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Abstract. In th is paper we propos e a method for generating fract al
patterns using "classical" cellular automata. Although the prob lem
of fractal generat ion for linear cellular automata has been st udied
recently, this is not t he case for classical cellular automata.

We first exhibit some basic techniques for the construction of the
tr ansit ion function , which draws a Cantor set, and show how this
method can be generalized to cellular spaces of greater dimension.
Then we give a method for embedding th e configurat ions into a closed
interval to obt ain fract al patterns. We also define discrete dynamical
systems for counting the minimum numb er of balls required to cover
th e fractal pattern .

1. Introduction

Cellular automat a (CAs) are of great interest for modeling complex physical
sys te ms or synchro nous parallel processes. One point of interest is fract al
generati on . Indeed fract als , and more precisely Cantor-like sets, occur qu it e
oft en as attractors for simple map s in physics . For instance, the Feigenbaum
attrac to r has for a un ique attract or a Cantor set [13]. Fractals also ap pear
in sequences of errors in the tran sm ission of data [8].

The problem of fract al product ion or fract al behavior of CAs during their
long t ime evolution has been studied recently by Wolfram [23], Culik [4], Will­
son [21], and Haesler et al. [7]. These aut hors ofte n deal wit h linear modulo-2
un idimension al CAs who se m ain inst ance is the Pascal t riangle, whi ch can
be generate d finite ly by algebraic mean s [10]. Moreove r , W illson gives a ni ce
theorem about the Hausdorff dimension (or fract al dimension) but wit h a
formalism quite difficu lt to apply that relies heavily on the linearity of t he
rules. His resu lt s have been improved and generalized to lin ear modulo-q
CAs (see [22]).
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Haesler et al. [7] claimed that the production of fract al st ruct ures in the
long t ime evolut ion of CAs poses t hree major problems:

1. When and in what sense is there a limit set for the evolut ion of a CA?

2. How can the self similarity features of a limit set be form ally modeled
and deciphered?

3. Which classes of CAs generat e fract al st ruc t ures?

Willson [21] has discussed the first it em and Takahashi [19J the second one.
Haesler et al. considered all three problems and connected the decipherin g
operation to a matrix subst it ut ion system.

The goal of this pap er is to give anot her form alism for the genera t ion
of frac tals, based mostl y on Canto r sets and pr oduct s of Cantor sets (e.g. ,
the Sierpinski carpet or Sierpinski-Menger sponge), and to give an example
of the computation of the fract al dimension wit hin t he world of discrete
mathematics. Moreover , we also give discret e dynamical syste ms associated
wit h the configurat ions , whi ch correspond to the Hausdorff measure.

We note t hat , unlike pr evious work , our formalism does not require lin­
ear local tr an sition functions t o compute the fract al dimension. It is t hus
easier to build a specific CA. We usually work wit h an embe dding of some
configurations into a cont inuous space, and can res trict ourselves to a sub­
sequence of the configurat ions in the discret e space to make computations.
Our formalism gives a goo d idea of the convergence of some discret e patterns
t o t heir cont inuous definition with the following idea: the radius of t he cov­
ering balls for the pattern in t he cont inuous space decreases as the length of
the configurations in the discrete space increases. In other words , if a real
quant ity converges to zero , it s discret e representation converges to infinity.

2. Defini tions

2.1 Formal definition

Let us recall bri efly the definition of a f ractal se t. According to Mandelbrot
[8, 9], a set X is called a fra cta l provided its Hau sdorff dim ension h(X) is
not an int eger. Intuitively, h(X) measures the growth of the number of sets
of diam et er E needed to cover X when E -> O. Mor e precisely, if X C R '" , let
N (E) be the minimum number of m-dimensional balls of diam eter E needed
to cover X. Then , if N (E ) increases like N( E) -> E-d as E -> 0, one says that
X has Hau sdorff dim ension d.

We remark that this definition relies st rongly on the definit ion of the
Ha usdor ff dimension defined by means of the Hausdorff measure. A rigorous
definition [15J for h(X) proceeds as follows.

D efinition 1. Let X be a subset of a metric space and let d > O. Th e
d-dimensional outer measure md(X ) is obtained from

{
md(X ,E) ~ inf{ L E/(diamSi)d},
md(X) = hm<-->omd(X,E) .
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where th e inf is over all finit e coverings of X by sets S, with diam eter less
th an c: > o.

