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Abstract. Given some multidigraph , a state is any dist ribut ion of
some chips on its vert ices. We transform t his initial st ate step by
step. Every vert ex checks whet her it is able to send one chip through
every outgoing arc. If it can, it does; otherwise it does not send any
chip. All vert ices check and send in parallel. Finally, at every vert ex all
incoming chips are added to the remaining chips. This tr ansformation
on the set of states is iterated.

If the digraph and the total numb er of chips are finite, then we
finally arrive at some periodic configurat ion. Here we investigate how
t hese periodic configurations depend on the digraph and the total
number of chips. There is a sharp cont rast in the behavior for Eulerian
digraphs (where the in-degree of each vert ex equals its out-degree) and
non-Eulerian digraphs.

1. Introduction

We define mult id igrap hs as directed graphs D = (V, A) having mu lt ipliciti es
on t he arcs , that is , wit h some mapping j.t : A ---+ N * from the arc set onto t he
set of posit ive integers. The out-neighborhood N+ (x) of a vertex x is t he set
of all vertices y wit h xy E A. T he out-degree d+(x ) of x is L XYEA j.t(xy ). In
neighborhoods and in-degrees d- (x ) are defined in t he same way. We ass ume
throughou t that D is locally finit e, meaning that d+(x) and d- (x ) are finite
for every ver tex x . Eulerian multi gr aphs have t he prop erty that every vertex
has equal in- and out-degree. F igur e 1 shows two mu ltidigraphs, t he right one
Eulerian . Undirected mult igr ap hs can be viewed as symmet ric mul t idigraphs
wit hout multiple ar cs, or as sp ecial Euleri an mult idigraphs .

A stat e is any mapping f : V ---+ N . Informally, it can be viewed as any
distribution of some chips on t he vertices of t he graph . For any state f let
t he activity af(x ) of a vertex x be defined as 1 if f (x ) 2 d+(x ) and as 0
ot herwise; we call t hese vertices x having af (x) = 1 active and the others
passiue.

Given any state , we derive a new state if? (f ) using t he rule

if?(f)(x ) := f (x ) - af(x) d+ (x) + L af (Y)j.t(yx) .
yEN-(x)
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Figure 1: Two mult idigraphs, the right one Eulerian .

This tran sformation can b e interpret ed as follows. On every vertex x t here
are f( x ) chips . Every vertex wants to send one chip to every out -neighbor.
If this is no t possible (since f (x) < d+(x)) , it resigns and sends no thing.
Otherwise the vertex is active , and sends these chips . The chips arr ive at
their destinati ons, and we have a new state. Not e that the total number
of chips N = 2.: VEV f( v) doe s not change during the t ransformation . It is
obvious that loops do not play a great ro le in the process . If t here is a loop
xx we get a similiar process by deleting the loop and delet ing J-l( xx ) of the
chips that lie on x , so we assume in the following that there are no loops.

We now iterate this tran sformation. Define, as usu al, cpU) as <1? (<I?n-1U) )
for n ::::: 2, and <I?l U ) := <1? U). To simplify notation , we write <I?n f inst ead of
<1?n u ), and <I?n f(x) inst ead of (<I?nu))(x) . A state f is periodic if <1?Pf = f
for some integer n; the smallest such int eger is called the period per U ) of
f. Instead of "periodic wit h period k" we say k-peri odic, and instead of
"l -perio dic" we say .fixed.

In general there may be no p eriodic states, even for a finit e number N of
chips . T he simp lest example is the one-way infinite directed path , wit h one
chip on some ver tex. However , for finit e D , t he to tal number of states wit h
a fixed (finite) numb er N of chips is finite . In this case , every initi al state
event ually b ecom es pe riodic.

Bitar and Goles investigated this par allel chip firing pr ocess on finit e,
un direct ed trees, and showed that only pe riod 1 or 2 occur in that case [2].
In this paper we investigate the pe riodic states in general (finite ) multidi
graphs . More precisely, we ask how t he possibl e period lengths depe nd on
the to tal chip number N , given a fixed finit e mul tidigraph. It t urns out
that Eulerian mult idigraphs show a very specific behavior ; most no tably the
resulting pattern between possible pe riods and N is symmetric. For non
Eulerian mul ti digraphs, the basis of the null space of the Laplacian of the
mult idigraph is an imp ort ant t ool for excluding certain numbers as periods .
Moreover, it is p ossible to show that the period is not bounded by some
polynomial in the size of the digraph. Note t hat all undirect ed mult igraphs
(that is, symmetric multidigraphs) are Eulerian mult idigraphs .

T he corresponding chip firin g games of graphs or digra phs have been
investigated in [1, 3, 4, 5, 6, 9]. In these games, at any state only one active
vertex fires, and we have t he choice of which active vertex to choose.
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2. Active or passive vertices

2.1 Forever active or passive vertices

Let some state be given . A vertex is called for ever acti ve or for ever passive
if it is active or passive, resp ecti vely, in all future states .

