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Computational Properties of Boolean Networks

Sergey A. Shumsky
Lebedev Physics Institute, Leninsky pr.53, Moscow, Russia

Abstract. This paper considers computational characteristics of
boolean automata networks with random interconnections. The sub-
jects of interest are: the number of stationary points, the convergence
of the dynamic flow to these points, compactness of the attraction
basins, number of logical switchings during the run, and informational
content of the phase portrait. For a special class of uniform diluted
nets, these quantities are found to depend basically on two integrated
characteristics of network elements.

1. Introduction

Recent developments in the fields of neural [1] and boolean networks [2, 3]
have made it clear that the underlying mathematics of such systems provides
the basis for programming the latest generation of highly parallel computers.
In network architectures, traditional programming gives way to learning pro-
cedure, that is, the selection of phase portraits with the desired features by
fine-tuning the parameters of the network elements. This raises the following
fundamental question: are there order parameters, that is, integrated charac-
teristics of network elements, which are crucial for computational behavior?

Compelling evidence for the existence of such parameters is found in
recent studies of the dynamical properties of random boolean nets [4-9]. Re-
sults have been obtained for the Kauffman N K-model [10], constructed from
N randomly chosen boolean functions of K inputs, receiving their values from
K randomly chosen network elements. A dramatic change from stochastic
dynamics to orderly behavior of the network was observed at some critical
value of K. The order parameter for this “phase transition” was proposed
by Derrida and Pomeau [5].

This paper extends these considerations to a wider class of boolean net-
works, including automata networks, where the next state of the automaton
depends on its current state. Using the approach of previous work [11], we
show that in such networks there exist two phase transitions, namely, the
loss of stability of the trajectories and of the fixed points. In the N K-model
these phase transitions coincide.

Another purpose of this paper is to interpret the observed dynamics,
treating the latter as a calculation process, with the fixed points representing
the possible results.
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After formulation of the model in section 2, we speculate on what dynam-
ical properties allow “learning” in section 3, and what differentiates memory
and universal data processing systems in section 4. Section 5 summarizes
and concludes the paper.

2. Model description

The networks under consideration consist of N two-state, coupled automata
that update their states in parallel according to the mapping

Zi = il D5 i o - 7Tz ) 1<i< N.
In vector notation, we have

x = ¢(x).

To avoid boolean algebra, we will use the Ising notation x, ¢ € {£1}V.

We are interested in the statistical properties of an ensemble of such net-
works, where each configuration ¢(x) is characterized by its statistical weight
w(p(x)). Our ensemble consists of all networks constructed from a given infi-
nite set of binary automata, in which the automaton ¢ has probability p(¢).
The automata are chosen independently

N
u(x)) = ]I n(4:(x)) (1)
i=1
and all possible interconnections between them are equiprobable, that is,

w(¢i(x)) = p(di(mx)),  (m; = zrj,m € {Sn | mi = 1}). 2)

Compare (2) with the Kauffman N K-model, where all inputs are chosen at
random, that is, 7 € Sy.

The dynamics of a single system taken from our ensemble is deterministic,
as is the dynamical flow. The latter is governed by the Liouville equation,
which is, however, too complicated to deal with. A typical approach is to
replace the deterministic dynamics with stochastic dynamics, in which the
phase trajectories are generated in random fashion. Some statistical proper-
ties of the stochastic trajectories correspond to those of the real trajectories
in our ensemble.

To this end, consider a chain of stochastic processes which generates the
trajectories with increasing accuracy:

0: P{xox; ...} = P(x0)P(x1) ...
1: P{xox1Xz...} = P(XO)P(xl | x0)P(x2 | x1)-..
2: P{xox1X2X3 ...} = P(xox1)P(x2 | Xox1)P (X3 | X1X2) . ..

and so on. The conditional probabilities on the right-hand side of the kth-
order approximation are defined in the usual way:

P(xi | %g---Xp—1) = P(X0...%x)/P(Xo ... Xg—1)-
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The Oth-order approximation is trivial. Since there is a unique phase vector
originating in each phase state, we have P(xo) = Q7!, where Q = 2" is
the phase volume of the networks. The first-order approximation, called
the “mean field theory,” corresponds to a reconfiguration of the network
after each step. This prevents the stochastic trajectory from being captured
by some fixed point. These fixed points appear only in the second-order
approximation, since P(Xy | X1X1) = 0x,x, for deterministic systems. Thus,
we will limit ourselves to the latter approximation, which allows us to analyze
the relaxation dynamics of the networks.