Depending on the choice of d, md(X) may be finit e or infinite. Hausdorff
showed in 1919 that there is a unique d = d* at whi ch md(X) changes from
infinite to finite as d increases. This leads to the definition

h(X) = sup{d E R + : md(X) = oo}

T he formal definition of the Hau sdorff measure implies that it is very
difficult to compute the fractal dimension of a set . We give another definit ion
that is mor e useful in computing the Hau sdo rff dimens ion .

2.2 Fractal covering dimension

Given a subset X of a metric space and e > 0, let N( c:) be the minimum
number of balls of diam eter c: necessar y to cover X . An alternative defin it ion
for h(X) , called a fractal covering dimension or box counting dimension , is
the following (see [8]):

. . logN(c:)
h(X) = lim inf 1 (/)

<---> 0 og 1 e

T hen N( c:) ----> 00 as e ----> o. If N( c:) rv K/c:d, then d = h(X) (see [5] for more
details) . Indeed, m:'(X) = N( c:) x c:d' rv K c:d- d' . T hen , if ·d' < d we get
infinite dimension and if d' > d we get finit e dimension.

T his pro cess gives good results for the cases of fract als defined by a ground
pattern and recursive definition such as Cantor sets , von Koch sets , or Sier­
pinski carpets . We will thus compute the fractal dimension s of the sets we
will consider by means of the box-counting dimension and not by mean s of
the formal definition of the Hausdorff dimension . For self-similar sets that
sat isfy the open set conditi on (see [6]) the box-counting dimension equals
the Hausdorff dimension ([6], Theorem 9.3) . T he open set condition can be
st ated as follows: given a set of similarit ies Sl , .. . , Sk : R " ----> R " , where
each Si trans forms subsets of R " into geomet rically similar sets , we say that
the S, satisfy the op en set condition if there exists a non-empty bo unded
open set V such that

m

V:::) USi(V)
i= l

with the union disjoint . The fract al patterns we build sat isfy this condi­
tion, and each "duplicat ing" pro cess we define later can be understo od as a
particular similar ity .
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d= l N=l d=l/3 N=4 d=l/9 N=16

Fi gure 1: Coverings of t he von Koch cur ve.

Examp le . We give the example of the comput at ion of the fract al dimension
of the von Koch curve defined by a ground pattern and recursive definit ion.
Figur e 1 depicts such a von Koch set where N denotes the minimum number
of balls of diamet er d necessary to cover the set .

T he first part of the figure depicts the case where the radius of the ball
equals one; t he next two parts depict t he increasing number of balls necessary
as the diamet er decreases by a fact or of t hree. We then have the following
equality :

K 4 x K

(c/3)d cd

Thus, we get 3d = 4 =? d = log 4/log 3, which is the well-known result
for the fractal dimension of the von Koch curve. The number of balls drawn
on the figure is exac t ly the minimum number of covering balls, which can be
shown by means of the covering of t he flipp ed V and the self-similarity of
the curve.

In the next section we recall bri efly some results of aut hors who have
dealt with the relationships between linear cellular auto mata and fract als.

2.3 C ellular automata

In this section we pr esent a construct ive definition for cellular automata that
is close to von Neumann 's classical definit ion .

D efinition 2. A cellular aut omaton is a d-dimensional infinite array of iden­
tical cells indexed by Zd. Each cell is a finit e sta te machine C = (Q,8) where

• Q is a finit e set, tbe set of the states

• 8 is a mapping such that 8 : Q x QV ----> Q

where v denotes the numb er of neighbors.

An import ant notion in dealing with cellular automata is th e notion of
configum tion.
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Definition 3. A configuration of an n -dim ensional cellular automaton with
a set of st ates denot ed by Q is a m apping C of zn ----> Q, which assigns a state
of Q to each cell (considered as a point of zn) of the cellular autom aton .

Configurations are useful devices in representing the evolut ion of the cells
in t ime.