Remark 2.1. In p eriodi c sta tes all in-neighbors of every forever-passive ver
tex are forever passive.

Proof. Assume there is such an arc xy , where y is forever passive but x is
not. Since our state f is periodic, there are infinitely many states iPn f where
x is act ive, that is, x fires a chip toward y. y never loses chips; nevertheless,
at any t ime there are fewer than d+(y) chips at y . By the assumption d+(y)
is finit e, a cont ra dict ion . •

In this paper we shall concentrate on st rongly connecte d digraphs because
the problem reduces to this case in the followin g sense . T he condens ati on
of the digraph D has all strong comp onents of D as vert ices , and an arc
from vertex x to vertex y if and only if there is some arc from some ver tex
of the component corresponding to x toward some ver tex in t he compo nent
corres po nding to y . A sin k component is a st rong component that forms a
sink in the condensation of D .

Proposition 2. 2. Let th e total number of chips N = I:xE v f( x ) be finit e.
In every p eriodi c sta te, all vert ices in nonsink components are forever passive.

P r oof. Choose any st rong compo nent that is no sink component . This
mean s that there must be some vertex x E V (Q) and some arc xy E A such
tha t there is no direct ed path from y to x . Let B denote the set of all vertices

-from which there is some dir ected path towar d x, sure ly y ~ B . Since there
is no arc from V \ B t oward B , this set B never gains chips . Sin ce the to tal
nu mber I: z EB f (z) of chips on B is fini te, this implies that for a periodic
state t, t here should not be any loss of chips on B . T his implies that x must
be totally forever passive. Remark 2.1 implies that all vertices in B , and in
par ti cular in Q, must be forever passive, and it suffices to t reat chip firin g
on st rongly connecte d digraphs. •

T he period ic states on acy clic digraphs can be characterized as follows.

Corollary 2.3. Only p eriod 1 occurs in acyclic multidigraph s for finite N .
Th e fix ed states are those in which all nonsink verti ces are passive.

Having locat ed the forever-passive vert ices from the st ructure of D alone ,
what can be said about forever-acti ve vertices?

Proposition 2.4. Let N be finite.

(a) No vert ex with d+(x) > d-(x) is forever act ive.
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(b) A vert ex x with d+(x) = a: (x) is forever active if an d only if there is
some n such th at all it s in-n eighbors are forever active in <])n f .

Proof. Let x be forever active and d+(x) ~ d- (x) . We get f( x) ~ <]) f (x) ~
<])2f(x ) ~ " ' , and since f( x) :::; N is finit e, there is some n with <])n f (x) =
<])n+l(x) = . . . . This implies that for every j ~ n , x has d+(x) act ive in
neighbors; that is, d+(x) = d-(x) and all in-neighbors of x are forever active
at state <])nf . •

Lemma 2.5. Let the vertex x be not totally act ive in the p eriodi c sta te f .
If d+(x) ~ d-(x), then f( x) :::; 2d+(x ) - 1.

Proof. If x is passive at <])per(J )-l f , then

f( x) = <])per(J) f (x) :::; <])per(f) - l f(x) + d-(x) :::; d+(x) - 1 + d-(x)

= 2d+(x) - 1.

If x is act ive at <])per (J )- Hl I ,.. . ,<])per(J)- l t ,but active at <])per(J )- tf , then

f(x) < <])per(J)- l f (x) < ... < <])per(J )- t+l f(x) ,

but <])per (J)- Hl f (x) :::; 2d+(x) - 1 as above . •

2.2 Activity sequences

We next look at the sequence af (x), a<l?f(x), . . . of act ivities for a certain
vertex x . Surely the sequences for all vertices are not independ ent from each
other. T he following two lemmas, extens ions of lemmas in [2], describ e some
connec t ion .

Lemma 2.6 . Let d+(x) ~ d-(x) , and assume th at af( x) = 0 but a<l?f( x) =
. . . = a<l?' f( x) = 1. Then th ere is some Y E N -(x) wi th af (Y ) = ... =
a<l?H f(Y) = 1.

