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Abstract. In this paper we propose a method for generating fractal
patterns using “classical” cellular automata. Although the problem
of fractal generation for linear cellular automata has been studied
recently, this is not the case for classical cellular automata.

We first exhibit some basic techniques for the construction of the
transition function, which draws a Cantor set, and show how this
method can be generalized to cellular spaces of greater dimension.
Then we give a method for embedding the configurations into a closed
interval to obtain fractal patterns. We also define discrete dynamical
systems for counting the minimum number of balls required to cover
the fractal pattern.

1. Introduction

Cellular automata (CAs) are of great interest for modeling complex physical
systems or synchronous parallel processes. One point of interest is fractal
generation. Indeed fractals, and more precisely Cantor-like sets, occur quite
often as attractors for simple maps in physics. For instance, the Feigenbaum
attractor has for a unique attractor a Cantor set [13]. Fractals also appear
in sequences of errors in the transmission of data [8].

The problem of fractal production or fractal behavior of CAs during their
long time evolution has been studied recently by Wolfram [23], Culik [4], Will-
son [21], and Haesler et al. [7]. These authors often deal with linear modulo-2
unidimensional CAs whose main instance is the Pascal triangle, which can
be generated finitely by algebraic means [10]. Moreover, Willson gives a nice
theorem about the Hausdorff dimension (or fractal dimension) but with a
formalism quite difficult to apply that relies heavily on the linearity of the
rules. His results have been improved and generalized to linear modulo-¢q
CAs (see [22]).
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Haesler et al. [7] claimed that the production of fractal structures in the
long time evolution of CAs poses three major problems:

1. When and in what sense is there a limit set for the evolution of a CA?

2. How can the self similarity features of a limit set be formally modeled
and deciphered?

3. Which classes of CAs generate fractal structures?

Willson [21] has discussed the first item and Takahashi [19] the second one.
Haesler et al. considered all three problems and connected the deciphering
operation to a matrix substitution system.

The goal of this paper is to give another formalism for the generation
of fractals, based mostly on Cantor sets and products of Cantor sets (e.g.,
the Sierpinski carpet or Sierpinski-Menger sponge), and to give an example
of the computation of the fractal dimension within the world of discrete
mathematics. Moreover, we also give discrete dynamical systems associated
with the configurations, which correspond to the Hausdorff measure.

We note that, unlike previous work, our formalism does not require lin-
ear local transition functions to compute the fractal dimension. It is thus
easier to build a specific CA. We usually work with an embedding of some
configurations into a continuous space, and can restrict ourselves to a sub-
sequence of the configurations in the discrete space to make computations.
Our formalism gives a good idea of the convergence of some discrete patterns
to their continuous definition with the following idea: the radius of the cov-
ering balls for the pattern in the continuous space decreases as the length of
the configurations in the discrete space increases. In other words, if a real
quantity converges to zero, its discrete representation converges to infinity.

2. Definitions
2.1 Formal definition

Let us recall briefly the definition of a fractal set. According to Mandelbrot
[8, 9], a set X is called a fractal provided its Hausdorff dimension h(X) is
not an integer. Intuitively, h(X) measures the growth of the number of sets
of diameter € needed to cover X when ¢ — 0. More precisely, if X C R™, let
N(e) be the minimum number of m-dimensional balls of diameter ¢ needed
to cover X. Then, if N(e) increases like N(g) — e as € — 0, one says that
X has Hausdorff dimension d.

We remark that this definition relies strongly on the definition of the
Hausdorft dimension defined by means of the Hausdorff measure. A rigorous
definition [15] for h(X) proceeds as follows.

Definition 1. Let X be a subset of a metric space and let d > 0. The
d-dimensional outer measure mgy(X) is obtained from

mg(X,€) = inf{¥; ¢ (diams;)?},
mg(X) = lim_,o ma(X, ).
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where the inf is over all finite coverings of X by sets S; with diameter less
than € > 0.

Depending on the choice of d, mq(X) may be finite or infinite. Hausdorff
showed in 1919 that there is a unique d = d* at which my(X) changes from
infinite to finite as d increases. This leads to the definition

h(X) = sup{d € R : my(X) = oo}

The formal definition of the Hausdorff measure implies that it is very
difficult to compute the fractal dimension of a set. We give another definition
that is more useful in computing the Hausdorff dimension.

