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Abstract . Thi s paper considers computa tional characteristics of
boolean automata networks with rand om interconnections. The sub­
jects of interest are: th e number of stationary points, the convergence
of th e dynamic flow to th ese points, compactness of the at tract ion
basins, number of logical switchings during the run , and informational
content of the phase portrait. For a special class of uniform diluted
nets, these quantities are found to depend basically on two integrated
characterist ics of network elements .

1. Introduction

Recent developments in t he fields of neural [1] an d b oolean networks [2, 3]
have made it clear that the underlying mathematics of such sys te ms provid es
the basis for programming t he latest generation of high ly parallel compute rs.
In network architectures , traditional pr ogr amming gives way to learn ing pro­
cedure, that is, the select ion of phase portraits with the desired features by
fine-tuning the paramet ers of the network elements . This raises the followin g
fundamental qu estion: are there order param eters, that is, int egrated charac ­
terist ics of network elements , which are cruc ial for computational behavior ?

Compelling evidence for the existe nce of such par amet ers is found in
recent st udies of the dyn amical pr op erties of random bo olean net s [4- 9]. Re­
sults have been obtained for the Kauffman NK-model [10], constructed from
N randomly chose n boolean fun ctions of K inputs, receiving their values from
K randomly chosen network eleme nts. A dramatic change from stochast ic
dyn amics to orderly behavior of t he network was observed at some crit ica l
value of K. The order parameter for this "phase tran sition" was proposed
by Derrida and Pomeau [5] .

This pap er extends these considerat ions to a wider class of boolean net ­
work s, incl uding auto mata network s, wh ere the next state of the aut omaton
dep ends on it s cur rent state . Using the approach of pr evious work [11], we
show that in such network s there exist two phase tran sitions, namely, the
loss of stability of the traj ect ories and of the fixed po ints . In t he N K -model
these ph ase tran sitions coincide.

An other purpose of this pap er is to interpret the observed dynamics,
treating the lat t er as a calc ulation process, with t he fixed points representing
the po ssibl e result s.
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After formulation of the model in sect ion 2, we speculat e on what dynam­
ical prop ert ies allow "learn ing" in sect ion 3, and what different iates memory
and universal data pro cessing systems in sect ion 4. Sect ion 5 summarizes
and concludes the paper.

2. Model description

The networks under consideration consist of N two-state, coupled automata
that update their states in parallel according to the mapping

1 ~ i < N .

(1)

In vecto r notat ion , we have

x =? <jJ (x ).

To avoid boolean algebra, we will use th e Ising notat ion x , <jJ E {±l}N.
We are interest ed in th e stat ist ical propert ies of an ensemble of such net­

works, where each configurat ion <jJ (x ) is characterized by its stat ist ical weight
J-l (<jJ(x)). Our ensemble consists of all networks const ructed from a given infi­
nite set of bin ary automata, in which the automaton ¢ has probability J-l(¢).
The automata are chosen independently

N

J-l (<jJ(x )) = II J-l (¢i(X))
i= l

and all possible interconnect ions between them are equiprobable, that is,

(2)

Compare (2) with the Kauffman N K -model, where all inputs are chosen at
random, that is, 1r E SN.

The dynamics of a single system taken from our ensemble is deterministic,
as is the dynamical flow. The lat ter is governed by the Liouville equation,
which is, however, too complicated to deal with. A typical approach is to
replace the det erminist ic dynamics with stochastic dynamics, in which the
phase trajectories are generated in rand om fashion. Some stat ist ical proper­
t ies of th e stochas t ic trajecto ries corres pond to t hose of the real tr aj ectories
in our ensemble.

To this end, consider a chain of stochas t ic processes which generates the
traj ectories with increasing accuracy :

0: P{ XOXI ... } = P(XO )P(Xl) . . .
1: P{XOXIX2 . . .} = P(XO)P(XI I XO)P(X2 I x .) . . .

2: P{XOXIX2X3"'} = P (XOXl )P(X2 I XOXl)P(X3 I XIX2 ) . . .

and so on. The condit ional prob ab ilit ies on the right -hand side of the kt h­
ord er approximat ion are defined in the usual way:
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T he Oth-order approximation is tr ivial. Since there is a uni que phase vector
origina t ing in each ph ase state, we have P (xo) = n- l , where n = 2N is
the phase volume of the networks. The first-ord er approximation, called
the "mean field theory," corr esponds to a reconfigurat ion of the network
after each step . This prevent s the stochastic t rajectory from being captured
by some fixed point . These fixed points appear only in the second-order
app roximation , since P (X2 IXlXl) = bX2X1 for determinist ic systems. Thus,
we will limit our selves to the latt er approximat ion , which allows us to analyze
the relaxation dynam ics of the networks.