The second-order approximation requires knowledge of the moments
(¢i(x0)) and (¢:(xo)¢:(x1)), where the brackets (---) represent the ensem-
ble average. This follows from the expressions

P(xox1%x2) = (6x1’¢(x(])5x2’¢(x1))

N
= (272N TIIL + 21 (x0)][1 + z2icpi(x1)])

=9 2N 1:[[1 + 21:(#i(%0)) + T2:{i(x1)) 3)
+ @13%2: (¢i(%0) Pi (%1))]
P(x0x1) = (b, o)) =27 1:[[1 + z13(bi(x0))], (4)

where we have used the representation 6, , = (1 + zy)/2 for the §-function
with Ising arguments, and property (1) of the measure p. (The first-order
approximation, according to (4), may be expressed by (¢:(x0)).)

To simplify our analysis, we restrict ourselves to the case of wuniform
ensembles, where the ensemble averages depend only on the relative dis-
tances between the state points: P(x; | x¢) = P(|x1 — Xo|), P(x2 | x1%¢) =
P(|x2 — x|, |x1 — Xol, |X2 — Xo|). (The distance between two states in the
Hamming sense |x; — Xg| constitutes the number of automata that must
change their states to transfer the system from state x, to state x;.)

For uniform ensembles, the above moments should have the following
dependence on xq and X;:

(di(x0)) = voTo; (5)
(¢i(x0)Pi(x1)) = w(p) + wo(p)ToiT1s (6)

where p = |x; —Xo|/N is the normalized length of the phase vector emanating
from X, to x;. Reference [12] provides greater detail; for example, one can
show that vy = wg(0). Thus the second-order approximation for uniform
ensembles is determined by two functions w(p) and we(p) with p € [0,1].
The latter represent the statistical properties of the basic set of automata.
The uniform ensemble is a straightforward generalization of the Kauff-
man N K-model where “memory” effects are absent, that is, wo(p) = 0. The
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ensemble of neural nets ¢; = sgn(>°; Jijz; + 6;), with a symmetric distribu-
tion of weights .J;; and thresholds 6;, gives another example of the uniform
ensemble.

In a uniform ensemble it is natural to analyze the stochastic dynamics
in terms of the lengths of the trajectory vectors (that is, the number of
automata switchings). The second-order approximation provides the condi-
tional probability P,,; that a vector of length [ follows a vector of length m.
The spectrum of vector lengths in the phase portraits of our ensemble W,,,
obtained by the first-order approximation, gives the initial condition for this
Markov process.

Substitution of (5) and (6) in expressions (3) and (4) allows one to cal-
culate P,,; and W,,. Compact expressions may thus be obtained for the
corresponding generating functions [12]:

N
W)= 3 Wns™ =L+ (s = (1= m)/2" (7)
e A+ AN BB\
Fol) =3 Fout =[Gas R 8

where

As(p) =14 vo £ (1o + w + wp)
Bi(p)=1—vp =% (1o +w— wp)
p=m/N.

From (8), we have Py = g, since A_(0) = 0 by definition." Thus the
above Markov process has one absorbing state, m = 0, representing all fixed
points in the phase portrait. The mean number of fixed points is given by
(7), namely, Qo = QW, = (1 + 1o)".

In the Kauffman N K-model, ¢;(xo) does not correlate with z;, so vy = 0
and the mean number of fixed points is unity. In our ensemble, vy > 0 is a
measure of how much subsequent states depend on current states. Roughly
speaking, in data processing systems, v constitutes the fraction of memory
cells.

Questions of interest which we address in the next section are: when do
existing fixed points attract the trajectories and when do nearby problems
converge to the same answer?

3. Computability and learning

The stochastic dynamics given in (8) depend on the entire functions w(p)
and wy(p). But a qualitative description requires only their behavior as
p — 0, which determines the stability of trajectories and fixed points to
small perturbations.