Proof. Since x is passive at state t , f(x) < d+(x) . Now assume there is no
such in-neighbor Y of x as describ ed above. T hen until <])tI , from every in
neighb or it receives at most t - 1 chips . On the other hand it loses (t -1 )d+(x)
chips , so

<])t f (x) :::; f (x) + (t - l)d-(x) - (t - l)d+(x)
= f( x) + (t - l)(d-(x) - d+(x) )
:::; f( x) < d+(x),

a contradict ion to a<l?' f (x) = 1. •

Lemma 2.7. Let d+(x) :::; d- (x), and assume a¢f(x) = . . . = a<l?' f( x) = O.
Th en th ere is some Y E N -(x) wit h af(Y) = . . . = a<l?Hf (Y) = O.
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Proof. Assume there is no such in-neighbor y. Then

q;,tf(x) ~ f (x ) + d-(x) - af(x)d+(x)

= (J (x ) - af(x)d+(x) ) + d-(x) ~ d+(x ),

a contradiction to x being passive in st at e q;,t f .•
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T he act ivity vector (af(x )jx E V) can be viewed as a rough description
of the state . It is rou gh since q;,t, and even its activity vector , does not
depend on (af(x)jx E V) alone. In particular , if the activ ity vectors of f
and q;,r f are ident ical, t hose of q;, f and q;,r+l may differ. On the other hand ,
we shall show in the next lemma that if the act ivity vector of a periodic state
is strictly periodic with period r , then r equals the period of the state .

Lemma 2. 8. Let f be some periodic sta te, and let r denote the smallest
positive integer for which aq,if (x ) = aq,'.+if (x) for every i ~ 0 and every
vertex x . Then per(J) = r .

Proof. Surely such an integer r exists and is smaller than or equal to per-(J).
Now let x be any vertex . T he difference q;,rf( x ) - f( x ) depends only on the
act ivit ies of x and all its in-neighb ors through the st ates t, q;,t, .. . , q;,r-l f .
By the assumption

0 = q;,per(f)rf (x ) - f (x ) = per(J )(q;,r f( x ) - f (x )),

hence q;,r f (x) = f (x ). Since this works for every vertex x , r :::; per-(J) implies
r = per(J) . •

2.3 Fix ed states

We call a state totally active or totally passive if all vert ices are act ive or
passive, resp ect ively. Surely every tot ally passive state is fixed . Tot ally
active states are fixed if and only if the multidigraph is Eulerian . Moreover ,
there are no ot her fixed states.

Theorem 2.9. Let D be some finite, strongly connected m ultidigraph .

(aJ If d+(x) = d-( x) for every vertex x, then the fixed states are exactly
all totally active or tot ally passive states.

(b) Otherwise the fixed states are exactly the totally passive stat es.

Proof. Let f be a fixed state. Every passive vertex is forever passive and
every act ive vertex is forever act ive. If there is some (forever) passive vertex
at I, then by Remark 2.1 all vert ices must be forever passive, since D is
st rongly connec ted . So f is totally passive in that case . Otherwise, if there is
no passive ver tex , then all vert ices are active and f is totally act ive. However ,
by Prop osition 2.4 this is impossible if not all vertices have equal in- and out
degree-at least one vertex must have out-degree greater than in-degree in
that case.•
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3. A ver age activ ity and the Lap la cia n

We assume throughout this sect ion t hat the vertex set of D is finit e and
ordered as {VI , V2 , . . . , vn } . T he Laplacian L of D is the n x n matrix (L ij )
wit h

if VjVi E A and i 1= j
if VjVi if. A and i 1= j
if i = j .

T hus the Laplacian is constructed from the adjacency matrix by subt rac t ing
the out -degrees on the diagonal and t ransposing the matrix . Having been
very useful in t he investi gation of the chip firing game in [3] and [4], the
Laplacian is also ap plicable in the parallel process.

Let f be som e p-period ic state. We define the average activity aaf(x) of
a vertex x as Lf~~( I/p)aq, tf(x).

Proposition 3.1. Let f be some p eriodic state for fini te, strongly connec ted
D. Then the average activity vector (aa f( Vi ))i=l,...,n lies in the null space
(kernel) of th e Laplacian of D.

Proof. Let Vi be any vertex. During the whole period d+(vi)aaf(vi)pe r(j)
chips start at Vi . From every in-neighbor Vj, J.l(vjvi)aaf(vj)per(j) chips ar rive
at Vi. T hen d+(vi)aaf(vi) = Lj=l ,...,n/vjv; E A aaf(Vj)J.l(VjVi) , or in ot her words,
(aaf(vl), " " aaf(vn ) ) x LT = o. •

In [3] it was shown that t his null space is one-dimensional in the st rongly
connected case , and has the vector (1, 1, .. . , 1) as a basis provided that D is
strongly connect ed and Eulerian.

Corollary 3 .2 . For every strongly connected, E ulerian m ult idigraph, an d
for every periodic state t, all average act ivit ies of th e vert ices are equal.

For non-Eulerian mul tidigraphs, there is some vector (Rl , R2 , ... ,Rn ) in
the null space of L wit h all Ri integers, and gcd (Rl , .. . ,Rn ) = 1. This unique
vector is called the primitive vector for D .