2.2 Fractal covering dimension

Given a subset X of a metric space and € > 0, let N(g) be the minimum
number of balls of diameter e necessary to cover X. An alternative definition
for h(X), called a fractal covering dimension or box counting dimension, is
the following (see [8]):

B(X) = lim inf 28N (E)
=0 log(1/e)

Then N(g) — 0o as € — 0. If N(e) ~ K /e, then d = h(X) (see [5] for more
details). Indeed, m& (X) = N(e) x e¥ ~ Ke¥¢. Then, if-d < d we get
infinite dimension and if d' > d we get finite dimension.

This process gives good results for the cases of fractals defined by a ground
pattern and recursive definition such as Cantor sets, von Koch sets, or Sier-
pinski carpets. We will thus compute the fractal dimensions of the sets we
will consider by means of the box-counting dimension and not by means of
the formal definition of the Hausdorff dimension. For self-similar sets that
satisfy the open set condition (see [6]) the box-counting dimension equals
the Hausdorff dimension ([6], Theorem 9.3). The open set condition can be
stated as follows: given a set of similarities Si,...,S; : R® — R", where
each S; transforms subsets of R™ into geometrically similar sets, we say that
the S; satisfy the open set condition if there exists a non-empty bounded
open set V' such that

VDo G Si(V)

=1

with the union disjoint. The fractal patterns we build satisfy this condi-
tion, and each “duplicating” process we define later can be understood as a
particular similarity.
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Figure 1: Coverings of the von Koch curve.

Example. We give the example of the computation of the fractal dimension
of the von Koch curve defined by a ground pattern and recursive definition.
Figure 1 depicts such a von Koch set where N denotes the minimum number
of balls of diameter d necessary to cover the set.

The first part of the figure depicts the case where the radius of the ball
equals one; the next two parts depict the increasing number of balls necessary
as the diameter decreases by a factor of three. We then have the following
equality:

K  4xK
(/3" &

Thus, we get 3¢ = 4 = d = log4/log3, which is the well-known result
for the fractal dimension of the von Koch curve. The number of balls drawn
on the figure is exactly the minimum number of covering balls, which can be
shown by means of the covering of the flipped V' and the self-similarity of
the curve.

In the next section we recall briefly some results of authors who have
dealt with the relationships between linear cellular automata and fractals.

2.3 Cellular automata

In this section we present a constructive definition for cellular automata that
is close to von Neumann’s classical definition.

Definition 2. A cellular automaton is a d-dimensional infinite array of iden-
tical cells indexed by Z®. Fach cell is a finite state machine C' = (Q, §) where

e () Is a finite set, the set of the states
e § is a mapping such that 6 : Q X Q¥ — Q
where v denotes the number of neighbors.

An important notion in dealing with cellular automata is the notion of
configuration.



Inherent Generation of Fractals by Cellular Automata 351

Definition 3. A configuration of an n-dimensional cellular automaton with
a set of states denoted by @ is a mapping C of Z™ — @, which assigns a state
of Q to each cell (considered as a point of Z") of the cellular automaton.

Configurations are useful devices in representing the evolution of the cells
in time.

The interesting aspect of the cellular automata is their temporal evolu-
tion, which can be regarded as a sequence of configurations. Such a graph is
called a time-space diagram and is useful in designing algorithms for cellular
automata. Although such a diagram is easy to draw in the plane, it is more
difficult to consider for higher-dimension cellular spaces. In this case, the se-
quence of configurations can be drawn in a three-dimensional discrete space
with two axes denoting the coordinates of a cell and the third one denoting
the time. In the rest of this paper we will not give such representations in
three dimensions, which are difficult to read; rather, we will consider their
projections on the plane.

2.4 Linear cellular automata

We recall briefly the definition of a linear cellular automaton (LCA). We
denote by P™ the set of all configurations of a @-state’s n-dimensional cellular
automaton. Thus, P* = QZ%". We define a global dynamics G on P" as
follows.

Definition 4. A global transition function G on the set of all the configu-
rations P™ is a map G : P™ — P™ such that

e there exists a quiescent state,

e there exist m neighbors (v;)i=1,. m € Z™ and a map g : Q™ — Q such
that Yv € Z™ Yw € P™,

Gw(v)) =glwv+mwn),...,wV+vm))

Then, the transition rule G on P" is linear provided its generating function
g is linear or, equivalently, provided

Gw+71) =G(w) + G(7).