!Note that w(0) 4+ wo(0) = 1 follows from (6).
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Figure 1: (a) Trajectory stability analysis and (b) convergence anal-
ysis.

To show this, consider first the distance between two nearby phase points
in different trajectories |x; — Xo|/N = p < 1 (see Figure 1(a)). The mean
distance between them at the next step, given by

(lo(x1) — B(x0)[) = (N — (p(x1)9(x0)))/2
= (N — Nw — XQXIUJQ)/2
= NA_(p)/2 + |x0 — X1 |wo,

will increase or decrease depending on the value of the characteristic multi-
plier o [5]:

(lp(x1) — ¢(x0)])

X1 -->X0 |x1 —_ X0|

Ko = =A"(0)/2 + vp. (9)

This result implies that A_(p) may be expanded in powers of p. This is
valid, at least, for diluted networks with K < N, where the parameter of
expansion is pK (see [11]).

Now consider the lengths of two consecutive vectors in the same trajectory
in the vicinity of a fixed point: p = |x; — Xo|/N < 1, x; = ¢(xX0) (see
Figure 1(b)). The mean length of the next vector depends on the length of
its predecessor, that is,

(|p(x1) — d(x0)[) = ;szl = EL ), (x1 = ¢(x0))-

Applying (8), in the limit m < N one obtains the characteristic multiplier

(lo(x1) —d(x0)) _ A(0) _
B= x1—'Xo [Xl X0| - 2(1 + 1/0)7 (Xl a ¢(X0))7 (10)

which determines the convergence of the trajectories to the fixed points, and
differs from (9) in the case of nonzero vy: ko = (14 1)k + 1o-

The above calculations give rise to the following qualitative classification
of network behavior:
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e For networks with x in the range 0 < & < (1 — 19)/(1 + 1), that
is, kg < 1, existing fixed points attract the phase trajectories, and
their attracting basins are compact. In other words, nearby trajectories
converge to the same fixed point. This case is desirable for various
recognition systems based on neural network architectures. Basins with
a relatively simple structure permit generalization during the learning
process. Such networks are capable of learning.

e For networks satisfying (1—vp)/(1+410) < & < 1, the fixed points attract
the trajectories, but their attracting basins are not compact, that is,
points close to each other may belong to different basins. Due to the
complexity of the basin structure, learning by examples is impossible
in this case. The full prescription for each phase trajectory is required,
which may be considered as traditional programming.

e For k > 1, fixed points repel the trajectories, and such networks are
not suited for data processing: a typical calculation never converges to
any definite result.

4. Memory versus universal computer

So far we have discussed the qualitative properties of network dynamics. Now
we extend our consideration to certain quantitative characteristics related to
parallel computations. To this end, we associate an ensemble of networks,
assembled from a given set of basic elements with a computer. Construction
of a specific network configuration, that is, the process of embedding a given
algorithm constitutes programming. (In this section we do not distinguish
between traditional programming and learning.) The statistical properties
of the basic set of automata give rise to the statistical characteristics of
computations and programming in such parallel computers.

Consider first the complezity of computations given by the amount of
information processed during the course of a typical computation. We define
this quantity as the mean number of automata switchings per run, that is,
averaged over all possible initial conditions.

For the sake of simplicity, consider networks where the mean vector length
is relatively small, say, m < N—that is, networks with a large fraction of
memory cells (1 — 1) < 1 (since m = W'(1) = (1 — v9)N/2). Thus one can
use the approximation m/N < 1 globally, and the expression (8) simplifies
to

Bn(s) = explma(s — 1)] = [f(s))™ (11)

In (11), the generating function for the vector following a vector of length m
is the product of m generating functions, indicating the independence of m
probabilistic processes. This fact has a simple physical meaning. Recall that
a vector of length m represents m automata switchings at the correspond-
ing time step. Thus the stochastic dynamics (11) may be taken to be the



Computational Properties of Boolean Networks 343

reproduction of independent automata switchings, with the mean number of
offsprings given by f'(1) = &.

