
Complex Systems 8 (1994) 435-441

Fast Parallel Arithmetic on Cellular Automata

A . Clementi
G. A . De Biase

A. Massini
Dipartimeneo di Scienze dell'Infol'mazione,

Univel'sit a di R oma "la Sapienza",
Via Salari a 113 00198 - Roma, It aly

Abstract. A fast parallel arithmetic using a Cellular Automaton
(CA) environment is presented. Th e Redundant Binary (RB) number
representation, first studied for optical computing , is used in order to
perform a carry-free parallel addition or algebraic sum of arbitrary
large numbers in constant time.

1. Introduction

Par allel comput ing models, like t he Cellular Automaton (CA) , that exp licit ly
consider the ultimate imp act of fundam ental physical limit ations, have been
the subject of several recent studies (e.g., [1, 3]). Two-dimensional CAs are
inherently parallel computing machines, that are very suitable for proce ssing
two-dimensional dat a st ructures in a way similar to that used on optical
compute rs . Both devi ces can be considered as finit e state machines that
perform operations on two-dimensional dat a wavefronts in the finit e t ime
inte rval [tn,tn+1] , where tn is a transitio n between two machine states.

A method for performing bin ar y addit ions on CAs has been pr esented
by Sheth et al. in [5]. T his method works ser ially and the addition of two
numbers is perform ed in O(N) time, where N is the length of the bit strings
representing the operands. The method of Sheth et al. is similar to t hat
pr esented by Huang et al. [8] to implement a binar y arithmetic on opt ical
computers. As in the case of optical comput ing , a faster arithme t ic can
be obtained usin g suit ab le number represe ntat ions [6, 7, 9, 10, 12]. In this
pap er, a carry-free algebraic sum on CAs is implemented . This operation
can be perform ed in constant time independ ently of the length of the bit
strings representing the operands, using the Redundant Bin ar y (RB) number
representati on introduced in [12].

The at tainme nt of par allel carry-free addition using redundant nu mber
representat ions has been investigat ed by many authors . Using this approach
it is possible to build totally par allel adders op erating in const ant t ime (i.e. ,
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the adding time is independ ent of the operand digit string length N) , using
very small truth t ables which are indep endent of the digit position. The mod­
ified signed digit (MSD) repr esent ation is the one most widely investigated ,
particularly in the field of optical comput ing, on which there are numerous
works (e.g ., [10, 11]). In some recent works the RB number representation
has been present ed and st udied in det ail (e.g., [12, 13]). This number rep­
resentation has the following advantages: it allows building an inh erently
parallel arithmetic with a two ste p carry-free algebr aic sum, it naturally fits
the 2s complement binary number syste m, and it requires only two symbols
{O, I} inst ead of three or mor e (such as required by the MSD) .

2. The Redundant Binary number representation

As presented in [12], an un signed int eger x is in Redundant Binary repr esen­
tation (RB represent ation) when:

N- l
X = L ai2i- r ~1

i=O

with N even (1)

where a, E {O, I}, i is the po sition inde x, N is the length of the bit st ring, and
the most significant bit is on the left end of the bit string. The symbols 11 rep­
resent rounding up to the next integer. In the RB repr esent ation each number
has a canonical form and several redundant represent ations (e.g. , [12]).

Informally, the RB number rep resentat ion is obtained by doubling the
weight positions in t he natural bin ary representat ion of a given number x ;
in this way, a sequence of N = Ixl bit pairs (n N-l> rN-l) ,"" (no, ro) is
generated, with position weight 2N - \ 2N - \ ... , 2°, 2°, respectively. In each
pair the bits have the same weight , the left and right bit are called the n
(norma0 and r (redundant) bit, respect ively.

In a way similar to the 2s complement number system, signed RB numbers
can also be defined (e.g. , [12]):

N- l N-3
X = - L ai 2H~1 + L ai2H~1

i=N-2 i=O

with N even. (2)

From equations 1 and 2 it follows tha t an RB repr esentation of a number
can be obtained from its binary (or 2s complement ) repr esentation by using
the following one ste p recoding rules:

°---> 00 1 ---> 10

wherein n i bit s take t he same valu e of the corres ponding binary bit of t he
same weight , while all r i bits ar e zeroed .

T he decoding of an RB number can be performed simply by one binary
addit ion. In fact , the decoded value is the sum between two binary numbers,
the first made by the n ; digits and the second by r, digits. T he nonconstant
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n r n r n r n r

~~~~

o 0 ~ 0 ~ 0 ~ 0
~ ~ ~ ~ ~ ~ ~ ~ 0
'----v-" '----v-" '----v-" '----v-"

'----v-" '----v-" '----v-" '----v-"

~~~~

o 0 0 0 0 0 0 0
S8 S7 S6 S5 S4 S3 S2 S l 0
'----v-" '----v-" '----v-" '----v-"

result

Figure 1: Parallel applicat ion of the algebraic sum rule (Table 1) on
two RB numbers. a i and bi are the bits of the input operands, c,
and d; are the bits of the intermediat e sum, and Si are the bits of the
result .

t ime complexity in the decoding operation is not par ticularly imp ortant be­
cause this operat ion is requi red only when dat a must be given to the exte rnal
world.