Example. It is easy to see that a trivial cellular automaton given by the
global dynamics T'(z); = 0 is linear. Another example is T'(z); = ;1 + z; +
Z;+1 mod 2 denoting the XOR cellular automaton of radius 1.

A linear cellular automaton can also be defined in the following way.
We consider a dynamics Sj, : P* — P" such that Sip(z); = z;_;. Such a
dynamics is called a shift. Its effect is to translate the input configuration x
in the direction of k so that cell & assumes the state of cell 0. The definition
of shift leads to the next definition.
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Figure 2: Pascal’s triangle.

Definition 5. If a linear global dynamics T'(a) satisfies
e T(0)=0
e T commutes with shifts

e T'(a) has a finite support

then T is a cellular automaton.

In this case, linearity is equivalent to the local condition g(zo, 1, ..., ZTm)
= > a;x; for some elements from the set of states a; € Q.

We will prefer classical definitions for cellular automata because they do
not necessarily require a linear form for the generation of fractals.

3. LCAs and fractals: some results

Culik et al. [4] have shown that the regular evolution of linear cellular au-
tomata on simple initial configurations generates a pattern that might be
fractal or self-similar. The patterns they obtain are often similar to Pascal’s
triangle (see Figure 2). Their main result is the following.

Theorem 1. Let f be the XOR cellular automaton rule for radius r. Then,
for all n, where n is a power of 2,

G}?(w) e w27‘+1

for every finite configuration of length n. Note that w may start or end with
ZEros.

It is then extended to another type of cellular automata, namely Trellis
automata. Reimen [16] proves a similar result with an algebraic property of
superposability.
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In many aspects, Willson [21] extends the results of Culik et al. He shows
that if L denotes the global transition rule on cellular automata taken linearly
modulo 2, a compact subset of Euclidean space related to the behavior of L
is defined. This subspace can have fractional Hausdorff dimension. Willson
has recently extended these results to linearly modulo ¢ cellular automata
[22].

This invariant object L somehow summarizes the infinite run of the global
dynamics 7" and turns out to be independent of the initial configuration. This
object, called lim T, is an invariant and fractal set. The computation of its
Hausdorff dimension is made by the explicit construction of its coverings as
summarized in the next theorem.

Theorem 2. Let X C R"™ be compact.

1. Suppose for some integer a > 2 and vectors v, ..., VU, we have aX C
U, (X + ;). Then, gdim X < log, m.
2. Suppose for some integer a > 2 and vectors vy, . .., Uy, that are pairwise

distinct mod a we have aX 2 U™, (X + v;). Then, gdim X > log, m.

3. IfaX = U, (X +v;) where a and the v; are as in part 2, then gdim X =
log,m.

In this case, the topological similarity dimension is equal to the Hausdorff
dimension. For a most detailed version of the result see [21]. But in this
case, the fractal dimension is still very difficult to compute and the patterns
generated strongly resemble the usual Pascal’s triangle.

The last result we recall here gives a more convenient way to compute
the fractal dimension. The result is from Takahashi [19].

Theorem 3. The limit set of a p*-state’s LCA can be represented as the
union of some members of a family of sets X; that have the following prop-
erty: each X; is composed of ng; 1/p-scaled X,’s. If a transition matrix is
defined by A = (ng;), then the Hausdorfl dimension of the limit set is given
by log, A, where A is the maximum eigenvalue of the matrix A.

More intuitively, Takahashi’s idea is the following. The matrix consists of
the count of subpatterns into a pattern, and taking the maximum eigen-
value counts (in a certain sense) the irregularities of the pattern. Then, the
computation of the fractal dimension is quite simple.

4. Another way to generate fractals

We first give two simple examples of the generation of fractal patterns, one
in dimension 1 and another in dimension 2. These two examples are good
illustrations of the power of generating fractal patterns without using the
linearity of the transition function. As we will see, it is possible to generate
patterns like a Cantor set and the Sierpinski-Menger carpet, which appears
to be novel in the cellular automata literature.
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4.1 Some preliminary results

We present some definitions and results that will be useful later in the paper.
Let us first give an “extended” definition for cellular automata in which we
allow the set of the states to be the cartesian product of finitely many finite
sets.

Definition 6. We call a tuple cellular automaton D = (Q,§) any cellular
automaton with the set of the states equal to the cartesian product of finitely
many sets, that is, Q@ = Q1 X --- X Qy, and with local transition function
§:Q"xQ — Q such that a = §(zy, xs, . ..,1,,x) for z;, 1 <1 < v neighbors
of cell x and where a,x,x;,1 <1i < v are k-tuples.