The interesting aspect of t he cellular automata is their temporal evolu­
tion , which can be regarded as a sequence of configurations . Such a graph is
called a t ime-space diagram and is useful in designin g algorit hms for cellular
automata. Although such a diagram is easy to draw in the plane, it is more
difficult to consider for higher-dimension cellular spaces. In this case, the se­
quence of configurat ions can be drawn in a three-dimensional discrete space
with two axes denot ing t he coordina tes of a cell and the third one denot ing
the time. In the rest of this paper we will not give such represent ations in
three dimensions , which ar e difficult to read; rather , we will consider their
projections on the plane.

2.4 Lin ear cellular automata

We recall bri efly t he definition of a linear cellular automaton (LCA). We
denot e by p n the set of all configurations of a Q-st ate's n-dimensional cellular
automaton. T hus , P" = Qzn. We define a global dynamics G on -p« as
follows.

Definition 4. A global t ransit ion function G on the set of all the con figu­
rations -p» is a m ap G : P " ----> -p» such that

• there exists a quiescent state,

• there exist m neighbors (Vi )i=I,...,m E zn and a m ap g : Qm ----> Q such
that \Iv E z n \lw E p n,

G(w(V)) = g(w(v + VI )"" ,W(V + Vm ) )

Then, th e t ra nsit ion ru le G on P" is lin ear provided its generating fu nc tion
g is linear or , equivalent ly, provided

E xample . It is easy to see that a trivial cellular automaton given by the
global dynamics T(X) i = 0 is linear . Another example is T( X)i = Xi- I + Xi+
Xi+! mod 2 denoting the XOR cellular automat on of radius 1.

A linear cellular automaton can also be defined in the following way.
We consider a dynamics Sk : -p« ----> -p» such tha t S k(X)i = Xi- k. Such a
dynami cs is called a shift . It s effect is to translate the input configurat ion X

in the direction of k so that cell k assumes the state of cell O. The definition
of shift leads to t he next definition .
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F igure 2: P ascal's triangle.

Definition 5. If a linear global dyn amics T(a) satisfies

• T(O) = 0

• T comm utes with shifts

• T(a) has a finit e support

then T is a cellular automaton.

Bruno Martin

In this case, lin earity is equiva lent to the local condit ion g(xo, X l, . .. , X m )

= l: aix, for some eleme nts from the set of states a; E Q.
We will prefer classical definitions for cellular automata because they do

not necessa rily require a lin ear form for t he generat ion of fract als.

3 . LeAs and fr actals: some results

Culik et al. [4] have shown t hat t he regular evolut ion of linear cellular au­
tomata on simple in it ial configurat ions generates a pat t ern that might be
fract al or self-similar. The patterns they obtain are ofte n simi lar to Pascal 's
triangle (see Fi gure 2). Their main res ult is t he followin g.

Theorem 1. Let f be the XOR cellular automaton rule for radius r . Th en,
fOT all n , where n is a power of 2,

for every finit e con figuration of length n. Note th at w m ay start or end with
zeros.

It is t hen exte nded to anot her typ e of cellular au to mata, namely Tr ellis
automata. Reimen [16] proves a similar resu lt wit h an algebraic property of
supe rposa bility .
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In many aspects, Willson [21] extends the resul ts of Culik et al. He shows
that if L denotes the global transit ion ru le on cellular automata taken linearly
modulo 2, a compact subset of Euclidean space related to the behavior of L
is defined . This subspace can have fract ional Hausdorff dimension . Willson
has recently extended these results to linearl y modu lo q cellular automata
[22].

T his invariant object L somehow summarizes the infinite ru n of the global
dynami cs T and turns out to be independent of the ini tial configuration . T his
object, called lim T , is an invariant and fract al set . T he computation of its
Hausdorff dimension is made by the explicit construct ion of its coverings as
summarized in the next theorem .

Theorem 2. Let X C n- be compac t.

1. Suppose for som e in teger a ::::: 2 and vectors VI , . . . , //", we have aX ~

U~I (X + v;). Th en, gdim X :s; log; m .

2. Suppose for som e integer a ::::: 2 and vectors VI , ... , 1/", that are pairwise
distinct mod a we have aX ~ U~I (X + //;). Th en, gdim X::::: log, m.

3. IfaX = U~1 (X + //;) where a and the //; are as in part 2, then gdim X =

logam .

