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Abstract. Given some multidigraph, a state is any distribution of
some chips on its vertices. We transform this initial state step by
step. Every vertex checks whether it is able to send one chip through
every outgoing arc. If it can, it does; otherwise it does not send any
chip. All vertices check and send in parallel. Finally, at every vertex all
incoming chips are added to the remaining chips. This transformation
on the set of states is iterated.

If the digraph and the total number of chips are finite, then we
finally arrive at some periodic configuration. Here we investigate how
these periodic configurations depend on the digraph and the total
number of chips. There is a sharp contrast in the behavior for Eulerian
digraphs (where the in-degree of each vertex equals its out-degree) and
non-Eulerian digraphs.

1. Introduction

We define multidigraphs as directed graphs D = (V, A) having multiplicities
on the arcs, that is, with some mapping p : A — A from the arc set onto the
set of positive integers. The out-neighborhood N*(z) of a vertex z is the set
of all vertices y with zy € A. The out-degree d* (z) of x is Y, c 4 p(zy). In-
neighborhoods and in-degrees d™(z) are defined in the same way. We assume
throughout that D is locally finite, meaning that d*(z) and d~(z) are finite
for every vertex x. Fulerian multigraphs have the property that every vertex
has equal in- and out-degree. Figure 1 shows two multidigraphs, the right one
Eulerian. Undirected multigraphs can be viewed as symmetric multidigraphs
without multiple arcs, or as special Eulerian multidigraphs.

A state is any mapping f : V — N. Informally, it can be viewed as any
distribution of some chips on the vertices of the graph. For any state f let
the actwity ag(z) of a vertex = be defined as 1 if f(z) > d*(z) and as 0
otherwise; we call these vertices = having ag(z) = 1 active and the others
passive.

Given any state, we derive a new state ®(f) using the rule

o(f)(x) = f(z) — ap(x)d"(z) + > ar(y)ulye).

yEN—(z)
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Figure 1: Two multidigraphs, the right one Eulerian.

This transformation can be interpreted as follows. On every vertex z there
are f(x) chips. Every vertex wants to send one chip to every out-neighbor.
If this is not possible (since f(z) < d*(z)), it resigns and sends nothing.
Otherwise the vertex is active, and sends these chips. The chips arrive at
their destinations, and we have a new state. Note that the total number
of chips N = Y ,cy f(v) does not change during the transformation. It is
obvious that loops do not play a great role in the process. If there is a loop
xx we get a similiar process by deleting the loop and deleting p(xz) of the
chips that lie on z, so we assume in the following that there are no loops.

We now iterate this transformation. Define, as usual, ®"(f) as ®(®"*(f))
for n > 2, and ®'(f) := ®(f). To simplify notation, we write ®" f instead of
O™(f), and O™ f(x) instead of (D"(f))(z). A state f is periodic if PP f = f
for some integer n; the smallest such integer is called the period per(f) of
f. Instead of “periodic with period k” we say k-periodic, and instead of
“1-periodic” we say fized.

In general there may be no periodic states, even for a finite number N of
chips. The simplest example is the one-way infinite directed path, with one
chip on some vertex. However, for finite D, the total number of states with
a fixed (finite) number N of chips is finite. In this case, every initial state
eventually becomes periodic.

Bitar and Goles investigated this parallel chip firing process on finite,
undirected trees, and showed that only period 1 or 2 occur in that case [2].
In this paper we investigate the periodic states in general (finite) multidi-
graphs. More precisely, we ask how the possible period lengths depend on
the total chip number N, given a fixed finite multidigraph. It turns out
that Bulerian multidigraphs show a very specific behavior; most notably the
resulting pattern between possible periods and N is symmetric. For non-
Eulerian multidigraphs, the basis of the null space of the Laplacian of the
multidigraph is an important tool for excluding certain numbers as periods.
Moreover, it is possible to show that the period is not bounded by some
polynomial in the size of the digraph. Note that all undirected multigraphs
(that is, symmetric multidigraphs) are Eulerian multidigraphs.

The corresponding chip firing games of graphs or digraphs have been
investigated in [1, 3, 4, 5, 6, 9]. In these games, at any state only one active
vertex fires, and we have the choice of which active vertex to choose.
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2. Active or passive vertices
2.1 Forever active or passive vertices

Let some state be given. A vertex is called forever active or forever passive
if it is active or passive, respectively, in all future states.