The second-order approximat ion requires knowledge of t he moments
(¢i(XO)) and (¢i(XO)¢i(Xl)), where t he bracket s (- . .) represent the ensem­
ble average. T his follows from the expressions

P (XOXlX2) == (bX,,<!>(xo)bx2, <!>(x)
N

= (T 2N Il [1+ Xli¢i(xo)][1 + X2i¢i(Xl)])
i=l
N

= T 2N Il ll + Xli(¢i(XO)) + X2i(¢i(Xl))
i=l

+ XliX2i(¢i (XO)¢i (Xl))]
N

P(XOXl) == (bX, ,<!>(xo)) = T N Il ll + Xli(¢i(XO))],
i= l

(3)

(4)

where we have used the represent at ion bx,y = (1 + xy)/2 for the b-functio n
with Ising arguments , and property (1) of the measure u: (T he first-ord er
approximation , according to (4) , may be expressed by (¢i(XO)) ')

To simp lify our analysis, we restrict ourse lves to the case of un iform
ensembles, where the ensemble averages depend only on the relat ive dis­
tan ces between the state point s: P(XI I xo) = P( IXI - xol), P(X2 I XlXO) =
P (IX2 - XI I, IXI - xol , IX2 - xol ). (T he dist an ce between two stat es in the
Hamming sense IXI - xol constit utes the number of automata that must
cha nge t heir states to t ransfer t he syste m from state Xo to state xd

For uniform ensembles, t he above moments should have the following
dependence on Xo and x i:

(¢i(XO)) = 1/0 XOi
(¢i(XO)¢i(Xl)) = w(p) + wO(P)XOiXli

(5)
(6)

where P = IXI-xol/ N is the normalized length of t he phase vector emanat ing
from Xo to Xl ' Reference [12] provides greate r detail ; for exa mple, one can
show that I/o = wo(O). Thus the second-order approximation for uniform
ensembles is determined by two fun ctions w(p) and wo(p) wit h p E [0, 1] .
The latter represent the statis t ical properties of the basic set of automata.

T he un iform ensemble is a st raightforward generalizat ion of the Kauff­
man N K- model where "memory" effects are absent , that is, wo(p) = O. The
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ensemble of neural nets ¢i = sgn( I: j JijXj + Oi), wit h a symmetric distribu­
tion of weight s Jij and t hresholds Oi, gives another example of the uniform
ensemble.

In a uniform ensemble it is natural to ana lyze the stochas tic dynamics
in terms of th e lengths of the trajectory vectors (that is, the number of
automata swit chings). The second-order ap proximat ion provides the condi­
tional probability Pml that a vect or of length l follows a vector of length m .
T he spectrum of vector lengt hs in the ph ase portraits of our ensemble Wm ,

obtained by the first -ord er approximation, gives the initi al condit ion for this
Markov pr ocess.

Subst it ut ion of (5) and (6) in express ions (3) and (4) allows one to cal­
culate Pml and Wm - Compact express ions may thus be obtained for the
corres ponding generati ng fun ct ions [12]:

N

W(s ) == 2:= Wmsm = [1 + (s - 1)(1 - vo)/2jN
m=O

Pm(s) == "tPm1 S1= ( A++ A_s )N- m ( B++ B_S) m ,
1=0 A+ + A_ B++ B_

where

A±(p) == 1 + Vo ± (vo + W + wo)

B±(p) == 1 - Vo ± (vo + W - wo)

p = m lN .

(7)

(8)

From (8) , we have POI = DOl, since A_(O) = °by definit ion 1 Thus the
above Markov process has one absorbing state, m = 0, repr esent ing all fixed
point s in the phase portrait. T he mean num ber of fixed points is given by
(7), nam ely, Slo = SlWo = (1 + VO) N

In the Kauffman N K- model, ¢i (XO) does not corre late wit h XOi, so Vo =°
and the mean numb er of fixed point s is uni ty. In our ensemble, Vo :::: °is a
measure of how much subsequent st ates depend on cur rent states. Roughly
speaking, in data processing systems , Vo constitutes the fraction of memory
cells.

Quest ions of interest which we address in the next section are : when do
existing fixed points attract t he trajectories and when do nearby problems
converge to the same answer?

3. Computability and lea r n in g

T he sto chast ic dynamics given in (8) depend on the entire funct ions w(p)
and wo(p). But a qualitat ive description requires only their behavior as
p ---t 0, which determines the stability of t rajectories and fixed point s to
small pert ur bations.

