Complex Systems 8 (1994) 295-309

Pattern Search Using Genetic Algorithms and a
Neural Network Model

Shigetoshi Nara
Department of Electrical and Electronic Engineering,
Faculty of Engineering, Okayama University,
Tsuchimanaka 3-1-1, Okayama 700, Japan

Wolfgang Banzhaf*
Central Research Laboratory, Mitsubishi Electric Corporation,
Tsukaguchi Honmachi 8-1-1, Amagasaki,
Hyogo 661, Japan

Abstract. An information processing task that generates combina-
torial explosion and program complexity when treated by a serial al-
gorithm is investigated using both genetic algorithms and a neural
network model. The task in question is to find a target memory from
a set of stored entries in the form of “attractors” in a high-dimensional
state space. The representation of entries in the memory is distributed
(“an auto associative neural network” in this paper) and the problem
is to find an attractor under a given access information where the
uniqueness or even existence of a solution is not always guaranteed
(an ill-posed problem). The genetic algorithm is used for generating
a search orbit to search effectively for a state that satisfies the access
condition and belongs to the target attractor basin in the state space.
The neural network is used to retrieve the corresponding entry from
the network. The results of our computer simulations indicate that
the present method is superior to a search method that uses a Marko-
vian random walk in state space. Our techniques may prove useful in
the realization of flexible and adaptive information processing, since
pattern search in a high-dimensional state space is common in various
kinds of parallel information processing.

1. Introduction

Although great progress has been made with modern LSI computers based on
the von Neumann type of serial algorithms, there has been growing interest

*Current address: Department of Computer Science, Dortmund University and Infor-
matics Center Dortmund, Joseph-von-Fraunhofer-Strafie 20, 44227 Dortmund, Germany

296 Shigetoshi Nara and Wolfgang Banzhaf

in other types of information processing such as parallel or flexible processing
typically observed in biological systems. Serial algorithms run into problems
with (1) combinatorial explosion and (2) program complexity in realizing
flexible functions. Generally speaking, the main problem of flexible informa-
tion processing is the fact that there are too many degrees of freedom for
sequential control. One way to improve flexibility in information processing
is the application of nonlinear dynamics, including chaos [1]. Nonlinear dy-
namics has been characterized as “emerging complex behavior generation”
[2-4]. The great variety of possible dynamical structures in a chaotic system
suggests to us that an application to complex information processing may
avoid combinatorial explosion and/or control complexity [5-7].

In order to make the problem clearer and more practical, we shall con-
centrate on a particular information processing task. However, if we restrict
the information processing context too severely, it will lead to a less than
interesting result because of an ad hoc solution. The trade-off is that restric-
tion usually allows easier modeling and formulation. Therefore, in setting
the context, one attempts to maintain the universality of the application to
a wide field of processing. We propose pattern search in a high-dimensional
state space [8, 9, 12], in which a set of patterns are stored in the form of
attractors [10]. An attractor is a state surrounded by a domain known as a
basin, in which all sequences converge to the attractor over time. In more
detail, the task is to retrieve one or more of the stored patterns if existent,
under the condition that the given access information is not complete or suf-
ficient to reach the target pattern directly. This is an ill-posed problem in
which the uniqueness or even the existence of a solution is not guaranteed.
It is a desirable function of the information processor to solve this complex
problem efficiently, and there are two important points with respect to the
search process in the state space [9].

1. How can the processor quickly and efficiently find the target basin from
ambiguous access information?

2. If there is no stored pattern that satisfies the access information, can the
search processor generate information close to the requested pattern?

Several methods are candidates for the envisioned function: (1) simulated
annealing (for an example of a rather sophisticated one, see [11]); (2) chaotic
dynamics [7, 8, 9, 12]; (3) genetic algorithms (i.e., evolutionary strategies);
(4) neural networks; (5) cellular automata [13, 14]; and (6) mode-competitive
nonlinear dynamics [15]. In this paper, we employ a method that uses both
a neural network and a genetic algorithm. The former has a long history
and became an especially active field during the past decade as a powerful
method for parallel processing [16, 17]. Associated memory and classification
of highly complicated signals [18] are two prominent applications of neural
networks. Genetic algorithms have also attracted much attention in recent
years, especially in the field of optimization in high dimensions [19-23].

