbers 1 :S n l , n 2 :S
400; inver t the ord er of components between n l and n2 .

3.2 Recombination (crossover)

Choose two genes , say, genes , ex and {3 , an d generate two ra ndom numbers
such that 1 :S nl , n2 :S 400. Take n3 = Min[nl + n2, 400] and exchange the
components of genes ex and {3 between nl and n3 .

These operations generate st rings that are then selected as follows.

3 .3 Selection criteria

Each trial st ring, the resul t of an app licat ion of one of the above operations,
is put into the neural network as an initial patt ern. The neural network is
updated according to equation (1) until t he output converges on a pattern.
Then the converged pattern is evaluated in comparison with the given access
information and subsequ entl y replaces the pr edecessors from which it was
generated if it possesses high er or equal qu ality. It is discard ed if it s quality
is lower than that of it s predecessors. Since every st ring carr ies its own eval­
uation value, this is a to tally local select ion method. It has been success fully
applied in the case of the travelling salesperson problem [26]. Figure 2 shows
the overall process.

4. Results of the simulations

A simulation was carr ied out that employed nin e genes in the gene pool and
used both mutation and recombin ation processes as discussed in the pr evious
sect ion . A comparison was done between random search and genetic search .
In bo th cases, we started with randomly chosen pat tern s. Figure 3 shows
int ermediate patterns using the GA . Not e that all t he pat terns correspond
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Figure 2: Overall algorithm of th e pattern search simulation. Note
t he following. [1] In the mutat ion pro cess, when we app ly one of the
mutat ion operat ions defined in sect ion 3, the sequence of operat ion
in the repeating pro cess is t aken as cyclic, i.e, [-t mut at ion.1 -t
mut at ion.2 -t mutation.3 -t] . [2] The generated pattern (gene) is
given t o th e neural network as an initial condit ion and th e recurrent
upd at ing of firing patterns is done until it converges. [3] If any con­
verged pattern possesses the t arget feat ure, the search process sto ps
and is regarded as successful; otherwise, t he evaluation value is com­
pared with the predecessor (gene). During the recombin ation process,
the evaluation procedure is the same as the mut at ion pro cess.
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Figure 3: (a) Init ial random patterns given to nine genes; (b) Pat terns
after th e first generation.
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(d)

Figure 3: (c) Pat t erns after t he 42nd generat ion (note that the pattern
in t he left corner is a superimposed pat tern between the shape of the
first face and the eye, nose, and mouth of the fourth face in Figure 1;
(d) patterns after th e 140th generat ion; most patterns have converged
to the target pattern.
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(4)

to local minim a of the energy landscap e since th e trial patterns created by GA
operations are mapp ed onto local minim a of energy by the neur al network.

In Figure 3, there appears a pattern worth not ing because it is not a
sto red pattern . It indicates that one can find spur ious attractors using genet ic
algorithms that possess high value or quality.

ow let us turn to an evaluation of the sear ch perform ance. Define f(N)
as the ratio between the numb er of successful trials and the total numb er of
trials. One trial consists of a search pro cess involving nine genes with random
patterns as the initial states. A trial is successful if the access informat ion is
satisfied within t he required numb er N of iterations. If there is no appearance
of th e target pat tern within N iterat ions, we regard the trial as unsuccessful.
The same quant ity is calculated for random search and shown for comparison.

In the case of random search, it is easy to calculate f(N). Note t hat it is
possible to define the one st ep success proba bility p in random search. It is
simply the ratio of the bas in volume to the total volume of the state space
since each ste p can be regarded as completely random. Thus the process
is considered to be Markovian and t here is no corre lat ion or memory effect
between two succeeding steps. Therefore, f(N) has th e form

f (N) =~\1- prp = p 1- (t- P); =l- (l- p)N
r=Q 1 - 1 - p

In order to understand th e dependence of f(N) on N in more detail, one
regards N as a cont inuous variab le. Then one differenti ation yields

d~f(N) = (1 - p)N log C~ p)

= exp ( - N log C~ p)) log C~ p). (5)

This indicates that df (N )/ dN depends on N with exponent ial damp ing in
random search. We show the results of our simulat ion in Figure 4 and Figure
5, both in the case of random search and also geneti c search, where differ­
ent iat ion was done numerically over discrete , finite intervals. The results
for random search indicate exponent ial damp ing, which is quite plausible as
noted above. On t he other hand, as shown in Figure 5, genetic search indi­
cat es a characterist ic distribution of differential success rates as a function
of N . This tendency is not accident al or due to stat ist ical fluctu ati on. The
same depen dency as shown in Figure 6, obtained for the average success ra te
of 1000 samples, was obtained by averaging over 10000 samples. It is an
interestin g quest ion why th e distribut ion funct ion indicates a very different
behavior in genetic search as compared to a random search.

Genet ic search is superior to random search by almost an order of mag­
nit ude as indicated in Figure 7. The same simulat ion was done for different
numb ers of genes in the gene pool. Results are shown in Figure 8 and a
considerable improvement can be observed if we increase t he popul at ion size
M . Note that in order to obtain Figure 8, we divided the total number of
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Figure 8: Comparison of success rates for different numbers of genes
in the gene poo l.

trials by the size of the population. A furth er improvement can be obtained
by carefully adjust ing the recombin at ion frequency (see Figure 9).

It is interest ing to speculate why t he search using GA is more efficient
than search using a simple random walk. We do not yet have a definit ive
answer, but the following explanat ions seem plausible:

1. A genet ic algorithm can , wit h high probabi lity, detect spur ious attrac­
tors having high value or quality, even if the basin is relatively small
compared to the basins of t he sto red pat terns.

2. There is a memory effect in the development of genes produced by
genetic operations , whereas in a rand om walk, there is no memory
effect between th e updatin g of pat terns in state space .

Concluding R emarks

1. Geneti c search algorithms are superior to simple random search (Marko­
vian random walk) by almost an order of magnitude.

2. The utilizat ion of both mutation and recombination operations im­
proves search performance. Optimizat ion of mutu al frequency of oper­
at ions is beneficial.
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Figure 9: Comparison of success rate between different frequencies of
recombination in genetic search.

3. Sear ch performan ce is improved considerably when the number of genes
in the gene pool is increased . T his indicates that the pr esent method
is espec ially suited for parallel pr ocessing.

4. In performing the simulat ion, spur ious attractors were found, many of
which were useful in the sense of synt hesizing patterns (information
gen eration) from stored pat te rns .
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