Corollary 3. 3. Let (Rl , . . . ,Rn ) denote the prim itive vector for the strongly
conn ecte d fini te m ult idigraph D . Then no period smaller than maX;=l,...,n Ri
occurs except 1. If th is p eriod maX;=l,...,n Ri occ urs for N chips , then it also
occurs for N + 1 chips .

A ty pical example for the behavior of non-Eulerian mult idigraphs is pr e
sent ed in the left part of Fig ure 1, and has (2,3,1 , 1, 1,4,2, 1) as it s primiti ve
vector. T hus no period 2 or 3 occurs there . Figure 2 indicates which periods
occur for t he var ious values of N, based on thousands of comp utations on
the mult idigraph. If period p has been found for N chips , then ',,"' stands in
the corresponding ent ry (N ,p) of the tab le.
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Figure 2: Po ssib le periods versus nu mb er of chips N , for t he mu lti
digraph in t he left part of F igur e 1.

A few mor e remarks about these computations are appropriate . 1 chose
about 100 multidigraphs, all with fewer than 15 ver tices. For every fixed
mult idigraph D and every total chip numb er N in the ran ge considered, 1
chose ab out 1000 (from 100 up to 100,000, dep ending on the size of the
digraph and the first results) initial states at random. T hereby 1 chose two
different models, since the nat ural one ( "For every chip, put it on a vert ex
at random with all probab ilit ies equa l") resulted in very equal distributed
distribu t ions. Each such ini t ial state was tr ansformed , unti l we arr ived at a
periodic state .

4. B ounds for N

Let 1 be a periodic state . We want to derive upper and lower bounds for
I:i=l ,...,per (jl <pi1(x) by local observat ions , for every vertex x . Since per(j)N =
I:XEV I:i=l,...,per(f) <Pif(x ), such bounds would yield upper and lower bounds
for the total number of chips N in terms of per(j ) (or conversely) .

Which sequences f = f o, Jr , .. . , f per(jl-l , f per(jl are possible with f i+l =
<p1; ? The only restrict ions we consider are local at x, t hat is,

1. f i ::; f i+l ::; f i + d- for I. < d+,

2. I . - d+ ::; I i+l ::; I, - d+ + a: for I. :::: d+, and

3. exactly pa of t he numbers are greater than or equal to d+,

where all indices are taken modulo p, and where pa , p , d+, and d- are
abbrevia tions for per (J )aaf (x ), per (j ), d+(x ), and d- (x ), resp ectively. Let
us investigate how large or small the sum of p integers I:i=O,...,p- l 1; can be
under these restrict ions .

(I) Let us begin by searching for the min imum. If d+ ::; d:' , then it is
easy to see that this minimum is pod": we choose 10 = h = .. . = f pa = d+,
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and f pa+1 = .. . = f p- l = O. If d+ > d- , then we assume 2pa ::; p. In this
case it is not difficult to show that the minimum is

h(p,pa,d+, d- ) := pa(d++ (d+ - d-))
p- 2pa

+ L max {d+ - (1 + i) d- ,O}
i= l

(1)

Since per (J )aaf (x ) must be equal to or a mul tiple of the corres ponding value
in the primitive vector , we get the following.

Proposition 4 .1. Let f be some periodic stat e, and let (1\ , . .. , .en) be the
primitive vector of the finit e st rongly connected m ult idigraph D . Then

per(J)N ::::: L h(per (J ), .ei , d+(Vi),d- (Vi))'
i= 11 .. · ,n

where h(. . .) is defined by equation (1) if d+(x ) > d-(x ), and equals
per(J) .eid+ (Vi) otherwise.

(II) On forever-active vert ices there may lie arbit ra rily many chips in
periodic states. Thus, if aaf(x) = per(J ), then there is no maximum value
for t he problem. This stands in sharp cont ras t to the behavior of vert ices x
th at are not forever active. If the sta te f being considered is periodic, then
f (x ) must be bounded by some constant that depends on per(J) , d+(x) ,
d-(x) , and aaf(x) ; thus t here must be some maximum value of I:i=O ,H.,p-l f;-

It is not difficult to show th at for d+ ::; a: the maximum is achieved by
clustering the posit ive and negat ive activit ies. We start with f a = d+ - 1,
going as steep as possible upwards, bu t keeping in mind th at we must be
un der d+ for i ::::: pa + 1. Sure ly we should not go below d+ - 1. Thus we set
f a = f pa+1 = .. . = f~-l = d+ - 1. The first restriction yields

I, ::; (d+ - 1) + d" + (i - 1)(d- - d+)

= id- + (2 - i)d+ - 1 for i ::::: 1,

and the second restriction yields

I . ::; (d+ - 1) + (pa + 1- i )d+ = (pa + 2- i)d+ - 1

The rational point s, where these two restrict ions int ersect , is

for i ::; pa.