Pattern Search Using GAs and a Neural Network Model 297

2. The neural network model

To begin with, let us start with a description of the state space. Without loss
of generality, we employ a space of states (image patterns) that consist of
20 x 20 pixels with one neuron corresponding to each pixel. Neural activity
is restricted to two states, +1 (firing state) and —1 (non-firing state). Each
pattern is specified by a 400-dimensional state vector v = (v, v, ..., Va00),
and the state space consists of all possible 400-bit patterns (the vertices of a
hypercube in 400 dimensions). In the present model, each neuron is assumed
to be coupled with every other neuron, and a pair’s coupling strength is
represented by a synaptic connection matrix, the dimension of which is 400 x
400. In the state space, we store 30 patterns as “attractors.”
We employ

i(t+1) (% Tiju;(t > (1)

as the time development rule of this neural network model, where each neu-
ron is represented by a discrete variable v; = &1, and Tj; is the synaptic
connection matrix. The mapping © is a step function. With respect to the
30 patterns used for actual simulations, the overlap between them is rela-
tively large, as can be observed from Figure 1. Thus, retrieval performance
is bad if an autocorrelation connection matrix is used. We therefore use
orthogonalization of patterns [24, 25] by introducing adjoint state vectors
vi(a=1,2,...,30) defined by

Vievs=bu Vi=Tamvy a=07, op=vasvs (2

where a is the inverse matrix of a 30 x 30 correlation matrix, the elements of
which are defined by the scalar products between two pattern vectors. The
synaptic connection matrix is now defined as

30
T = Z Ve ® V], 3)

a=1

also known as the pseudo-inverse of the autocorrelation matrix. The matrix
T;; is symmetric, so the energy function £ = —3;;v;T;;v; is a Lyapunov func-
tion for this system. Since the number of stored patterns is much smaller
than the total number of neurons, the resulting basins of attraction in state
space tend to be quite large, and it is expected that much information is dis-
tributed among these basins. We call this information “seeds” for the access.
The “seed” contains many partial features of target patterns (attractors).
Once some seed containing the partial feature of an attractor is given to the
neural network, it is entrained into the attractors, as if one retrieved the
specified feature by glancing at the shape of a face. However, in the present
artificial neural network model, it should be noted that efficiency of retrieval
strongly depends on the topological structure of the basins in the state space.

298 Shigetoshi Nara and Wolfgang Banzhaf

&
] t 1{

Figure 1: Thirty memory patterns consisting of 20 x 20 pixels (neu-

rons). We assume the fourth pattern among the face patterns (third
row in the figure) to be the target of the memory search.

By introducing the state space of the neural network, our ill-posed prob-
lem of pattern search becomes more practical. Suppose there is an accessor
who wants to find a face from a data base composed of many different faces
using ambiguous access information such as the feature of eye shape. In our
simulation, we search the state space for face patterns that have a specific
eye-shape feature. Face patterns consist of 400 bits of information, but the
eye-shape feature consists of only 40 bits. We gave eye-shape data (40 bits)
of the fourth face pattern in the third row of Figure 1 as access information.
The search algorithm is described in the next section.

3. The genetic algorithm

In this section, we consider the application of a genetic algorithm [26] to
generate an effective search orbit in the state space.

Let us define a gene string as consisting of 401 elements, where the first
element zy is a header containing the evaluation value of the gene and the
other 400 elements z; are a state vector. We introduce a certain number of
these genes and taken together they form a gene pool. Here, as in most GAs,
two different kinds of operations are performed: “mutations” and “recombi-

Pattern Search Using GAs and a Neural Network Model 299

nations.” The former are operations that randomly change a certain number
of components of a gene. The latter are operations in which two or more
genes interact to generate a new gene string composed of a certain number
of elements from each parent string. In both operations, the elements are
chosen using random number generators.

In the following, we give a brief description of the possible operations.