Remark 2.1. In periodic states all in-neighbors of every forever-passive ver-
tex are forever passive.

Proof. Assume there is such an arc xy, where y is forever passive but z is
not. Since our state f is periodic, there are infinitely many states @ f where
x is active, that is, x fires a chip toward y. y never loses chips; nevertheless,
at any time there are fewer than d*(y) chips at y. By the assumption d*(y)
is finite, a contradiction. B

In this paper we shall concentrate on strongly connected digraphs because
the problem reduces to this case in the following sense. The condensation
of the digraph D has all strong components of D as vertices, and an arc
from vertex x to vertex y if and only if there is some arc from some vertex
of the component corresponding to x toward some vertex in the component
corresponding to y. A sink component is a strong component that forms a
sink in the condensation of D.

Proposition 2.2. Let the total number of chips N = Y,y f(z) be finite.
In every periodic state, all vertices in nonsink components are forever passive.

Proof. Choose any strong component that is no sink component. This
means that there must be some vertex x € V(@) and some arc xy € A such
that there is no directed path from y to . Let B denote the set of all vertices
from which there is some directed path toward z, surely y ¢ B. Since there
is no arc from V'\ B toward B, this set B never gains chips. Since the total
number Y .cp f(2) of chips on B is finite, this implies that for a periodic
state f, there should not be any loss of chips on B. This implies that x must
be totally forever passive. Remark 2.1 implies that all vertices in B, and in
particular in @, must be forever passive, and it suffices to treat chip firing
on strongly connected digraphs. B

The periodic states on acyclic digraphs can be characterized as follows.

Corollary 2.3. Only period 1 occurs in acyclic multidigraphs for finite N.
The fixed states are those in which all nonsink vertices are passive.

Having located the forever-passive vertices from the structure of D alone,
what can be said about forever-active vertices?

Proposition 2.4. Let N be finite.

(a) No vertex with d*(x) > d~(x) is forever active.
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(b) A vertex x with d*(z) = d~(x) is forever active if and only if there Is
some n such that all its in-neighbors are forever active in ™ f.

Proof. Let x be forever active and d*(z) > d~(z). We get f(z) > D f(z) >
®?f(z) > ---, and since f(z) < N is finite, there is some n with ®"f(z) =
®™*+l(z) = --.. This implies that for every 7 > n, z has d*(z) active in-
neighbors; that is, d*(z) = d~(z) and all in-neighbors of z are forever active
at state @"f. B

Lemma 2.5. Let the vertex x be not totally active in the periodic state f.
If d*(z) > d~(z), then f(z) < 2d*(z) — 1.

Proof. If z is passive at ®7" (=1 f then
F(@) = & f(z) < ST f(2) + 4 (w) < d*(a) — 1+ d"(a)
=2d%(z) - 1.
If z is active at ®per(D=t+1f  @rer(N=1f hut active at &Pt f then
flz) < @PTf(z) < oo < QPTUITHLf(g),

but ®Per(N—t+1 f(z) < 2d*(z) — 1 as above. B

2.2 Activity sequences

We next look at the sequence af(z),aqs(z),... of activities for a certain
vertex z. Surely the sequences for all vertices are not independent from each
other. The following two lemmas, extensions of lemmas in [2], describe some
connection.

Lemma 2.6. Let d*(z) > d~(z), and assume that as(z) = 0 but ass()
- = agtg(x) = 1. Then there is some y € N~ (x) with ag(y) = ---

ag-1£(y) = 1.

Il

Proof. Since z is passive at state f, f(z) < d™(z). Now assume there is no
such in-neighbor y of = as described above. Then until ®'f, from every in-
neighbor it receives at most t—1 chips. On the other hand it loses (t—1)d* (z)
chips, so

O'f(z) < flz) + (- 1)
=fl@)+ (-1
< f(=) < d™(2),

a contradiction to agtf(z) = 1. B

d~(z) - (t—l)d (z)
(d(z) — d*(z))

Lemma 2.7. Let d™(z) < d™(z), and assume ayp(z) = -+ = agrf(z) = 0.
Then there is some y € N~ (z) with as(y) = -+ = age-17(y) = 0.
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Proof. Assume there is no such in-neighbor y. Then