INote that w(O) + wo(O) = 1 follows from (6).
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Figure 1: (a) Trajectory stability analysis and (b) convergence anal­
ysis.

To show this, consider first the distance between two nearby ph ase points
in different trajectories IXl - xol/N = p « 1 (see Figure l(a)). T he mean
distan ce between them at the next step , given by

(1¢ (Xl) - ¢ (xo)l) = (N - (¢(Xl)¢ (XO)) )/2
= (N - Nw - x ox lwo)/ 2

= NA_(p) /2 + Ixo - Xl !WO,

will increase or decr ease dep ending on the value of the characteristic mult i­
plier "'0 [5]: .

"'0 == lim (1¢(Xl) - ¢(xo)l) = A~ (0)/2 + vo.
X I-XO IXl - xol

This result impli es that A_ (p) may be expanded in powers of p. T his is
valid, at least , for diluted networks wit h K « N , where the paramet er of
expansion is pK (see [11]).

Now consider the lengths of two consecutive vectors in the sam e t rajec tory
in the vicinity of a fixed point: p = IXl - x oll N « 1, Xl = ¢ (xo) (see
Figure 1(b) ). The mean length of the next vecto r depends on the length of
its predecessor , t hat is ,

(1¢(Xl) - ¢ (xo)l) == "L Pmll = P:r,(l),
I

Applying (8) , in the limit m « N one obtains the cha racterist ic mul ti plier

(10)

which determines the convergence of the trajectories to the fixed points, and
differs from (9) in the case of nonzero vo: "'0 = (1 + vo)'"+ vo.

T he above calculations give rise to the following qualit ative classifica tion
of network behav ior:
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• For networks with", in the range 0 < r; < (1 - 1/0)/ (1 + I/o), tha t
is, "'0 < 1, exist ing fixed point s at t rac t the phase t rajectories, and
their at t rac ting basins are compact . In other words, nearby traj ectories
converge to the same fixed point . This case is desirable for various
recognition systems based on neur al network- ar chitectures. Basins wit h
a relatively simple structure permit generalization during the learning
process. Such networks are capable of learning.

• For networks sat isfying (1-//0)/(1+ //0) < r: < 1, the fixed points attrac t
t he trajectories, bu t their at t rac t ing basins are not compac t , that is,
po ints close to each ot her may belong to different basins. Due to the
complexity of the basin st ructure, learning by exa mples is impossible
in this case . T he full prescription for each phase t rajectory is required ,
which may be considered as t radit ional programming .

• For x > 1, fixed points repel the t rajectories, and such networks are
not suite d for data processing: a typical calculat ion never converges to
any definite resul t .

4 . M emory versus universal computer

So far we have discussed the qualitati ve propert ies of network dynamics. Now
we extend our consideration to certain quant itative characterist ics related to
par allel computat ions . To this end , we assoc iate an ensemble of networks,
assembled from a given set of basic elements wit h a computer. Const ruct ion
of a specific network configurat ion, that is, the pro cess of embedding a given
algorithm const it utes programming. (In this sect ion we do not distinguish
between tradit ional programming and learni ng.) The statist ical properties
of the basic set of automata give rise to the stat istical cha rac te rist ics of
comp utations and programming in such parallel computers .

Consider first the complexity of computati ons given by t he amount of
information processed during t he course of a typi cal computat ion . We define
this quantity as the mean number of automata switchings per run, that is,
averaged over all possible initi al condit ions.

For t he sake of simplicity, consider networks where t he mean vector length
is relat ively small, say, m « N-that is, networks with a large fract ion of
memory cells (1 - I/o) « 1-(since m = W' (l ) = (1 - l/o)N/2). Thus one can
use the approximation mfN « 1 globally, and th e expression (8) simplifies
to

(11)

In (11), t he generat ing function for the vector following a vector of length m
is the product of m generating fun ct ions, indicating the independence of m
probabilisti c processes. T his fact has a simp le physical mean ing. Recall that
a vector of length m repr esent s m automata switchings at the corres pond­
ing t ime step . T hus the st ochas t ic dy namics (11) may be t aken to be the
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(12)

reproduction of independ ent automa ta switchings, with the mean numb er of
offsprings given by 1' (1) = 1>,.