In this case, the topological similarity dimension is equal to the Hausdorff
dim ension . For a most detailed version of the resul t see [21]. But in this
case, the fractal dimension is st ill very difficult to compute and the pat tern s
generated strongly resemble the usual Pascal 's trian gle.

The las t result we recall here gives a more convenient way to compute
the fract al dim ension. The result is from Takahashi [1 9] .

Theorem 3. Th e limit set of a pk-state 's LCA can be represented as tbe
union of some m embers of a family of sets X, that have the following prop­
erty : each X j is composed of nqj l i p-scaled Xq 's. If a transit ion matrix is
defined by A = (nqj ), then the Hausdorff dim ension of the limit set is given
by logpA, where A is the m aximu m eigenvalue of the m atrix A.

More intuiti vely, Takaha shi's idea is the following. The matrix consists of
the count of subpattern s into a pat tern , and t aking the maximum eigen­
value counts (in a certain sense ) t he irr egularit ies of the pattern. Then , the
computat ion of the fract al dim ension is quite simple.

4 . Another way to generate fractals

We first give two simp le exa mples of the generation of fractal pat terns, one
in dimension 1 and another in dim ension 2. T hese two examples are good
illustrations of the power of generat ing fractal patterns wit hout using the
lineari ty of the t ransit ion function . As we will see, it is possible to generate
pat terns like a Cantor set and the Sierp inski-Menger carpet, which appears
to be novel in the cellular automata literature.
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4.1 Some preliminary result s

We pr esent some definitions and results that will be useful later in the pap er.
Let us first give an "extended" definition for cellular automata in whi ch we
allow the set of the state s to be the cartes ian product of finitely many finit e
sets .

Definition 6. We call a tuple cellular automaton D = (Q,8) any cellular
automaton with th e set of th e states equal to the cartesian product of finit ely
many sets, that is, Q = Q1 X .. . X Qk, and with local transition fun ction
8: QV x Q -+ Q such th at a = 8( X1' X 2, . . . , Xv, x ) for Xi, 1 ~ i ~ v neighbors
of cell X and where a, x , Xi, 1 ~ i ~ v are k-t uples.

Observe that this definition is similar to the usual definit ion of cellular au­
tomata, that is, the tran sition functi on dep end s on all the elements of the
tuples and is not the cartesian product of some tran sit ion funct ion as is the
definition of a cellular auto maton product as defined in [1] . Fur t hermore, any
tuple cellular automaton can be transformed int o a "classical" auto maton if
we map any k-tuples onto a single element by means of a classical bij ect ion
from N k -+ N , for inst an ce. We will call a layer any element of the k-tuples
(see F igure 3).

Not ice that the above definition let s us define the tran sition function in
terms of combinat ions of some simple trans it ion fun ctions. Below we will give
som e examples of simple tran sition functions, one that solves the firing squad
syn chronization problem and one that duplicates a finit e configuration.

4.1. 1 The firing squad synchronization problem

T he firing squad synchronization problem is du e to Myh ill (1957) and can be
expressed as follows.

Given an initial lin e of soldiers, how can they fire at the same
time knowing that the order to fire, comi ng from a general located
at one end of the lin e, needs a certain constant to propagate?

Each soldier may be represented by one cell of a cellular automat on . T he
problem is then to build a local tran sition fun ction for a cellular auto maton .
The first answer was given in 1965 by Minsky and MacCarthy. First minimal
solut ions are du e to Got o, Wak sm an , and Balzer. Several years later , a
minimal t ime solution with 6 st ates was given by Mazoyer [11].

aux iliary laYe~

main state layer a two-layer
cell

a-five layer
cell

F igure 3: Som e representations of tuple cells.
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(Q,8) wi th

We will use t he following results to synchronize segments of the aut oma­
ton [20, 3].

Lemma 1 (Firing Squad Lemma) There exists a CA Z
special sym bols q,$ E Q and a quiescent state q such that

(;). t(wqon- lqqW) = wq$nqw

for t = 2n - 2 and (;). (w qon- l q~) (i , t ) of. $ for 0 :::; t < 2n - 2, where (;).
denotes the global transition fun ction corresponding to the local transition
function 8.

The states have the following meaning. T he cell with the special symbol c; is
the genera l who gives the order to fire. At the end of a certain process, all
the "soldiers" are ready to fire (that is, the cells enter special state $).