' f(z) 2 f(2) + d”(z) — as(x)d" (z)
= (f(z) = ag(w)d™(x)) + d”(z) = d*(2),

a contradiction to z being passive in state ®'f. }

The activity vector (as(z)/z € V) can be viewed as a rough description
of the state. It is rough since @f, and even its activity vector, does not
depend on (af(z)/z € V) alone. In particular, if the activity vectors of f
and ®" f are identical, those of @ f and ®"*! may differ. On the other hand,
we shall show in the next lemma that if the activity vector of a periodic state
is strictly periodic with period 7, then r equals the period of the state.

Lemma 2.8. Let f be some periodic state, and let r denote the smallest
positive integer for which agi¢(x) = agr+if(x) for every i > 0 and every
vertex x. Then per(f) =r.

Proof. Surely such an integer r exists and is smaller than or equal to per(f).
Now let z be any vertex. The difference ®” f(z) — f(z) depends only on the
activities of z and all its in-neighbors through the states f,®f,...,® 1.
By the assumption

0 = &7 f(z) — f(z) = per(f)(®"f(z) — f(2)),

hence @" f(z) = f(z). Since this works for every vertex z, r < per(f) implies
r =per(f). B

2.3 Fixed states

We call a state totally active or totally passive if all vertices are active or
passive, respectively. Surely every totally passive state is fixed. Totally
active states are fixed if and only if the multidigraph is Eulerian. Moreover,
there are no other fixed states.

Theorem 2.9. Let D be some finite, strongly connected multidigraph.

(a) If d*(z) = d~(z) for every vertex x, then the fixed states are exactly
all totally active or totally passive states.

(b) Otherwise the fixed states are exactly the totally passive states.

Proof. Let f be a fixed state. Every passive vertex is forever passive and
every active vertex is forever active. If there is some (forever) passive vertex
at f, then by Remark 2.1 all vertices must be forever passive, since D is
strongly connected. So f is totally passive in that case. Otherwise, if there is
no passive vertex, then all vertices are active and f is totally active. However,
by Proposition 2.4 this is impossible if not all vertices have equal in- and out-
degree—at least one vertex must have out-degree greater than in-degree in
that case. B
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3. Average activity and the Laplacian

We assume throughout this section that the vertex set of D is finite and

ordered as {vy,vs,...,v,}. The Laplacian L of D is the n X n matrix (L;;)
with
w(v;v;) if vjv, € Aand i #j
Ly =40 ifvjv; g Aand i # 5

—d*(v;) + p(vvs) i i = .

Thus the Laplacian is constructed from the adjacency matrix by subtracting
the out-degrees on the diagonal and transposing the matrix. Having been
very useful in the investigation of the chip firing game in [3] and [4], the
Laplacian is also applicable in the parallel process.

Let f be some p-periodic state. We define the average activity aas(z) of

a vertex = as Y0, (1/p)ag: ().

Proposition 3.1. Let f be some periodic state for finite, strongly connected
D. Then the average activity vector (aas(v;))i=1,. . lies in the null space
(kernel) of the Laplacian of D.

Proof. Let v; be any vertex. During the whole period d*(v;)aag(v;)per(f)
chips start at v;. From every in-neighbor v;, p(v;v;)aas(v;)per(f) chips arrive
at v;. Then d* (v;)aas(vi) = Xj1,. njv;vca @5 (vj)p(v;v;), or in other words,
(aas(v1),...,aaz(v,)) x LT = 0.1

In [3] it was shown that this null space is one-dimensional in the strongly
connected case, and has the vector (1,1,...,1) as a basis provided that D is
strongly connected and Eulerian.

Corollary 3.2. For every strongly connected, Fulerian multidigraph, and
for every periodic state f, all average activities of the vertices are equal.

For non-Eulerian multidigraphs, there is some vector (¢1,£s,...,4,) in
the null space of L with all ¢; integers, and ged(4y, . ..,4,) = 1. This unique
vector is called the primitive vector for D.

Corollary 3.3. Let ({4,...,4,) denote the primitive vector for the strongly
connected finite multidigraph D. Then no period smaller than max;—; __,¢;
occurs except 1. If this period max;—y ., ¥¢; occurs for N chips, then it also
occurs for N + 1 chips.