With this interp ret ation in mind , one immediat ely has the averag e num­
ber of offspr ings of one init ial switching in the nth generat ion «" , The total
number of offsprings is I:~=o I>,n = (1 - 1>,)- 1 Because of th e stat ist ical inde­
pendence indi cat ed by (11), m initial switchings leads to mj (1- 1>,) switchings
during the course of computat ion . Averaging over th e init ial condit ions re­
sults in

_ N m m
1= I: Wm - = - .

m =O 1 - 1>, 1- 1>,

This quantity it taken to be the mean number of pieces of information pro­
cessed by a typical syste m from the given ensemble dur ing the course of a
computation . It increases monotonically from m for syst ems that find an an­
swer in a single step I>, -t a and is thought of as m emories. The comp lexity
of computations tends to infinity for I>, -t 1, the lat ter being the cut-off point
between ordered and chao t ic dynami cs. This type of comput ation "at the
edge of chaos" [13] is usually associated with a uni versal computer since such
a network may embed an arbitrarily complex algorithm. We present here
add it ional evidence why the computers with I>, -t 1 are tr eated as universal.

To this end , consider the number of algorithms present in a given en­
semble, that is, those which may be programmed on a given computer . T he
logari thm of this quanti ty const itutes the ent ropy of the phase portr aits of a
given ensemble,

n n

H == - I: I: pl'"ln(pl''')'
1'=1"=1

(13)

where PI''' is the prob abili ty of a vector from st ate J), to state A. The max­
imum ent ropy Hm ax = n In n corresponds to random phase portrai ts, but
the constraints posed by the choice of the basic aut omata set decrease this
quant ity. In the present framework , these constra ints are represented by
spectrum W m and matrix Pml. Let J), and A represent the states wit h vectors
of lengths m and l , respectively. Thus PI''' is prop ortional to W m and Pml.
The probability that the vect or terminates at a par ti cular state is inversely
proportional to the number of available states Vm WI, with Vm = (~) being
the number of states at a dist ance m from a given phase point . Finally, one
obtains t he second-order approximation PI''' = W mPmt/VmWl. Collect ing in
(13) the sta tes with vectors of equal lengths one obt ains:

N N

H 2 = - n I: I: Wm Pmd n( Wm Pmt/VmWl) = H 1 - !:::J. H
m =OI=O

with

_ roN (1 + lIo I 1 + lIo 1 - 1/ 0 I 1 - lIO)H 1 - -~G -- n - - +-- n - -
2 2 2 2 '

(14)



Figure 2: Representation of the ensemble ent ropy in the first two
orders of approximation. The solid circles clenote systems with K, > 1,
which are not computers.

the ent ropy of the first-order app roximation (when Pm l = WI), and

(m « N ), (15)

the addit ional ent ropy decrease in the second-order approximation.
T he first-order result (14) indi cates that the number of algorithms in­

creases mon oton ically as the mean number of automata switchings m =
N( I - l/o)/ 2 decreases (i.e., wit h an increasing degree of parallelism of compu­
tations) . The mean number of stat iona ry points n o = (1 + I/o)N, in cont rast ,
decreases. Thus, parallel computers provide a greate r number of algori thms
for a smaller number of solutions .

For a given degree of parallelism , that is, given I/o , the number of availab le
algor it hms depends on K, . According to (15), H 2 increases monotonically
with increasing K, E [0, 1], reaching its maximum H 2 = H I at K, = 1 (see
F igure 2). T hus all the algorit hms wit h a given degree of par allelism may be
programm ed on a computer wit h K, ---> 1. T hat is why such compute rs are
referred to as universal computers .

5. Conclusions

T his pap er discusses the features of bo olean network dynami cs in relation
to it s comput at ional properties. The novelty of our approach is that in gen­
eral there exist three dynam ical regimes of network behavior , separated by
two "phase transit ions" in par am eter space, where t he trajectories and fixed
point s lose t heir stability. Networks with very complicated dynami cal be­
havior , nevertheless converging to some fixed point , may be interpreted as
following the inst ructions of some program. We note that simple and quickly
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Figure 3: A two parameter classificat ion of computers.

converging dyn amics resemble the associa tive recall of neural networks. Fig­
ure 3 illustrates a two parameter classification of computation al proper ties
of boolean network s, emerging in the second-or der approximation, which de­
scribes the convergence to the fixed p oints. It shows that the capability
for learning requires a certain degree of parallelism and "nonuniversality" of
computations .

T he pr esent st udy can eas ily be exte nded to cope wit h various typ es
of network s. For example, classifier systems may b e mapp ed onto boolean
net s [14]. T he st ruct ure of classifiers thus det ermines t he dyn amics of the
entire sys te m , and may b e chose n in acco rdance with the above theory. Phase
t ra nsit ions similar to those found in boo lean net s are also obse rved in cellular
aut omata [15, 13] wh ere unknown order paramet ers are ant icipate d [16]. T he
values of K and Va may t urn out to b e importan t par amet ers. Man y other
connect ionist mod els [17] may also be analyzed using th e present approach.
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