(2)

If we choose all t. on t hese two rest rict ion lines, we find after some arithmet ic

g(p,pa,d+, d- ) := p(d+ - 1) + d+ ((P;)2+ pa G-LsJ) )

+d-(LsJ
2+1)

(3)
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as the maximum value for L:i=O,...,P- 1 f; (using the convent ion G) = 0).
For d: < d+ we abb reviate

t := lp~apaJ'
t hus obtaining

g(p,pa, d+,d- ) := p(d+ - 1) + pad-

+ (d+ - d-)t ( pa - ~(p - pa)(l + t) )
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(4)

(5)

P roposition 4 .2. For every p eriodic state f wit ho ut forever-active vert ices,
we get

peT(j)N:S L g(peT(j ),peT(j )aaf( x ), d+(x) , d- (x )),
x EV

where g is defined by equations (2) an d (3) ifd+(x ) :s d-(x) , an d by equations
(4) an d (5) otherwise.

What about upper bounds for aaf(x)? Let (f 1 , . .. ,fn ) b e the primitive
vector of a st rongly connect ed fini t e mult idigraph . T here must be some
integer k such that peT(j)aaf(vi) = k f i for every i = 1, . . . , n o Surely k :s
peT(j)/ max;=l ,.. ,n fi · If the pe riod is not a mult iple of m axi=l,...,n fi, then
there is no foreve r-active vertex.

Corollary 4 .3 . Let f be p eriodic in the finit e strongly connected multi
digraph D. Let (f 1 , . . . ,fn) be the primitive vector. If peTen is not divi sible
by m aX; = l ,...,n fi, then

peT(j)N:S L g(p eT(j) , u; d+(Vi), d- (Vi)),
i = l, ... ,n

with k = [peT(j) / max;=l ,.. ,nf;J and g as above.

There is another very useful bound, which has been given in a "note
added in proof" in [3] . Let the feedback number cp(D ) of a strongly connected
mult idigraph D = (V,A , J.L) be the minimum L:aEA ' J.L (a) for every set A'
of arcs whose removal destroys all direct ed cycles . For instance, t he left
multidigraph of Figure 1 has feedback number 3, whi le the right one has
feedback number 4.

Theorem 4.4 ( [3]) For N < cp (D ) chips , only p eriod 1 occurs.

We are now ab le to explain the minus signs in Figure 2. They indicate
the sit uation in which , for a given chip number N , p er iod p is imp ossible
according to T heorem 2.9, Corollary 3.3 , the bounds ab ove, and Theorem 4.4.
If nothing stands at the entry, then by computat ional expe riences on random
instances almos t sur ely no per iod p occurs for N chips, but I do not know
why.



376

Figure 3: Some digraph that allows relatively large peri ods.
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5. Large p eriods

Given a finite mult idigraph D = (V,A , fL) and a finite numb er N, there
are exactly (N+~I-I ) states. Consequently, as a first very rough result , th e
period of any periodic state is bounded by this numb er. But , with the re
sults of section 4 we ar e in a position to give also lower bounds for periods
for non-E ulerian multidigraphs. For instance, the mul tidigraph in Figur e
3 has (328,235, 160,72,362, 72) as its primi tive vector (with the usual row
wise labeling of its vertices). For N > fL (A) - IVI = 21 vertices, there
is no fixed (totally passive) state, hence every periodic state has period at
least 362. For instance, for N = 22 the st ate (3, 4, 6,4,5 , 0) is 464-periodic.
Compared with the total numb er (2:) = 80,730 of states, this seems large
enough.

We shall show that the period is not bounded by some polynomial in fL (A).
For this purpose we const ruct a family of digraphs, even without mult iple
arcs, that is, with the constant function 1 as p: For an integer k ~ 2 let
the digraph D k be const ructed from the directed 3-cycle by replacing one
of its vertices by k copies. For integers k,bI , b2 , . . . , bk ~ 2 we construct the
digraph D (bI , b2 , . . . , bk ) from the disjoint union of Db]," " Dbk by identifying
all vertices with in-degree greater than 1. Figur e 4 shows an example.

Aft er some suitable relab eling as in Figure 4, it is easy to see th at a vect or
v = (V I , V 2 , ' " , vH 2:>J that sat isfies L x v = 0 is defined by VI := rr7= I bj

and V 2 , · · · , vHb] := CI , V 2+b p " " v H b2 := C2 , · · ·, where Ci := rrj = I ,.. .,k,j ;fi bj .

There is no common divisor if the b, are different prime numbers.

Theorem 5 .1. There is no polyn omial h(n ) such that perU) < h(n) for
every periodic state f in a digraph D = (V, A) with n arcs.