It is also possible to imp rove the time of synchronizat ion if the initial line
has not one genera l bu t two. In that case we have th e following result [12].

Lemma 2 (Firing Squad Lemma with two generals) There exists a
CA Z = (Q,8) with sp ecial sym bols q,$ E Q and a quiescent state q such
that

(;). t(wqqOn- 2c;qw) = wq$nqw

for t = nand (;). (wqc;On- 2c;qw)(i , t) of. $ for 0 :::; t < n, where (;). denotes the
global transition fun ction correspon ding to the local transition function 8.

T he two c's on the init ial configuration denote the two generals. This is an
immediate consequence of Lemma 1.

For the proofs of the previous lemmas , refer to [3, 12, 14, 20].

4 .1.2 Duplicating a finite configuration

Many cellular automata designers might have noticed the usefulness of a
local t ransit ion function that moves or dup licates a finite configurat ion to
the right or to the left . We aim to describe such a local t ransit ion function in
this sect ion because it will be our building block for the tra nsit ion functions
we will describ e for generating fract al patterns .

We are faced with the following probl em.

Given an ini ti al configura tion of the form x = Xl ... Xn with Xi E
Q for 1 :::; i :::; n - in other- words X is a finit e word over the
set of the states of the cellular- aut om aton -we want to obtain a
configurati on given by xx = Xl . .. XnXl ... Xn.

This problem can be solved by the following process, illustr ated in Figure 4.
At an initial t ime , the first cell sends its main state X l on the auxiliary layer.
This message moves as quick as possible to the right unt il the main layer of
the right neighbor of the cell that contains the "flying" state X l is a quiescent
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3n - 1

-,
-. '"-. <,

", ..

I'"K
I'" '.-,

1
time

cells -e-e--o- n
E 31

F igure 4: Duplic ating a finit e configuration: time-space states dia­
gram and t ime-sp ace diagram.

state . We thus have the following tran sit ion , where the coup les have to be
interpret ed as main layer x auxiliary layer :

((X",XI) ,(q,q),(q, q)) --. (x~ ,q) (1)

where x~ serves as an "end of configuration" delimiter. It remain s to define
how the rest of the configuration can be sent. We first have to define how a
cell can be ready to emit . When X l, the first state sent , moves to the right ,
it switches X 2... X" to the "ready" state, for inst an ce ;I2 , ' " , ;I,, :

(2)

T he rule for emitt ing the ot her main states is quit e simple: they are sent as
soon as possible when they are in a "ready" state . Consider, for instance, the
emission of cell i already in a "ready" state. Xi is emitted when the auxiliary
layer of it s left neighbor is in a quiescent state and when the auxiliary state
of cell i contains Xi-I ' In fact, cell i does not need to know if it s auxiliary
state contains Xi- I because Xi-I will be the last state emitted before Xi can
be emit ted . We then have the following rule:

(3)

whi ch also turns ;Ii back to Xi .
T he "flying" states stop when they encounter a situation similar to the

one given by rule (1):

((Xi-I , Xi), (q,q), (q, q)) --. (Xi,q) (4)

T he time required for the duplicati on of an n-cell configuration is 3n - 1: the
contents of the cells require n +1 time uni ts to be placed in their right places,
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and states are emit ted every two t ime steps according to the definition of the
above transit ion function. Thus, the conte nts of cell n is emit ted at time
2(n - 1) and moves n + 1 uni ts of time.

We have thus the following lemma.

Lem m a 3. Th ere exists a cellular automaton D = (Q,8) tha t dup licates an
n -cell con figuration in 3n - 1 time uni ts. Moreover, if the con figuration is
given by a word x = X l ... X n over alphabet A , the set of states Q of the
dup licating cellular automaton is Q = (A U A U A*) x A , where A stands for
the "ready" sta tes and A* for all possible "end of configuration" delimiters.

4.2 A unid imensional CA t hat generat es a C antor set

We define the behavior of a one-dimensional cellular automaton tha t embeds
a Cantor set in the closed interval H = [0, 1] of R , also called a Hilbert cube.
It s definit ion is quite clear and proceeds as follows.