Observe that this definition is similar to the usual definition of cellular au-
tomata, that is, the transition function depends on all the elements of the
tuples and is not the cartesian product of some transition function as is the
definition of a cellular automaton product as defined in [1]. Furthermore, any
tuple cellular automaton can be transformed into a “classical” automaton if
we map any k-tuples onto a single element by means of a classical bijection
from N* — N, for instance. We will call a layer any element of the k-tuples
(see Figure 3).

Notice that the above definition lets us define the transition function in
terms of combinations of some simple transition functions. Below we will give
some examples of simple transition functions, one that solves the firing squad
synchronization problem and one that duplicates a finite configuration.

4.1.1 The firing squad synchronization problem

The firing squad synchronization problem is due to Myhill (1957) and can be
expressed as follows.

Given an nitial line of soldiers, how can they fire at the same
time knowing that the order to fire, coming from a general located
at one end of the line, needs a certain constant to propagate?

Each soldier may be represented by one cell of a cellular automaton. The
problem is then to build a local transition function for a cellular automaton.
The first answer was given in 1965 by Minsky and MacCarthy. First minimal
solutions are due to Goto, Waksman, and Balzer. Several years later, a
minimal time solution with 6 states was given by Mazoyer [11].

auxiliary layer

main state layer -

a two-layer a-five layer
cell cell

Figure 3: Some representations of tuple cells.
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We will use the following results to synchronize segments of the automa-
ton [20, 3].

Lemma 1 (Firing Squad Lemma) There exists a CA Z = (Q,6) with
special symbols ¢,$ € Q and a quiescent state q such that

At(wqon—l(}qw) - wq$nqw

for t = 2n — 2 and A(®q0"1¢q”)(i,t) # $ for 0 < t < 2n — 2, where A
denotes the global transition function corresponding to the local transition
function 6.

The states have the following meaning. The cell with the special symbol ¢ is
the general who gives the order to fire. At the end of a certain process, all
the “soldiers” are ready to fire (that is, the cells enter special state $).

It is also possible to improve the time of synchronization if the initial line
has not one general but two. In that case we have the following result [12].

Lemma 2 (Firing Squad Lemma with two generals) There exists a
CA Z = (Q,6) with special symbols ¢,$ € Q and a quiescent state ¢ such
that

At(wqgon—zng) = wq$nqu)

for t = n and A(¥q¢0" 2¢q*)(i,t) # $ for 0 < t < n, where A denotes the
global transition function corresponding to the local transition function 6.

The two ¢’s on the initial configuration denote the two generals. This is an
immediate consequence of Lemma 1.
For the proofs of the previous lemmas, refer to [3, 12, 14, 20].

4.1.2 Duplicating a finite configuration

Many cellular automata designers might have noticed the usefulness of a
local transition function that moves or duplicates a finite configuration to
the right or to the left. We aim to describe such a local transition function in
this section because it will be our building block for the transition functions
we will describe for generating fractal patterns.

We are faced with the following problem.

Given an initial configuration of the form x = xy ...z, with x; €
Q for 1 < i < n—in other words x is a finite word over the
set of the states of the cellular automaton—we want to obtain a
configuration given by TT = Ty ...TpT1 ... Ty.

This problem can be solved by the following process, illustrated in Figure 4.
At an initial time, the first cell sends its main state x; on the auxiliary layer.
This message moves as quick as possible to the right until the main layer of
the right neighbor of the cell that contains the “flying” state z; is a quiescent
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Figure 4: Duplicating a finite configuration: time-space states dia-
gram and time-space diagram.

state. We thus have the following transition, where the couples have to be
interpreted as main layer x auxiliary layer:

((mnvxl),(% Q)v(q> q)) = (xiaq) (1)

where z7 serves as an “end of configuration” delimiter. It remains to define
how the rest of the configuration can be sent. We first have to define how a
cell can be ready to emit. When z1, the first state sent, moves to the right,
it switches z,. ..z, to the “ready” state, for instance z,, ..., z,:

(i1, 22), (@5, 21), (Ti41, ) = (23, 25) (2)