Proof. Assume on the cont ra ry there is such a polynomial. Then we also
find such a polynomial of the form h(n ) = u-». We choose k + 1 "large"
pr ime numbers PI < P2 < . . . < Pk+l that are "close together ." "Large"
means M 2k(k+ 3} < PI> and "close toget her" means Pi+l :::::: 2Pi for every
i = 1, ... , k-this is possible by Bert rand 's post ulate ([7]' Theorem 418).
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Figur e 4: T he digrap h D(2 , 3, 5) .
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Then the digraph D (PI ,P2, ' " ,Pk+I) will serve as a count erexample. When
t aking N > IAI- IVI chips, any p eriodic st ate f has period

k+1
perU) ::::: II Pi ::::: p~+1 _

i = l

On the other hand , IAI= k+ 1+2 I:~!II Pi- Applying the "closeness" property
several times, we obtain

and

since PI is large enough , yielding a cont radict ion to our ass umption in this
way_•

Recent ly Kiwi, Ndo undam, T chuente, and Goles [8] have given examples
of supe rpolynomial p eriods for the chip firing process for undirect ed graphs,
so even for a primitive vector (1, 1, . __, 1) this is possib le for cer tain N .

Problem 5.2. Given integers nand m , what is the largest entry in some
primitive vector of some strongly connec ted (m ulti)digraph with n vertices
and m arcs? W hat is the largest period occurring in such a st rongly connected
(m ult i)digTaph?

As an aside, is it t rue that the mult idigrap h of Figure 3 may serve as a
calendar (afte r some init ial time) , when using 28 chips? Is it true that only
p eriod 365 occurs there?
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F igure 5: P ossible p eri od s versus number of chips N, for t he right
digraph in Figure 1.

6. Eulerian multidigraphs

It has been emphasized severa l times so far that t he behavior of Eulerian
multidigraphs is quite different from arbit rary mult idigraphs. A typical ex
ample of the relation between period and N in the Eulerian case is given
in Figure 5. The most st riking difference appears to be t hat t he pat tern is
symmetric along the axis N = p,(A ) -1V1/2. Moreover , it turns out t hat the
periods ar e relatively small, and the period-2 line is connected.

6.1 Symmetry

Ch ip firing on Eulerian mult idigraphs is only interesting with N < 2p,(A) 
IVI chips. The more pr ecise bound depend s on its minimum in-degree /5- (D).

Theorem 6.1. T he only p eriodic states for Eulerian m ultidigraphs D =
(V,A,p,) with N > 2p,(A) -IVI- /5-(D) are the totally active st at es. Only
p eriod 1 occurs.

Proof. Assum e there is some period ic state f that is not totally act ive.
Then th ere is at least one passive vertex y, and

N = f (y )+ L f (x ) ::::; d+(y)-l+ L 2d+(x )- I::::; 2p,(A)- IVI-/5-( D)
xE V,x ,ey xE V,x ,ey

by Lemm a 2.5. •

Let f be some state with f (x) ::::; 2d+(x) -1 for every vertex x . We define
the reflection 1 by l (x ) := 2d+(x) - 1 - f( x ). Then 1 is aga in a state .

P roposit io n 6 .2. Let f be some periodic but not totally active sta te in
some Eu lerian mult idigraph . Th en the reflect ion 1 is also periodic (with
perU) = per(J) an d aay( x) = 1 - aaJ(x)).
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Proof. T he results follow from the fact that <J?f = <J?1, which can be seen
as follows. Note that a vertex is active in f if and only if it is passive in f.
Let x be any vertex. Then

<J?f (x ) + <J? f( x ) = f (x ) - aj(x )d+(x ) + L aj (Y)p,(yx )
yxEA

+ 1(x ) - aj(x )d+(x) + L aj(Y)p,(yx)
y x EA

= 2d+(x) - 1 - d+(x ) + L p,(yx)
yxE A

= d+(x ) - 1 + d-(x)

= 2d+(x ) - 1. •

6 .2 Periods and dicycle lengths

This subsection relies on the fact th at Lemmas 2.6 and 2.7 ap ply for all ver
t ices in Eulerian multi digraphs. Throughout let f be some period ic state
in such a digraph . We use the abbreviat ions ai(x ) := aepij(x ) for i =

0,1 , ... ,per U ) - 1, and all indices are taken modul o perU ). For integers
z , let z denote that integer i E {a, 1, ... ,per U ) - I} congruent to z mod
ulo perU). The cyclic distance of i, j E {a, 1, . .. ,per (f) - I} is defined by
d(i,j) := min{i - j ,j - i} .

Not e that th e lemmas in sect ion 2 do not imply that every vertex x has
some in-neighbor y having all ai(y) = ai+l( x) . This would be convenient,
bu t unfortunately it applies only in spec ial cases.

We call a maximal subsequence of consecutive I s or consecutive Os in the
act ivity pat tern of a vertex a I -block or O-block, respectively. Let r and s
denote the length of a longest l-block and O-block, respect ively, appearing in
all these activity sequ ences of the vert ices.