Let A = (Q,8) be a one-dimensional cellular automaton with states
Q = {a, 1, q} (where q denot es the quiescent state) arid some other auxil­
iary states . Let 8 be the local transit ion funct ion (or generat ing funct ion)
for the cellular automaton. In th e following we will not give all the det ails of
th e transit ion funct ion because the transition ru les of the cellular automa ton
ar e very complica ted. An explicit presentation of it would be unwieldy and
nontransparent.

The process consists of ste ps start ing from th e initial configurat ion 010,
or equivalently from the "white-black-white" configuration. The steps follow
and are depicted in Figur e 5.

1. Copy the configuration once to the right.

2. Copy the configurat ion a second t ime at the right end and pain t the
first copy in black.

3. Update the configuration and return to step 1.

Clearly, such a cellular automa ton may be const ruc ted . The duplication of
a finite configuration can be done using the t ransit ion funct ion described in
sect ion 4.1.2.

Hence, by iterat ing that pro cess and embedding the restrict ion to {a, I }
of a subsequence of th e configurat ions, we get the geometrical const ruct ion
of a Cantor set . The total t ime between two "embeddable" configur ations is
thus (7 x length (finite configuration)) - 2 plus the time to come back, which
is length(new finite configuration) . These configurat ions occur at t imes given
by the exponent ial sequence 1, 28, 278, .. . , or

{
to = 1
tn +! = 10tn - 2

The "drawing" of the Can tor set is then obtained by replacing in the subse­
quence all the occurr ences of "0" by a segment and all th e occurences of "1"
by a hole, then resizing the configurat ions in [0,1]. The Cantor set is then
the set of sites with symb ol "0" .
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Figure 5: The two steps of the behavior: t ime-space states diagram
and time-space diagram.

4 .3 Gener alization to cellular spaces of higher dimension

The process defined above can be generalized to higher-dimensional cellular
spaces . In order to do that we first notice that the unidimensional cellular
automaton described in the previous sect ion can be modified as follows: in­
stead of twice copying the initial configuration at the right end , it is also
possible to copy it once at the left end and once at the right end . In other
words, use the neighborhoo d vector of the cellular automato n to identi fy the
part that is copied and has to be paint ed in black. With that modificat ion,
the cellular automaton expands to the left and to t he right , without changing
the cont inuous representation of the configurat ion. The point of interest of
th is definit ion is that the copies are made by using the neighb orhood vec­
tor and might be genera lized by means of this st ra tegy. In this section, we
describ e the role of the neighborhood vecto r in a similar process.
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4 .3 .1 C ase of the von N eumann neighborhood

If we apply the pro cess to t he case of a two-dimensional cellular auto maton
with t he von Neuman n neighb orhood, we get a direct product of two Cantor
sets, one dr awn horizont ally and t he other vert ically. T he process describ ed
in the previous sect ion can eas ily be generalized from the one-dimensional
case to higher dimension s according to the following observation: the two­
dimensional cellular automato n acts on a line as a unidimension al one would
act on a cell provid ed the line has already been synchronized by mean s of
a firing squad pr ocess, such as the one wit h 6 states describ ed in [11]. The
case of the von Neumann neighborhood is not the most int eresting one. In
the next sect ion we focus on the Moore neighb orhood.

4.3.2 Case of the Moore neighborhood

The te chnique using the Moore neighb orhood is t he same as that using the
von Neumann neighborhood . It suffices to synchronize a line before copying
(see Figure 6) . Here we will synchronize the left edge of the square. T he
synchronizing process then allows t he synchronized line of cells to behave as
if it were a unique cell in a unidimension al cellular automaton . Then , we
app ly the pro cess depict ed in Figure 5, which twice copies the initial finite
configurat ion; in this case, however , we do not paint black (that is, rename
the remaining as of the middle third in Is ) the middle t hird sub-configur at ion .
In the case of a tuple cellul ar automaton t hat , for inst ance , emits the values
of a line, it does not matter whether the cross ing lines are synchronized . In
the case of our process, we just have to obtain the first quiescent line and
stop as soon as it is encountered , then copy one line into one of th e directions

Figure 6: Copying th e squares nine times: time-space diagram.
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final result
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Figure 7: The signals emit ted for identifying the middle third.

of the neighborhood. T he return signa l can be sent only (to the general) for
t he synchronization process.