The rule for emitting the other main states is quite simple: they are sent as
soon as possible when they are in a “ready” state. Consider, for instance, the
emission of cell ¢ already in a “ready” state. x; is emitted when the auxiliary
layer of its left neighbor is in a quiescent state and when the auxiliary state
of cell 7 contains z;_;. In fact, cell ¢ does not need to know if its auxiliary
state contains z;_; because z;_; will be the last state emitted before z; can
be emitted. We then have the following rule:

((mi—15 (I)v (gh $i~1)7 (§i+1! 377;_2)) = (ziv 1'1) (3)

which also turns z; back to ;.
The “flying” states stop when they encounter a situation similar to the
one given by rule (1):

(%=1, 1), (¢, 9) (2,9)) = (:,9) (4)

The time required for the duplication of an n-cell configuration is 3n — 1: the
contents of the cells require n+1 time units to be placed in their right places,
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and states are emitted every two time steps according to the definition of the
above transition function. Thus, the contents of cell n is emitted at time
2(n — 1) and moves n + 1 units of time.

We have thus the following lemma.

Lemma 3. There exists a cellular automaton D = (Q, 6) that duplicates an
n-cell configuration in 3n — 1 time units. Moreover, if the configuration is
given by a word x = z;...x, over alphabet A, the set of states Q) of the
duplicating cellular automaton is Q = (AU AU A*) x A, where A stands for
the “ready” states and A* for all possible “end of configuration” delimiters.

4.2 A unidimensional CA that generates a Cantor set

We define the behavior of a one-dimensional cellular automaton that embeds
a Cantor set in the closed interval H = [0, 1] of R, also called a Hilbert cube.
Its definition is quite clear and proceeds as follows.

Let A = (Q,6) be a one-dimensional cellular automaton with states

= {0,1,q} (where ¢ denotes the quiescent state) and some other auxil-
1ary states. Let 6 be the local transition function (or generating function)
for the cellular automaton. In the following we will not give all the details of
the transition function because the transition rules of the cellular automaton
are very complicated. An explicit presentation of it would be unwieldy and
nontransparent.

The process consists of steps starting from the initial configuration 010,
or equivalently from the “white-black-white” configuration. The steps follow
and are depicted in Figure 5.

1. Copy the configuration once to the right.

2. Copy the configuration a second time at the right end and paint the
first copy in black.

3. Update the configuration and return to step 1.

Clearly, such a cellular automaton may be constructed. The duplication of
a finite configuration can be done using the transition function described in
section 4.1.2.

Hence, by iterating that process and embedding the restriction to {0,1}
of a subsequence of the configurations, we get the geometrical construction
of a Cantor set. The total time between two “embeddable” configurations is
thus (7 x length(finite configuration)) — 2 plus the time to come back, which
is length(new finite configuration). These configurations occur at times given
by the exponential sequence 1,28,278, ..., or

to — 1

tor1 = 10t, — 2
The “drawing” of the Cantor set is then obtained by replacing in the subse-
quence all the occurrences of “0” by a segment and all the occurences of “1”

by a hole, then resizing the configurations in [0,1]. The Cantor set is then
the set of sites with symbol “0”.
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Figure 5: The two steps of the behavior: time-space states diagram
and time-space diagram.

4.3 Generalization to cellular spaces of higher dimension

The process defined above can be generalized to higher-dimensional cellular
spaces. In order to do that we first notice that the unidimensional cellular
automaton described in the previous section can be modified as follows: in-
stead of twice copying the initial configuration at the right end, it is also
possible to copy it once at the left end and once at the right end. In other
words, use the neighborhood vector of the cellular automaton to identify the
part that is copied and has to be painted in black. With that modification,
the cellular automaton expands to the left and to the right, without changing
the continuous representation of the configuration. The point of interest of
this definition is that the copies are made by using the neighborhood vec-
tor and might be generalized by means of this strategy. In this section, we
describe the role of the neighborhood vector in a similar process.
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4.3.1 Case of the von Neumann neighborhood

If we apply the process to the case of a two-dimensional cellular automaton
with the von Neumann neighborhood, we get a direct product of two Cantor
sets, one drawn horizontally and the other vertically. The process described
in the previous section can easily be generalized from the one-dimensional
case to higher dimensions according to the following observation: the two-
dimensional cellular automaton acts on a line as a unidimensional one would
act on a cell provided the line has already been synchronized by means of
a firing squad process, such as the one with 6 states described in [11]. The
case of the von Neumann neighborhood is not the most interesting one. In
the next section we focus on the Moore neighborhood.