A typical example for the behavior of non-Eulerian multidigraphs is pre-
sented in the left part of Figure 1, and has (2,3,1,1,1,4,2,1) as its primitive
vector. Thus no period 2 or 3 occurs there. Figure 2 indicates which periods
occur for the various values of N, based on thousands of computations on
the multidigraph. If period p has been found for IV chips, then ‘&’ stands in
the corresponding entry (N, p) of the table.
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Figure 2: Possible periods versus number of chips IV, for the multi-
digraph in the left part of Figure 1.

A few more remarks about these computations are appropriate. I chose
about 100 multidigraphs, all with fewer than 15 vertices. For every fixed
multidigraph D and every total chip number N in the range considered, I
chose about 1000 (from 100 up to 100,000, depending on the size of the
digraph and the first results) initial states at random. Thereby I chose two
different models, since the natural one (“For every chip, put it on a vertex
at random with all probabilities equal”) resulted in very equal distributed
distributions. Each such initial state was transformed, until we arrived at a
periodic state.

4. Bounds for N

Let f be a periodic state. We want to derive upper and lower bounds for
DA per(H) @' f(x) by local observations, for every vertex x. Since per(f)N =
PozeV 2imt,.. per(f) ®'f(z), such bounds would yield upper and lower bounds
for the total number of chips N in terms of per(f) (or conversely).

Which sequences f = fo, f1,- -, fper(f)—1, fper(s) are possible with fi1, =
®f;? The only restrictions we consider are local at z, that is,

L i€ fin £ fi+d for fy <dt,
2. fi—d" < fipn < fi—dt+d for f; > dt, and
3. exactly pa of the numbers are greater than or equal to d¥,

where all indices are taken modulo p, and where pa, p, d*, and d~ are
abbreviations for per(f)aas(z), per(f), d*(z), and d~(z), respectively. Let
us investigate how large or small the sum of p integers 3°,_o ,_; fi can be
under these restrictions.

(I) Let us begin by searching for the minimum. If d* < d~, then it is
easy to see that this minimum is padt: we choose fo = f1 = --- = f,a = d,
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and fpep1 = -+ = fpo1 = 0. If d > d~, then we assume 2pa < p. In this
case it is not difficult to show that the minimum is

h(p,pa,d*,d”) := pa(dt + (dt — d7))
p—2pa
+ > max{d* — (1+14)d",0} (1)
i=1
Since per(f)aas(z) must be equal to or a multiple of the corresponding value
in the primitive vector, we get the following.

Proposition 4.1. Let f be some periodic state, and let (¢, ...,¢,) be the
primitive vector of the finite strongly connected multidigraph D. Then

per(f)N > > h(per(f), &, d* (vi),d™ (v:)),

where h(...) is defined by equation (1) if d*(z) > d~(z), and equals
per(f)l;d*(v;) otherwise.

(IT) On forever-active vertices there may lie arbitrarily many chips in
periodic states. Thus, if aaf(z) = per(f), then there is no maximum value
for the problem. This stands in sharp contrast to the behavior of vertices z
that are not forever active. If the state f being considered is periodic, then
f(z) must be bounded by some constant that depends on per(f), d*(z),
d~(z), and aag(z); thus there must be some maximum value of 3, 1 fi.

It is not difficult to show that for d* < d~ the maximum is achieved by
clustering the positive and negative activities. We start with fo = d* — 1,
going as steep as possible upwards, but keeping in mind that we must be
under d* for 2 > pa + 1. Surely we should not go below d* — 1. Thus we set
fo = fpat1 =+ = fp—1 = d* — 1. The first restriction yields

i@ -1)+d +(@-1)(d —d¥)
=id +(2—-i)d" -1 fori>1,
and the second restriction yields
i<d™ =1+ (pa+1—i)d"=(pa+2—i)dt—1  fori< pa.
The rational point s, where these two restrictions intersect, is

d+
s=pa @

If we choose all f; on these two restriction lines, we find after some arithmetic
2 1
9(p,pa,d*,d”) = p(d* — 1) +d* (% +pa (5 - LSJ))

+d_<LsJ +1> 3)

2



Parallel Chip Firing on Digraphs 375

as the maximum value for -, ,; fi (using the convention (;) =0).
For d~ < d* we abbreviate

o= |, (@

thus obtaining

g(papaa d+1 d_) = p(d+ - 1) +pad_
+ (@ —d)t (pa— S —pa)(1+1)) ®)

Proposition 4.2. For every periodic state f without forever-active vertices,
we get

per(f)N < 3 g(per(f), per(f)aas(z), d*(z),d™(z)),
zeV
where g is defined by equations (2) and (3) if d*(z) < d~(z), and by equations
(4) and (5) otherwise.