3.1 Mutation

Mutations in the present paper consist of the following three operations.
They are:

1. Single flip: choose a gene; generate a random number 1 < n; < 400;
flip component n;.

2. Complement: choose a gene; generate two random numbers 1 <
ny,ne < 400; flip all components between n; and ns.

3. Inversion: choose a gene; generate two random numbers 1 < ny,ns <
400; invert the order of components between n; and ns.

3.2 Recombination (crossover)

Choose two genes, say, genes, o and (3, and generate two random numbers
such that 1 < ny,ny < 400. Take ng = Min[ny + ns,400] and exchange the
components of genes o and § between n; and ns.

These operations generate strings that are then selected as follows.

3.3 Selection criteria

Each trial string, the result of an application of one of the above operations,
is put into the neural network as an initial pattern. The neural network is
updated according to equation (1) until the output converges on a pattern.
Then the converged pattern is evaluated in comparison with the given access
information and subsequently replaces the predecessors from which it was
generated if it possesses higher or equal quality. It is discarded if its quality
is lower than that of its predecessors. Since every string carries its own eval-
uation value, this is a totally local selection method. It has been successfully
applied in the case of the travelling salesperson problem [26]. Figure 2 shows
the overall process.

4. Results of the simulations

A simulation was carried out that employed nine genes in the gene pool and
used both mutation and recombination processes as discussed in the previous
section. A comparison was done between random search and genetic search.
In both cases, we started with randomly chosen patterns. Figure 3 shows
intermediate patterns using the GA. Note that all the patterns correspond

300 Shigetoshi Nara and Wolfgang Banzhaf

gene pool

"
S

\j\\

random pick up

random pick up

T R g
cr o
CLOSS -OvEr mutation
proce
PrOCess Frocess
T neural neural T
network
network

better or equal better or equal

‘\//

discard

Figure 2: Overall algorithm of the pattern search simulation. Note
the following. [1] In the mutation process, when we apply one of the
mutation operations defined in section 3, the sequence of operation
in the repeating process is taken as cyclic, i.e. [— mutation.l —
mutation.2 — mutation.3 —]. [2] The generated pattern (gene) is
given to the neural network as an initial condition and the recurrent
updating of firing patterns is done until it converges. [3] If any con-
verged pattern possesses the target feature, the search process stops
and is regarded as successful; otherwise, the evaluation value is com-
pared with the predecessor (gene). During the recombination process,
the evaluation procedure is the same as the mutation process.

Pattern Search Using GAs and a Neural Network Model
F e N e
?.'.I!."I J .I:r I I"-l
et
b |"r = ! '-I' I__E
-1

IIL- h-

1:|: nr "-l 'y
'E'- }'ae 3
-i'|'
|.|'| l|"||'. I'I.t

301

302 Shigetoshi Nara and Wolfgang Banzhaf

Figure 3: (c) Patterns after the 42nd generation (note that the pattern
in the left corner is a superimposed pattern between the shape of the
first face and the eye, nose, and mouth of the fourth face in Figure 1;
(d) patterns after the 140th generation; most patterns have converged
to the target pattern.

Pattern Search Using GAs and a Neural Network Model 303

to local minima of the energy landscape since the trial patterns created by GA
operations are mapped onto local minima of energy by the neural network.

In Figure 3, there appears a pattern worth noting because it is not a
stored pattern. It indicates that one can find spurious attractors using genetic
algorithms that possess high value or quality.

Now let us turn to an evaluation of the search performance. Define f(N)
as the ratio between the number of successful trials and the total number of
trials. One trial consists of a search process involving nine genes with random
patterns as the initial states. A trial is successful if the access information is
satisfied within the required number N of iterations. If there is no appearance
of the target pattern within IV iterations, we regard the trial as unsuccessful.
The same quantity is calculated for random search and shown for comparison.