We then synchronize again in t he other dir ection- that is, on the largest
square-and likewise copy twice the configuration with t he layer containing
the square to be painted black.

Finally, when the copying proces is over , the corne rs send two signa ls,
one of slope 1 at half speed an d one of slope ~ at full speed , in order to choose
which square has t o be painted black. T he black color of the layer then enters
the main state and paints black the middle third sub-configuration . Figure 7
depicts this act ion .

We summarize t he process describ ed above:

1. synchronize the configuration over the x axis;

2. apply the copying pro cess twice along the y axis;

3. synchronize along the y axis;

4. app ly t he copying process twice along t he x axis;

5. identify the four corners of the new configurat ion;

6. ident ify the middle t hird sub-squa re and "paint it black."

In the case of the Moore neighborhood , we get t he promised Sierp inski
carpe t when embedding t he configurations at exponent ial uni ts of t ime. In
the next sect ion we give a more precise meaning to the .assumpt ion t hat we
obtain somet hing whose embedding maps to a cont inuous figure.
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One can also easily see that such a pro cess can easily be generalized to
any neighborhood vect or , giving other cur ious figur es. Some of them may be
fractals and ot hers may not.

5. From configurations to fractals

In the pr evious sect ion we presented the idea of generation. We need to
make more precise which notion of covering we take in the continuous space
to get an intuitive covering on the cells of the configuration, of an arbitrary
dimension .

In sect ion 4 we introduced a covering of black points of a proper subset
of Z" ; That is, we had to remove the covering of the intervals. In fact , the
number of balls that interest us is the number of white points (or zero sites).
In this case the covering is easier to describe . Indeed , if we are int erest ed in
the covering of th e white points of the configurat ion, we need only cover t he
white points in the continuous int erval, that is, the points that rema in in the
decomposition of t he Cantor set . Thus, we cover the set by balls with th e
center being the white point s and th e diameter being a homotheti cal factor
equal to l / length(non-quiescent part of the cellular space).

In order to generalize th e result s, we take as balls the balls defined by the
supremum norm, which gives balls with square form , or in higher dimensions
with cubic form.

5.1 Usual Cantor set

In this sect ion we describ e how to cover the pro cess defined for a one­
dimensional cellular automaton with an embedding giving the usual Cantor
set . T he covering of the init ial configuration gives, in the H = [0, 1] interval
of R , the number of N(c) = 2 with diameter e = 3- 1 and in the config­
uration two white points with a homothet ical rati o of ~ that corresponds
exactly to what we get in th e cont inuous world and star ts an induct ion . For
the induction step , assume we have covered the nth configuration with 2n

balls. Clearly the length of the n + 1 configurat ion is 3n +1 , which is covered
by 2 x 2n balls (by the duplicat ion), which is exac tly 2n+1 The rest of the
configurat ion is paint ed black. We thus get the following result .

o
oeo

oecee~eo

F igur e 8: Comparison between the covering of the Cantor set and the
number of white points.
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T heorem 4 . Th e number of whi te cells of the configurat ion of the cellular
automaton corresponds exactly to the size of the minim al covering of the
Cantor set for balls of a diam eter that corresp onds to the hom othetical fac­
tor. Furthermore, the Hausdorff dim ension of the Cantor set em bedding is
log 2/log 3.

Proof. Because Nn(c) = 2n and Cn = 3-n, we have the equality 2n

(3- n )d, which gives the dimension d given in the t heor em. •

Furthermore, we can assoc iate a discret e dynam ical system that counts
t he proportion of black points on the configuration and, complementarily,
one that counts the ratio of white points. The discret e dynamica l system
associated to the black points is the following. Let II~ denot e the proportion
of black points. Clearl y 1- II~ denot es the proportion of white point s because
of t he quotient. The dyn am ical system can be defined recur sively by

II" 2II" 1
n ="3 n-l +"3

which has 1 as an a tt ractor. Thus Il ., = 1 - II~ has a as an at tract or , which
maps to the definit ion of the Hausdorff measur e of a Cantor set (see [5]).

We can now claim that the embedding of t he subsequence of the sequence
of the configurations of the cellular aut omaton defined previously converges
to the usual Cantor set as a limit set .