What about upper bounds for aaf(z)? Let (f4,...,¢,) be the primitive
vector of a strongly connected finite multidigraph. There must be some
integer k such that per(f)aas(v;) = k¢; for every i = 1,...,n. Surely k <
per(f)/ maxi—,_,¢;. If the period is not a multiple of max;—; _,/;, then
there is no forever-active vertex.

.....

Corollary 4.3. Let f be periodic in the finite strongly connected multi-
digraph D. Let ({y,...,¢,) be the primitive vector. If per(f) is not divisible

7

per(f)N < 3 glper(f), ki, d* (vi), d” (vs),

2=1,:.m

2 L] and g as above.

.....

There is another very useful bound, which has been given in a “note
added in proof” in [3]. Let the feedback number (D) of a strongly connected
multidigraph D = (V, A, 1) be the minimum 3,4 p(a) for every set A’
of arcs whose removal destroys all directed cycles. For instance, the left
multidigraph of Figure 1 has feedback number 3, while the right one has
feedback number 4.

Theorem 4.4 ([3]) For N < (D) chips, only period 1 occurs.

We are now able to explain the minus signs in Figure 2. They indicate
the situation in which, for a given chip number N, period p is impossible
according to Theorem 2.9, Corollary 3.3, the bounds above, and Theorem 4.4.
If nothing stands at the entry, then by computational experiences on random
instances almost surely no period p occurs for N chips, but I do not know
why.
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Figure 3: Some digraph that allows relatively large periods.

5. Large periods

Given a finite multidigraph D = (V, A, ) and a finite number N, there

o +|1:,/[_1) states. Consequently, as a first very rough result, the

are exactly (
period of any periodic state is bounded by this number. But, with the re-
sults of section 4 we are in a position to give also lower bounds for periods
for non-Eulerian multidigraphs. For instance, the multidigraph in Figure
3 has (328,235,160, 72,362, 72) as its primitive vector (with the usual row-
wise labeling of its vertices). For N > pu(A) — |V| = 21 vertices, there
is no fixed (totally passive) state, hence every periodic state has period at
least 362. For instance, for N = 22 the state (3,4,6,4,5,0) is 464-periodic.
Compared with the total number (257) = 80,730 of states, this seems large
enough.

We shall show that the period is not bounded by some polynomial in p(A).
For this purpose we construct a family of digraphs, even without multiple
arcs, that is, with the constant function 1 as p. For an integer k > 2 let
the digraph D; be constructed from the directed 3-cycle by replacing one
of its vertices by k copies. For integers k, by, by, ..., b > 2 we construct the
digraph D(by, bs, . .., b;) from the disjoint union of Dy, . .., Dy, by identifying
all vertices with in-degree greater than 1. Figure 4 shows an example.

After some suitable relabeling as in Figure 4, it is easy to see that a vector
v = (v, vs,. .. ’”1+Zbi) that satisfies L x v = 0 is defined by v := Hle b;
and Vg, ..., V1qp, 1= C1,V2iby,- - - > Vigh, ‘= Co,- .., Where ¢; := [[imq gz b5
There is no common divisor if the b; are different prime numbers.

Theorem 5.1. There is no polynomial h(n) such that per(f) < h(n) for
every periodic state f in a digraph D = (V, A) with n arcs.

Proof. Assume on the contrary there is such a polynomial. Then we also
find such a polynomial of the form h(n) = Mn*. We choose k + 1 “large”
prime numbers p; < ps < --- < pry1 that are “close together.” “Large”
means M2F+3) < 5 and “close together” means piy; < 2p; for every
i = 1,...,k—this is possible by Bertrand’s postulate ([7], Theorem 418).
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Figure 4: The digraph D(2,3,5).