In the case of random search, it is easy to calculate f(NN). Note that it is
possible to define the one step success probability p in random search. It is
simply the ratio of the basin volume to the total volume of the state space
since each step can be regarded as completely random. Thus the process
is considered to be Markovian and there is no correlation or memory effect
between two succeeding steps. Therefore, f(N) has the form

1-(1-p)¥
1-(1-p)

In order to understand the dependence of f(N) on N in more detail, one
regards N as a continuous variable. Then one differentiation yields

N-1
fIN)=> (1-pp=p 1={1=p}" (4)
=0

d 1
d—Nf(N) =(1 —P)Nlog <1Tp>

e i () s (1), .

This indicates that df(N)/dN depends on N with exponential damping in
random search. We show the results of our simulation in Figure 4 and Figure
5, both in the case of random search and also genetic search, where differ-
entiation was done numerically over discrete, finite intervals. The results
for random search indicate exponential damping, which is quite plausible as
noted above. On the other hand, as shown in Figure 5, genetic search indi-
cates a characteristic distribution of differential success rates as a function
of N. This tendency is not accidental or due to statistical fluctuation. The
same dependency as shown in Figure 6, obtained for the average success rate
of 1000 samples, was obtained by averaging over 10000 samples. It is an
interesting question why the distribution function indicates a very different
behavior in genetic search as compared to a random search.

Genetic search is superior to random search by almost an order of mag-
nitude as indicated in Figure 7. The same simulation was done for different
numbers of genes in the gene pool. Results are shown in Figure 8 and a
considerable improvement can be observed if we increase the population size
M. Note that in order to obtain Figure 8, we divided the total number of

304 Shigetoshi Nara and Wolfgang Banzhaf

j [T Y SN NN OO O N N O W UV VAN 80 TN OO U W TN TR T UM Y S B BTN O (A r
i, :
i :
60 -] w C
il :
] \ o
] NW C
S 40—: \T a
° 4'\4’_
AN ;
] \ X
20 N
0 : T T LR B O S O A AN N IS R O B By R U S '::

0 2000 4000 6000

Upper bound of search step number

Figure 4: Differential success rate versus upper limit of search step in
random search (1000 samples).

30+

25

Count
T
—
=
-
—

0 200 400
Upper bound of search step number

0 | “H]ﬂ]]l] [ﬂ[l]l]l[l
600 800

Figure 5: Differential success rate versus upper limit of search step in
genetic search (1000 samples).

305

Pattern Search Using GAs and a Neural Network Model

300
i T

200

Count

100 H

1000

T T
400 600 800
Upper bound of search step number

0
200

Figure 6: Differential success rate versus upper limit of search step in

genetic search (1000 samples).

1000 e |
Genetic Search S
9 individuals | _-°
/ #
800 # =
;.
l”
)
'
600 — 7 -
J
" /
i ‘
3 !
o i
'
400 - [P Random Search N
!
’
'
,
!
'
200 -
'
'
'
'
'
:
0 T T T T
0 1000 2000 3000 4000 5000 6000
Upper bound of search step number

Figure 7: Comparison of success rate between random search and

genetic search.

306 Shigetoshi Nara and Wolfgang Banzhaf

600 —

Count

400 —

0 T T T
0 50 100 150 200
Upper bound of search step number

Figure 8: Comparison of success rates for different numbers of genes
in the gene pool.

trials by the size of the population. A further improvement can be obtained
by carefully adjusting the recombination frequency (see Figure 9).

It is interesting to speculate why the search using GA is more efficient
than search using a simple random walk. We do not yet have a definitive
answer, but the following explanations seem plausible:

1. A genetic algorithm can, with high probability, detect spurious attrac-
tors having high value or quality, even if the basin is relatively small
compared to the basins of the stored patterns.

2. There is a memory effect in the development of genes produced by
genetic operations, whereas in a random walk, there is no memory
effect between the updating of patterns in state space.

Concluding Remarks

1. Genetic search algorithms are superior to simple random search (Marko-
vian random walk) by almost an order of magnitude.

2. The utilization of both mutation and recombination operations im-
proves search performance. Optimization of mutual frequency of oper-
ations is beneficial.