For i = 1, . .. ,per(f ) - 1, let Vi (resp ectively Wi) denote the set of those
vertices x where a l-block oflengt h r (respect ively O-block oflength s ) begins
at <J?if. T ha t is, x E Vi if ai(x) = .. . = ai+r-I (X) = 1, and y E Wi
if ai(y ) = . . . = ai+r- I(Y) = 0. Since the l-blocks being considered have
maxi mal length , VinVj is empty if d(i , j ) :::::: r . In the same manner , d(i , j ) :::::: s
implies Wi n Wj = 0. By Lemma 2.6 every x E Vi has some in-neighb or in
Vi-I, and every Y E vVi has some in-neighbor in Wi- I' Consequent ly all th ese
sets Vo,. ·. , Vper(J)- I ,Wo, . . · ,W peT(J)- 1 are nonempty.

Now we choose any x E Va . We find some in-neighb or Xl in Vper(J)-I ,
som e in-neighb or X2 of Xl in Vper(J)-2, and so on . Let t be the smallest
index for which x, E {xo, Xl , .. . Xt- d , say Xt = Xj wit h °:::::: j < t . T hen
Xt --> Xt- l --> . . . --> Xj = Xt is a dicycle of length t - j in D . Since x; lies
in both Vper(J) -t and Vper(J)-j (wit h all indices again modulo perU)) , we get
d(t ,)) = d(per(f) - t, per(f) - j ) > r .

Let c(D) denote the length of the longest dicycle in D , if there is one,
and 00 if D is acyclic (no te that acyclic digraphs are treated sufficiently in
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Corollary 2.3). In the argument above, c(D ) ::::: t - j ::::: d(t ,]) > T , and when
treating the a-block case in a similiar way, we get the following.

Lemma 6.3. For every periodic state in an Eulerian m ult idigraph D , T,S <
c(D ) with the notations above.

This lemma has been proven in [2] for c(D) = 2. Together with Lemma 2.8
there follows their result that only period 1 or 2 occur s for undirected trees.
On the other hand, if all Vi are disjoint , then t == j (mod peT(J )) for the
dicycle const ructe d above.

Lemm a 6 .4. Let! be a periodic sta te in the Eulerian m ultidigraph D . If
the activity sequence of every vertex contains at most one l -block ofm aximal
length T, or if the activity sequence for every vertex contains at most one 0
block of length s , then the length of some dicyc1e in D must be divisible by
peT(J).

Corollary 6.5 . Let f be a periodic state in the strongly connected Eulerian
m ult idigraph D . If there is som e block of length at least lPeT(J) /2J, then
there m ust be some dicyc1e whose length is divisible by peT(J) .

Corollary 6.6. Iff is periodic with peT(J) E {2, 3, 4, 5, 6, 7, 9} in the Euler
ian m ultidigraph D , then D contains some dicyc1e whose length is divisible
by peT(J).

Proof. Assum e D contains no such dicycle. T hen T, S < lPeT(J) /2 J by
Corollary 6.5. T his is impossible for peT(J) = 2, 3, or 5. In the following we
may assume without loss of generality that S :S T.

For peT(J) = 4 we get T = S = 1; consequent ly the activity sequences
of every vertex read either 0,1 ,0,1 or 1,0,1 ,0 , beginning with ! , which is a
contradict ion to Lemma 2.8.

By the same reason T = S = 1 is imp ossible in the case peT(J ) = 6, hence
T = 2. Then either S = 1 and again we have a cont radict ion to Lemma 2.8,
or S = 2. T he result then follows from Lemma 6.4.

If peT(J ) = 7, then T = 2 and aaf = 3/7 or = 4/7. In both cases we have
contradictions with Lemma 6.4, in the first case for the l-blocks, in the other
for the O-blocks.

T he case peT(J) = 9 can be treat ed in the same way.•

For instance, in Figure 6 we see the pattern for the cube digraph-the
undi rected grap h on 8 vertices whose edges are the edges of t he cube . Since
t here are no cycles of length 5, 7, 9, and mult iples, period 5, 7, and 9 do not
occur. Not e that period 3 occurs (since the graph contains cycles oflengt h 6).
It also follows that no period 7 or 9 occurs or the right digrap h in Figur e l.

Note that by the result in [8], the preceding corollary cannot be true for
arbit rary periods.

We shall construct periodic states in the following way.
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Figure 6: Possible periods versus number of chips N , for the symmet
rical cube digraph .

Lemm a 6 .7 . If th ere is some partition V = Va u Vi u- . .U Vp- l of the vertex
set of an Eulerian multidigraph such that for every i E {O, 1, . . . ,p - 1},
every vertex in Vi has some in-neighbor in Vi-I> then p eriod p occ urs (for
some appropriate N).