Then the digraph D(py,ps,. .., prt1) will serve as a counterexample. When
taking N > |A| — |V/| chips, any periodic state f has period

k+1 i
per(f) > [I pi 2 1"

=1

On the other hand, |[A| = k+1+2 Y %! p,. Applying the “closeness” property
several times, we obtain

[A] € k+ 14282, < 2F3p,
and
h(|A]) < M(283p,)F = M2FEHph < ph+ < per(f),

since p; is large enough, yielding a contradiction to our assumption in this
way. B

Recently Kiwi, Ndoundam, Tchuente, and Goles [8] have given examples
of superpolynomial periods for the chip firing process for undirected graphs,
so even for a primitive vector (1,1,...,1) this is possible for certain N.

Problem 5.2. Given integers n and m, what is the largest entry in some
primitive vector of some strongly connected (multi)digraph with n vertices
andm arcs? What is the largest period occurring in such a strongly connected
(multi)digraph?

As an aside, is it true that the multidigraph of Figure 3 may serve as a
calendar (after some initial time), when using 28 chips? Is it true that only
period 365 occurs there?
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Figure 5: Possible periods versus number of chips N, for the right
digraph in Figure 1.

6. FEulerian multidigraphs

It has been emphasized several times so far that the behavior of Eulerian
multidigraphs is quite different from arbitrary multidigraphs. A typical ex-
ample of the relation between period and N in the Eulerian case is given
in Figure 5. The most striking difference appears to be that the pattern is
symmetric along the axis N = p(A) —|V|/2. Moreover, it turns out that the
periods are relatively small, and the period-2 line is connected.

6.1 Symmetry

Chip firing on Eulerian multidigraphs is only interesting with N < 2u(A) —
|V'| chips. The more precise bound depends on its minimum in-degree 6~ (D).

Theorem 6.1. The only periodic states for Fulerian multidigraphs D =
(V, A, p) with N > 2p(A) — |V| — 67 (D) are the totally active states. Only
period 1 occurs.

Proof. Assume there is some periodic state f that is not totally active.
Then there is at least one passive vertex y, and

N=fy+ > fl@)<d' -1+ Y 2d"(z)-1<2u(A)-|V|-6(D)

z€Vz#y zEV,z#yY
by Lemma 2.5. B

Let f be some state with f(z) < 2d*(z) —1 for every vertex z. We define
the reflection f by f(z) :=2d*(z) — 1 — f(x). Then [ is again a state.

Proposition 6.2. Let f be some periodic but not totally active state in

some Eulerian multidigraph. Then the reflection f is also periodic (with

per(f) = per(f) and aaz(z) =1 — aas(z)).
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Proof. The results follow from the fact that ®f = ®f, which can be seen
as follows. Note that a vertex is active in f if and only if it is passive in f.
Let = be any vertex. Then

0f(z) + @f(z) = f(2) — ag(x)d™(z) + > as(y)u(yz)

yr€A
+  flz) = ap(z)d"(z) + Y az(y)ulyz)
=2d"(z) =1 - d"(z) + ) u(yz)

=dt(z) —1+d (z)
=2d%(z) - 1.1

6.2 Periods and dicycle lengths

This subsection relies on the fact that Lemmas 2.6 and 2.7 apply for all ver-
tices in Eulerian multidigraphs. Throughout let f be some periodic state
in such a digraph. We use the abbreviations a;(z) = agif(x) for i =
0,1,...,per(f) — 1, and all indices are taken modulo per(f). For integers
z, let z denote that integer 7 € {0,1,...,per(f) — 1} congruent to z mod-
ulo per(f). The cyclic distance of 1,5 € {0,1,...,per(f) — 1} is defined by
d(i,j) == min{i — 7,7 — i}.

Note that the lemmas in section 2 do not imply that every vertex = has
some in-neighbor y having all a;(y) = a;41(z). This would be convenient,
but unfortunately it applies only in special cases.

We call a maximal subsequence of consecutive 1s or consecutive Os in the
activity pattern of a vertex a 1-block or 0-block, respectively. Let r and s
denote the length of a longest 1-block and 0-block, respectively, appearing in
all these activity sequences of the vertices.