Pattern Search Using GAs and a Neural Network Model 307

1000 ! L L el
High Frequency ,»”
Recombination #F
800 - -
0,‘
_"
600 s L
h
)
€ K]
3 H
o g% Low Frequency
pS Recombination
400 S -
II'
l"l
200 K -
B
0 T T T T

0 20 40 60 80
Upper bound of search step number

Figure 9: Comparison of success rate between different frequencies of

recombination in genetic search.

3. Search performance is improved considerably when the number of genes
in the gene pool is increased. This indicates that the present method
is especially suited for parallel processing.

4. In performing the simulation, spurious attractors were found, many of
which were useful in the sense of synthesizing patterns (information
generation) from stored patterns.

Acknowledgments

The authors deeply thank Dr. Peter Davis for his valuable comments.

References

[1] J. A. Kelso, A. J. Mandell, and M. F. Shlesinger, editors, Dynamic Patterns
in Complez Systems (Singapore: World Scientific, 1988).

[2] H. G. Schuster, Deterministic Chaos (VCH Weinheim, 1985).

[3] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, (Menlo Park,
CA: Benjamin Cummings, 1986).

[4] K. Kaneko, Physica D, 41 (1990) 137.
[5] J. S. Nicolis, Rep. Prog. Phys., 49 (1986) 80.

308 Shigetoshi Nara and Wolfgang Banzhaf

[6] Neural and Synergetic Computers, vol. 42, Springer Series in Synergetics,
edited by H. Haken (Berlin: Springer Verlag, 1989).

[7] 1. Tsuda, E. Koerner, and H. Shimizu, Prog. Theor. Phys., 78 (1987) 51.

[8] P. Davis and S. Nara, Tech. Dig. of Int. Conf. on Fuzzy Logic and Neural
Networks, Tizuka (1990).

[9] P. Davis and S. Nara, page 97 in Proceedings of the First Symposium on
Nonlinear Theory and its Applications (1990).

[10] S. Kirkpatrick, C. D. Gellat, and M. P. Vecci, Science, 220 (1983) 671.
[11] Y. Mori, P. Davis, and S. Nara, Journal of Physics A, 22 (1989) L525.
[12] S. Nara and P. Davis, Neural Networks, 6 (1993) 963.

[13] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Language
and Computation (Reading, MA: Addison-Wesley, 1979).

[14] S. Wolfram, Theory and Application of Cellular Automata, (Singapore: World
Scientific, 1986).

[15] H. Haken, Information and Self-Organization (Berlin: Springer-Verlag, 1988).

[16] J. A. Anderson and E. Rosenfeld, editors, Neurocomputing (Cambridge, MA:
MIT Press, 1988).

[17] J. A. Anderson, A. P. Pelliioniz, and E. R. Rosenfeld, editors, Neurocomputing
2 (Cambridge, MA: MIT Press, 1991).

[18] D. Rumelhart et al., in Parallel Distributed Processing, edited by J. L. Mc-
Clelland, D. E. Rumelhart, and the PDP Research Group (Cambridge, MA:
MIT Press, 1986).

[19] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning (Reading, MA: Addison-Wesley, 1989).

[20] L. Davis, editor, Genetic Algorithms and Simulated Annealing (London: Pit-
man, 1989).

[21] J. D. Schaffer, editor, Proceedings of the Third International Conference on
Genetic Algorithms (San Mateo, CA: Morgan Kaufman, 1989).

[22] R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, San Diego (San Mateo, CA: Morgan Kauf-
mann, 1991).

[23] H. P. Schwefel and R. Manner, editors, Proceedings of the First International
Conference on Parallel Problem Solving from Nature, Dortmund (Berlin:
Springer Verlag, 1990).

[24] L. Personnaz, I. Guyon, and G. Dreyfus, Phys. Rev., A34 (1986) 4217.

Pattern Search Using GAs and a Neural Network Model 309

[25] Fuchs and H. Haken, page 33 in Dynamic Patterns in Complex Systems,
J. A. Kelso, A. J. Mandell, and M. F. Shlesinger, editors (Singapore: World
Scientific, 1988).

[26] W. Banzhaf, Biological Cybernetics, 64 (1990) 7.