4.3.2 Case of the Moore neighborhood

The technique using the Moore neighborhood is the same as that using the
von Neumann neighborhood. It suffices to synchronize a line before copying
(see Figure 6). Here we will synchronize the left edge of the square. The
synchronizing process then allows the synchronized line of cells to behave as
if it were a unique cell in a unidimensional cellular automaton. Then, we
apply the process depicted in Figure 5, which twice copies the initial finite
configuration; in this case, however, we do not paint black (that is, rename
the remaining Os of the middle third in 1s) the middle third sub-configuration.
In the case of a tuple cellular automaton that, for instance, emits the values
of a line, it does not matter whether the crossing lines are synchronized. In
the case of our process, we just have to obtain the first quiescent line and
stop as soon as it is encountered, then copy one line into one of the directions

S A A AR A AR 4
A4 . & 7

I i v oy avay
3 i " h A A
E',‘“’OI 7 : synchr iy vy away
& AT F AT T~
$

Figure 6: Copying the squares nine times: time-space diagram.
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Figure 7: The signals emitted for identifying the middle third.

of the neighborhood. The return signal can be sent only (to the general) for
the synchronization process.

We then synchronize again in the other direction—that is, on the largest
square—and likewise copy twice the configuration with the layer containing
the square to be painted black.

Finally, when the copying process is over, the corners send two signals,
one of slope 1 at half speed and one of slope % at full speed, in order to choose
which square has to be painted black. The black color of the layer then enters
the main state and paints black the middle third sub-configuration. Figure 7
depicts this action.

We summarize the process described above:

1.

o T e w W

synchronize the configuration over the z axis;
apply the copying process twice along the y axis;
synchronize along the y axis;

apply the copying process twice along the z axis;
identify the four corners of the new configuration;

identify the middle third sub-square and “paint it black.”

In the case of the Moore neighborhood, we get the promised Sierpinski
carpet when embedding the configurations at exponential units of time. In
the next section we give a more precise meaning to the assumption that we
obtain something whose embedding maps to a continuous figure.
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One can also easily see that such a process can easily be generalized to
any neighborhood vector, giving other curious figures. Some of them may be
fractals and others may not.

5. From configurations to fractals

In the previous section we presented the idea of generation. We need to
make more precise which notion of covering we take in the continuous space
to get an intuitive covering on the cells of the configuration, of an arbitrary
dimension.

In section 4 we introduced a covering of black points of a proper subset
of Z™. That is, we had to remove the covering of the intervals. In fact, the
number of balls that interest us is the number of white points (or zero sites).
In this case the covering is easier to describe. Indeed, if we are interested in
the covering of the white points of the configuration, we need only cover the
white points in the continuous interval, that is, the points that remain in the
decomposition of the Cantor set. Thus, we cover the set by balls with the
center being the white points and the diameter being a homothetical factor
equal to 1/length(non-quiescent part of the cellular space).

In order to generalize the results, we take as balls the balls defined by the
supremum norm, which gives balls with square form, or in higher dimensions
with cubic form.

5.1 TUsual Cantor set

In this section we describe how to cover the process defined for a one-
dimensional cellular automaton with an embedding giving the usual Cantor
set. The covering of the initial configuration gives, in the H = [0, 1] interval
of R, the number of N(¢) = 2 with diameter ¢ = 37! and in the config-
uration two white points with a homothetical ratio of % that corresponds
exactly to what we get in the continuous world and starts an induction. For
the induction step, assume we have covered the nth configuration with 2"
balls. Clearly the length of the n + 1 configuration is 3"*!, which is covered
by 2 x 2™ balls (by the duplication), which is exactly 2"*1. The rest of the
configuration is painted black. We thus get the following result.

O
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080008080 o

Figure 8: Comparison between the covering of the Cantor set and the
number of white points.
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Theorem 4. The number of white cells of the configuration of the cellular
automaton corresponds exactly to the size of the minimal covering of the
Cantor set for balls of a diameter that corresponds to the homothetical fac-
tor. Furthermore, the Hausdorff dimension of the Cantor set embedding is
log 2/ log 3.

Proof. Because N,(e) = 2" and e, = 37", we have the equality 2" =
(37™), which gives the dimension d given in the theorem. i

Furthermore, we can associate a discrete dynamical system that counts
the proportion of black points on the configuration and, complementarily,
one that counts the ratio of white points. The discrete dynamical system
associated to the black points is the following. Let II; denote the proportion
of black points. Clearly 1—II? denotes the proportion of white points because
of the quotient. The dynamical system can be defined recursively by

2 1
P = 51’[,'1_1 + 3
which has 1 as an attractor. Thus II,, = 1 —II has 0 as an attractor, which
maps to the definition of the Hausdorff measure of a Cantor set (see [5]).