Fori=1,...,per(f) — 1, let V; (respectively W;) denote the set of those
vertices  where a 1-block of length r (respectively 0-block of length s) begins
at ®f. That is, z € V; if a;(z) = -+ = ajr1(z) = 1, and y € W;
if a;(y) = -+ = ai4r—1(y) = 0. Since the 1-blocks being considered have
maximal length, V;NV; is empty if d(7, j) < r. In the same manner, d(z,j) < s
implies W; N W; = 0. By Lemma 2.6 every = € V; has some in-neighbor in
Vi—1, and every y € W, has some in-neighbor in W;_;. Consequently all these
sets Vo, ..., Vier()=1, Wo, - - -, Wper(s)—1 are nonempty.

Now we choose any z € Vj. We find some in-neighbor x; in Vpen(f)—1,
some in-neighbor x5 of z; in Vjer(s)—2, and so on. Let ¢ be the smallest
index for which z; € {zo,z1,... 241}, say z; = z; with 0 < j < . Then
Xy — Ty — -+ — x; = x; is a dicycle of length ¢t — j in D. Since z; lies
in both Vier(r)—¢ and Vpe,(p)—; (with all indices again modulo per(f)), we get
d(t,7) = d(per(f) —t,per(f) —j) > .

Let ¢(D) denote the length of the longest dicycle in D, if there is one,
and oo if D is acyclic (note that acyclic digraphs are treated sufficiently in
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Corollary 2.3). In the argument above, ¢(D) > ¢t —j > d(t,7) > r, and when
treating the 0-block case in a similiar way, we get the following.

Lemma 6.3. For every periodic state in an Eulerian multidigraph D, r,s <
¢(D) with the notations above.

This lemma has been proven in [2] for ¢(D) = 2. Together with Lemma 2.8
there follows their result that only period 1 or 2 occurs for undirected trees.
On the other hand, if all V; are disjoint, then ¢ = j (mod per(f)) for the
dicycle constructed above.

Lemma 6.4. Let f be a periodic state in the Eulerian multidigraph D. If
the activity sequence of every vertex contains at most one 1-block of maximal
length r, or if the activity sequence for every vertex contains at most one 0-
block of length s, then the length of some dicycle in D must be divisible by

per(f).

Corollary 6.5. Let f be a periodic state in the strongly connected FEulerian
multidigraph D. If there is some block of length at least |per(f)/2], then
there must be some dicycle whose length is divisible by per(f).

Corollary 6.6. If f is periodic with per(f) € {2,3,4,5,6,7,9} in the Euler-
ian multidigraph D, then D contains some dicycle whose length is divisible
by per(f).

Proof. Assume D contains no such dicycle. Then 7,5 < [per(f)/2] by
Corollary 6.5. This is impossible for per(f) = 2, 3, or 5. In the following we
may assume without loss of generality that s < r.

For per(f) = 4 we get r = s = 1; consequently the activity sequences
of every vertex read either 0,1,0,1 or 1,0, 1,0, beginning with f, which is a
contradiction to Lemma 2.8.

By the same reason r = s = 1 is impossible in the case per(f) = 6, hence
r = 2. Then either s = 1 and again we have a contradiction to Lemma 2.8,
or s = 2. The result then follows from Lemma 6.4.

If per(f) =7, then 7 = 2 and aay = 3/7 or = 4/7. In both cases we have
contradictions with Lemma 6.4, in the first case for the 1-blocks, in the other
for the 0-blocks.

The case per(f) =9 can be treated in the same way. B

For instance, in Figure 6 we see the pattern for the cube digraph—the
undirected graph on 8 vertices whose edges are the edges of the cube. Since
there are no cycles of length 5, 7, 9, and multiples, period 5, 7, and 9 do not
occur. Note that period 3 occurs (since the graph contains cycles of length 6).
It also follows that no period 7 or 9 occurs or the right digraph in Figure 1.

Note that by the result in [8], the preceding corollary cannot be true for
arbitrary periods.

We shall construct periodic states in the following way.
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Figure 6: Possible periods versus number of chips N, for the symmet-
rical cube digraph.

Lemma 6.7. If there is some partition V = VoU Vi U---UV,_; of the vertex
set of an Eulerian multidigraph such that for every i € {0,1,...,p — 1},
every vertex in V; has some in-neighbor in V;_,, then period p occurs (for
some appropriate N ).