Proof. For every i E {O, 1, ... ,p - 1} and every x E Vi , let g(x) :=

I:YEVi_l p,(y x ). By t he ass umpti on ab ove, all t hese values are greate r than O.
For every i E {a,1, ... ,p - 2} and every Xi+! E Vi+! we define

i - I

j(Xi+l) := L L p,(y , Xi+!) '
k=OyEVk

We simp ly define states f of p eriod p. For every i E {O, 1, .. . ,p - 2} and
every Xi+l E Vi+l we choo se f such t hat

For Xo E Vo we choose f such that

It is not difficult to show t hat t he resul ting state is periodic with period p ,
and t he average activit y equals l i p . •

In fact , all per iodic states wit h average ac t ivity 1Iper(f) occur wit h t his
construction.

Proposition 6 .8 . In every finit e, strongly connected, Eu lerian multidigraplJ,
every divisor of every dicyc1e length occurs as a period.

Proof. Assume Xo ---> Xl ---> . •. ---> Xpk-l ---> Xo is a dicycle of lengt h kp. Fi rst
we part it ion the vert ices of the dicycle by VOl := {xo , x p, X2p , ...}, . .. ,11;1 :=

{Xi , Xi+p, Xi+2 p, ...} , . .. . The sets are disjoint , and very X E 11;1 has some in
neighbor in 1I;~1' Next we define V0

2 as the un ion of VOl and all out-n eighbors
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of vert ices of VOl outside VOl U ... U Vpl_ l . If V02 , ... , Vi2 are defined , we define

Vi~l as the uni on of Vi~l and all out-neighbors of vertices of Vi~l outs ide
V0

2 U U Vi2 U Vi~l U · . . U Vp
l_ l . By the const ru ct ion , all t hese result ing sets

V0
2

, , Vp
2
_ l are disjoint , and every vertex in Vi2 again has some in-neighbor

in Vi~ l ' Furthermo re U;~~ Vil equals the vertex set V of t he mult idigraph ,
or is st rict ly contained in the set U;~~ Vi2 , since our multidigraph is strongly
connecte d . P roceeding in this way, we finally arr ive at a part it ion of V t hat
obeys the proper ty stated in Lemma 6.7, and we apply t his lemma.•

6 .3 P eriod 2

We call convex t he sets of integers of the form {i , i + 1, . .. , j} . T he following
pr operty is unique for period 2.

Proposition 6.9. Let D = (V , A , p,) be some finite, strongly connected,
Eulerian m ult idigraph. Th en the set of integers N for which period 2 occurs
forms a convex subset of the set {I~p,(A)l ,··· , L ~p,(A) - IVIJ }.

P roof. In every periodic state of period 2, all vertices have average activ ity
~ . T hen let V = Vo U Vl be any fixed partition of V wit h the property as in
Lemma 6.7 .

The to tal number of chips for which period 2 occurs , given this bipar titi on ,
is t he convex set

{ P,(A) - L g(x) , . .. ,p,(A) - IVI+ L g(X) }
xE V, xE Vo

by Lemma 6.7 and the equality p,(A) = 2":XEV d+(x) . By the property of the
bipartit ion ment ioned above, 2":xEvo g(x) 2 lVo l and L XE V

j
g(x) 2 1V1 1. Since

both sums count disjoint subset s of t he arc set, we obtain

L g(x) + L g(x) :::; p,(A).
x EVo x EV,

Since D is Eulerian , 2":XEvo g(x) = 2":XEV, g(x). Hence

1 1
Zp,(A) :::; p, (A) - L g(x) :::; p,(A) - ZIVI :::; p,(A) - IVI+ L g(x)

xE V, x EVo

3
< Zp,(A) - IVI·

T hus, for every such bip ar tit ion , the set of possible N 's form s a convex subset
of integers in this range, but containing p,(A) - ~ IV I , hence the result .•
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6.4 Sharper bounds

At least we can give sharpe r bounds for N for (poss ible) larger periods . Not e
that the bounds of sect ion 5 read as

aaf(x)f.l(A) ~ N ~ (1+ aaf (x)) f.l(A) - /VI
for Eulerian mult idigraphs. (Note also that all average act iviti es aaf(x) of
the distinct vertices ar e equal here.) So in general we get

pe:(f )f.l(A) ~ N ~ (2- per
1(f)

) f.l (A ) - /VI·

Lemma 6.10. Let f be some p eriodic state in the strongly connected E uler
ian m ult idigraph D, with per(f) longer than th e longest dicycle of D. Th en
per(f)aaf(x) 2: 2. If per (f ) is odd, then per(f)aaf(x) 2: 3.

There is st ill another bound for the average activities, which may be
bet ter than the previous one if c(D ) is small and the period large, as follows.

Lemma 6.11. In every periodic state in any E ulerian multidigraph, aaf(x)
2: l / c(D ).
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