We can now claim that the embedding of the subsequence of the sequence
of the configurations of the cellular automaton defined previously converges
to the usual Cantor set as a limit set.

5.2 Sierpinski Carpet

Here we give justification for the computation of the Hausdorff dimension
in discrete space for the two-dimensional cellular automaton that computes
the Sierpinski carpet depicted in Figure 9. The process for drawing the
Sierpinski carpet on the mesh is the one suggested in section 4.2.2. Here we
give a theorem analogous to Theorem 4.

Theorem 5. The number of white points of the configuration of the 2-
cellular automaton with the Moore neighborhood corresponds exactly to the

Figure 9: The Sierpinski carpet.
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minimal covering of the Cantor set for balls of a diameter that corresponds
to the homothetical factor. Furthermore, the Hausdorff dimension of its
embedding is that of a Sierpinski carpet, namely log 8/ log 3.

Proof. The covering of the initial configuration of the cellular automaton
gives in H? = [0,1] X [0, 1] a number of balls N(¢) = 8 with diameter e = 371,
and in the configuration 8 white points with an homothetical ratio of 1/3,
which corresponds to the situation in H? and starts the induction. For the
induction step, assume we have covered the nth configuration with 8" balls
having the same number of white points in the configuration. The area
of the (n + 1)th configuration is clearly (3"*!)%) and contains (because of
the duplications) 8 x 8" white points with the same number of balls in its
embedding, that is, 8"*! balls. The rest of the nonquiescent part of the
configuration is painted black.

Because N,,(¢) = 8" and &, = 37", we get the equality 8" = (37")¢, which
gives the dimension d of the theorem. B

As for the Cantor set, it is also possible to associate a discrete dynamical
system with the Sierpinski carpet that counts the proportion of black points
on the configuration and, complementarily, one that counts the proportion of
white points and thus the proportion of balls. The discrete dynamical system
associated with the black points can be determined as follows. Let II;, denote
the proportion of black points. Clearly 1—1II? denotes the proportion of white
points. The discrete dynamical system can be defined recursively by

o _ 8 1
H'n. - 9Hn—l ¥ 9
which also has 1 as an attractor: Thus II,, = 1 — II has 0 as an attractor,
which maps to the definition of the Hausdorff measure of a Sierpinski carpet.
As for the Cantor set, we can claim that the embedding of the subsequence
of the sequence of the configurations of the cellular automaton defined pre-
viously converges to the usual Sierpinski carpet as a limit set.

5.3 Sierpinski-Menger sponge

Even for higher dimensions, the process is analogous and leads to the same
type of results. If we are interested in a three-dimensional cellular automaton
with the generalization of the Moore neighborhood, we obtain the well-known
Sierpinski-Menger sponge depicted in Figure 10 (see [8]). The usual theorem
holds for three-dimensional cellular automata.

Theorem 6. The number of white points of the configuration of the cellular
automaton corresponds exactly to the minimal covering of the Sierpinski-
Menger sponge for balls that correspond to the homothetical factor. Fur-
thermore, the Hausdorff dimension of its embedding is that of the Sierpinski-
Menger sponge, log 26/ log 3.
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Figure 10: The Sierpinski-Menger sponge.

One can also determine the dynamical system that counts the proportion
of black points of the nonquiescent part of the configuration, which is II? =
LI _, + 5. The proportion of white points is denoted by I, = 1 — II?.

Conclusion

Our method of generating fractals yields forms other than those obtained
using linear cellular automata. Furthermore, the discrete dynamical systems
we have defined seem to map to the definition of the Hausdorff measure.
These examples clearly give instances of parallel exponential algorithms be-
cause their time-complexities is linear in the space-complexities, which grow
exponentially.

There are many other methods for generating fractals, such as fractals
obtained by k x k substitutions [2] and in relation to nice arithmetic prop-
erties listed in [17]. In [18], two additional methods for generating fractals
are proposed: the first uses iterated Kronecker products, and the second
uses iterated matrix-valued homomorphisms. Both provide efficient parallel
algorithms for computing n x n images with O(logn) operations per pixel.
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