Proof. For every i € {0,1,...,p — 1} and every z € V;, let g(z) =
> yevi_, #(yx). By the assumption above, all these values are greater than 0.
For every ¢ € {0,1,...,p — 2} and every z;4; € V;; we define

i—1
J(@ip1) =D Y wly, Tigr)-
k=0yeV}

We simply define states f of period p. For every i € {0,1,...,p—2} and
every z;+1 € Viy1 we choose f such that

d (g — Fn) — Biva) £ FBa4a) < (o) — F(@aga).
For zy € V) we choose f such that
d*(z0) < f(=o) < d*(w0) + g(z0)-

It is not difficult to show that the resulting state is periodic with period p,
and the average activity equals 1/p. B

In fact, all periodic states with average activity 1/per(f) occur with this
construction.

Proposition 6.8. In every finite, strongly connected, Eulerian multidigraph,
every divisor of every dicycle length occurs as a period.

Proof. Assume 2y — z; — - -+ — 51 — T is a dicycle of length kp. First
we partition the vertices of the dicycle by Vi := {zo, zp, zap, .. .},..., Vil ==
{Zi, Titp, Titop, - .}, - .. The sets are disjoint, and very = € V;! has some in-
neighbor in V! ;. Next we define Vi as the union of V' and all out-neighbors
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of vertices of V! outside Vou---UVL | VP, ..., V2 are deﬁned we define
V2, as the union of V}}; and all Out nelghbors of vertices of V3, outside

V2 -UVEUVL, U U V. By the construction, all these resultmg sets
VOZ, ney Vp_1 are dlS_]OlIlt and every vertex in V% again has some in-neighbor

in V;2,. Furthermore |’} V! equals the vertex set V' of the multidigraph,
or is strxctly contained in the set U5, V2| since our multidigraph is strongly
connected. Proceeding in this way, we ﬁnally arrive at a partition of V' that
obeys the property stated in Lemma 6.7, and we apply this lemma. B

6.3 Period 2

We call convez the sets of integers of the form {i,7+1,...,5}. The following
property is unique for period 2.

Proposition 6.9. Let D = (V, A, u) be some finite, strongly connected,
Eulerian multidigraph. Then the set of integers N for which period 2 occurs
forms a convex subset of the set {[3u(A)],..., | 3u(A) —|V|]}.

Proof. In every periodic state of period 2, all vertices have average activity
%. Then let V =V, U V; be any fixed partition of V' with the property as in
Lemma 6.7.

The total number of chips for which period 2 occurs, given this bipartition,
is the convex set

{M(A) ~ 3 glad, (A= V|4 3 g(x)}
zeV) z€Vo
by Lemma 6.7 and the equality (A) = Y ey d¥(z). By the property of the

bipartition mentioned above, 3 cv, 9(z) > |Vo| and 3¢y, g(z) > |V4]. Since
both sums count disjoint subsets of the arc set, we obtain

D gl@)+ Y g(z) < u(A).

zeVp zeV;
Since D is Eulerian, Y- ¢y, 9(2) = Xsev; 9(2). Hence

1

SA(A) < u(A) = 3 g(x) ——|V|<NA) VI+ > g(z)
zeV] zeVy
3
< Zula) — v,
Sua) - v

Thus, for every such bipartition, the set of possible N’s forms a convex subset
of integers in this range, but containing u(A) — 3|V|, hence the result. B
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6.4 Sharper bounds

At least we can give sharper bounds for N for (possible) larger periods. Note
that the bounds of section 5 read as
aa(@)u(4) < N < (1 +aag(z))u(4) - |V]

for Eulerian multidigraphs. (Note also that all average activities aay(x) of
the distinct vertices are equal here.) So in general we get

1 1
ua <N < (z Sl f)) u(A) — V1.

Lemma 6.10. Let f be some periodic state in the strongly connected Euler-
ian multidigraph D, with per(f) longer than the longest dicycle of D. Then
per(f)aag(z) > 2. If per(f) is odd, then per(f)aas(z) > 3.

There is still another bound for the average activities, which may be
better than the previous one if ¢(D) is small and the period large, as follows.

Lemma 6.11. In every periodic state in any Eulerian multidigraph, aas(z)
> 1/¢(D).
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