5.2 Sierpin ski Car pet

Here we give justification for the computat ion of the Hausdorff dimension
in discrete space for the two-dimensional cellular automaton that computes
t he Sierpinski carpet depicted in F igure 9. T he process for dr awing the
Sierp inski carpet on the mesh is the one suggested in sect ion 4.2.2. Here we
give a theorem ana logous to Theorem 4.

Theorem 5. The number of white points of the con figuration of the 2­
cellular automaton with the Moore neighb orhood corresponds exac tly to the

Figure 9: The Sierpinski carpe t .
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minimal covering of th e Cantor set for balls of a diameter tha t corresponds
to th e homoth etical factor. Furth ermore, the Hausdorff dim ension of its
em bedding is that of a Sierpinski carpet, nam ely log S/ log 3.

Proof. The covering of the initial configurat ion of th e cellular auto maton
gives in H 2 = [0,1] x [0, 1] a number of balls N( E) = S with diameter E= 3-1 ,

and in the configurat ion S white points with an homothetical ratio of 1/ 3,
which corres ponds to the situation in H 2 and starts the induction . For the
induction ste p, assume we have covered t he n th configuration with sn balls
having the same number of white points in the configuration. The area
of the (n + 1)t h configuration is clearly (3n +l)2, and contains (because of
the duplications) S x sn white points with the same number of balls in its
embedding, tha t is, sn+1 balls. The rest of th e nonquiescent part of the
configur at ion is paint ed black.

Becau se Nn(E) = snand En = 3- n, we get the equality sn = (3- n)d, which
gives the dimension d of the theorem.•

As for the Cantor set, it is also possible to associate a discrete dynami cal
system with the Sierpi nski carpe t that counts the proportion of black points
on the configuration and , complementarily, one that counts the prop ortion of
white points and thus the proportion of balls. The discrete dynami cal system
associated with the black points can be determined as follows. Let II~ denote
th e proporti on of black points. Clearl y 1- II~ denotes the proport ion of white
points. The discrete dynamical system can be defined recurs ively by

II· - ~ II· ~
n - 9 n - 1 + 9

which also has 1 as an attrac to r . Thus IIn = 1 - II~ has °as an attractor,
which maps to the definition of the Hausdorff measure of a Sierpinski car pe t.

As for the Cantor set, we can claim that the embe dd ing of the subsequence
of the sequence of the configurations of the cellular automaton defined pre­
viously converges to the usual Sierpinski carpet as a limi t set .

5. 3 Sierpinski-Menger sponge

Even for higher dimensions, the pro cess is analogous and leads to the same
type of results . If we are int ereste d in a three-dimensional cellular automaton
with th e genera lizat ion of the Moore neighb orhood, we obtain the well-known
Sierpinski-Menger sponge depicted in Figure 10 (see [S]). The usual theorem
holds for three-dimensional cellular automata.

Theorem 6 . Th e num ber of white points of the con figuration of the cellular
automaton corresponds exactly to the minimal covering of the Sierpinski­
Menger sponge for balls that correspond to the hom othetical factor. Fur­
thermore, the Hausdorff dim ension of its embedding is that of the Sierpin ski­
Menger sponge, log 26/ log 3.
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Figure 10: The Sierp inski-Menger sponge.

One can also determine th e dynamical syste m that counts the proportion
of black point s of the non quiescent part of the configur ation , which is II~ =
~II~_l + -I7 . The proport ion of white points is denoted by IIn = 1 - II~ .

Conclusion

Our meth od of generating fractals yields forms other than those obtained
using linear cellular aut omata. Fur th ermore, the discrete dynami cal systems
we have defined seem to map to the definition of the Hausdorff measure.
These examples clearly give instances of parallel exponential algori thms be­
cause their tim e-comp lexities is linear in the space-complexit ies, which grow
exponent ially.

There are many other methods for generat ing fractals, such as fractals
obtained by k x k subst it ut ions [2J and in relation to nice arithmetic prop­
erties listed in [17]. In [18] , two addit ional method s for generating fractals
are proposed: the first uses iterated Kronecker products , and the second
uses iterated matrix-valued homomorphisms. Both prov ide efficient parallel
algorithms for computing n x n images wit h o (log n ) operat ions per pixel.
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