With this interpretation in mind, one immediately has the average num-
ber of offsprings of one initial switching in the nth generation ™. The total
number of offsprings is 302, k™ = (1 — k) ~*. Because of the statistical inde-
pendence indicated by (11), m initial switchings leads to m/(1—k) switchings
during the course of computation. Averaging over the initial conditions re-
sults in

N
- m
P e

T (12)
This quantity it taken to be the mean number of pieces of information pro-
cessed by a typical system from the given ensemble during the course of a
computation. It increases monotonically from 7 for systems that find an an-
swer in a single step x — 0 and is thought of as memories. The complexity
of computations tends to infinity for k — 1, the latter being the cut-off point
between ordered and chaotic dynamics. This type of computation “at the
edge of chaos”[13] is usually associated with a universal computer since such
a network may embed an arbitrarily complex algorithm. We present here
additional evidence why the computers with k — 1 are treated as universal.

To this end, consider the number of algorithms present in a given en-
semble, that is, those which may be programmed on a given computer. The
logarithm of this quantity constitutes the entropy of the phase portraits of a
given ensemble,

He=~ EQ: ipux In(pu), (13)

p=1A=1

where p, is the probability of a vector from state p to state A. The max-
imum entropy H.. = 21InQ corresponds to random phase portraits, but
the constraints posed by the choice of the basic automata set decrease this
quantity. In the present framework, these constraints are represented by
spectrum W, and matrix P,,;. Let p and A represent the states with vectors
of lengths m and I, respectively. Thus p,, is proportional to W,, and P,;.
The probability that the vector terminates at a particular state is inversely
proportional to the number of available states V,,,W;, with V,,, = (TIZ ) being
the number of states at a distance m from a given phase point. Finally, one
obtains the second-order approximation p,y = W, P/ Vi, Wi Collecting in
(13) the states with vectors of equal lengths one obtains:

N N
H2 =-0 Z ZWuml ln(Wuml/VmVVl) = Hl — AH

m=0 [=0
with
1+ v 1+ vy, 1— vy 1— vy
H1=—QN< N 2"), (14)
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Figure 2: Representation of the ensemble entropy in the first two
orders of approximation. The solid circles denote systems with x > 1,
which are not computers.

the entropy of the first-order approximation (when P,; = W), and
AH =Qm(l — k+ klnk), (m < N), (15)

the additional entropy decrease in the second-order approximation.

The first-order result (14) indicates that the number of algorithms in-
creases monotonically as the mean number of automata switchings m =
N(1—1p)/2 decreases (i.e., with an increasing degree of parallelism of compu-
tations). The mean number of stationary points g = (1+14)", in contrast,
decreases. Thus, parallel computers provide a greater number of algorlthms
for a smaller number of solutions.

For a given degree of parallelism, that is, given v, the number of available
algorithms depends on k. According to (15), H, increases monotonically
with increasing s € [0,1], reaching its maximum H, = H; at K = 1 (see
Figure 2). Thus all the algorithms with a given degree of parallelism may be
programmed on a computer with x — 1. That is why such computers are
referred to as universal computers.

5. Conclusions

This paper discusses the features of boolean network dynamics in relation
to its computational properties. The novelty of our approach is that in gen-
eral there exist three dynamical regimes of network behavior, separated by
two “phase transitions” in parameter space, where the trajectories and fixed
points lose their stability. Networks with very complicated dynamical be-
havior, nevertheless converging to some fixed point, may be interpreted as
following the instructions of some program. We note that simple and quickly
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Figure 3: A two parameter classification of computers.

converging dynamics resemble the associative recall of neural networks. Fig-
ure 3 illustrates a two parameter classification of computational properties
of boolean networks, emerging in the second-order approximation, which de-
scribes the convergence to the fixed points. It shows that the capability
for learning requires a certain degree of parallelism and “nonuniversality” of
computations.

The present study can easily be extended to cope with various types
of networks. For example, classifier systems may be mapped onto boolean
nets [14]. The structure of classifiers thus determines the dynamics of the
entire system, and may be chosen in accordance with the above theory. Phase
transitions similar to those found in boolean nets are also observed in cellular
automata [15, 13] where unknown order parameters are anticipated [16]. The
values of k and 1y may turn out to be important parameters. Many other
connectionist models [17] may also be analyzed using the present approach.
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