In [12] it is proved that t he RB representation of numbers permits a two
ste p totally parallel algebr aic sum performabl e by a rul e t ab le whi ch acts
on (ni,ri) bit pair s. This ru le tabl e operat es on two sup erpose d and aligned
sequences representing the RB input numbers (simply denoted as upper and
lower nu mber , see Figure 1) and gives result s that are st ill on two sup erposed
and aligned sequences.

Table 1 shows this ru le, which is twice applied in par allel on all bit pair s
of two RB numbers (operands) giving the result . The upper number is zeroed
and the lower one gives the algebraic sum. The rul e tab le does not depend
on the relative position of the bit pair in the sequences, however , it has an
unavoidabl e nonhomogeneous struct ur e: it depe nds both on which RB input
number (lower or upper) t he pair belon gs to and on the typ e of the bit (ni
or ri)' An example of an RB algebraic sum is shown in Figure 2.

3. The cellular automaton local rule

The formal descripti on of the CA local rule performing the parallel algebraic
sum will be given using the CAM-Forth language of the Cellular Automata
Machine (CAM) designed by the Information Mechanics Gro up of the Mas­
sachusetts Insti tute of Technology (e.g., [2, 4]). However , for the sake of
clarity, the normal order not ation is pr eserved instead of using the Reverse
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Table 1: Symb olic substit ut ion rule table for the algebraic sum of RB num­
bers. This table acts on nr pairs; u and I indi cate t he up per and lower row
respectively. T he lower output pair is shifted left one position.

u 00 01 10 11
I

00 10 00 10
00 00 00 01 01

00 10 00 10
01 01 01 10 10

00 10 00 10
10 01 01 10 10

00 10 00 10
11 10 10 11 11

Polish Not ation adopted by the CAM-Forth, and the simp le const ruct: begin
." end is also used. According to t he CAM t erminology, the state bin ary
components of cells will be denoted as Planes. In particular , the cell state
of t he local ru le consists of four Planes and the adopted neighborhood is the
Moore neighborhood.

A pair of RB input numbers is located on any pair of adjacent rows
(which will be respectively denoted as upper and lower row), of the initial
configuration of Plane O. Consequently, if the size of the CA is N it is then
possible to perform N /2 RB algebraic sums in par allel. The output can be
recovered on Plane 0 of the lower row after two applications of the local
ru le consist ing of two consecut ive phases. In the first phase the rule table
is applied without considering the shifting of the resulting lower row. The
left shift of the lower row is then perfo rmed in the second phase. After two
ap plications of the local rule (i.e. , after four phases) , the resulting sum is
obtained on the lower row.

(17 03865068ho

(-1876663285)10

(182 06 16592ho

(-19934148 09 h o

(Oho

(-1 727982 17)10

(101 111101 101001001000000100110 00 10010100 00011111011 000111 0100000)RB

(111010111001011011001000000 01 011000 0111011001010100101111 000101 0)RB

(00101000101000001000000 000100 00000101000001010101000001000000000) RB

(1101011100101101 0000100010010100100100 11000101001100111100101010) RB

(000 0000000000000000000000000000000000000000000000000000000000000)RB

(0 101010 01101001010 0010001100 1000110011000101001110010 11000101010)RB

Figure 2: Algebraic sum of two signed RB numbers. After two appli­
cations of Table 1 the upper row is zeroed while the lower row contains
the algebraic sum.
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{* Computing phase }

{* Rules for Plane 0 }

The ot her three P lan es assume t he following roles: Pl an e 1 is used to
distinguish between the two phases , Pl ane 2 is devoted to distinguishing
between the left and right cells (i.e. , between the bit of type n and that of
type r), and P lan e 3 is used to distinguish between the up per an d lower
ope rand. The starting configurat ion is defined in the following way: the RB
ope rands are located on P lan e 0, all bit s of P lan e 1 are set to 1, and each row
of P lane 2 is an alternating sequence of 0/1 bits (start ing wit h 1). Finally,
P lane 3 has the bits of the up per operand set to 1 and those of the lower
operand set to O.

Here is the CAM-Forth representation of the CA local rule.

new-experiment
n/moore & /centers
RB_algebraic_sum:
begin
sum: 2 * & center' + & center ;
if center '

then begin
if sum = 0

then if not (n.west )
then (wes t xor cent er) > plnO ;
else not (wes t xor center) > plnO;

if sum = 1
then i f north

t he n (cent er and ea st) > plnO;
else not (eas t) > plnO ;

if s um = 2
then fal s e > plnO;

i f sum = 3
then east > plnO ;

end ;
el se if not ( & center ' ) {* Shift ing phase }

then east > plnO;
e l s e center > plnO ;

not (center ' ) > pln1 ; {* Rules for the other Planes }
& center > pln2;
& center ' > pln2;
end .
make-table algebraic-sum

In F igure 3 the execut ion of the local rule on a CA of size N = 64 working
on 32 pairs of RB numbers simultaneously is shown.

4 . Conclusion

A CA performing constant t ime carry-free parallel addit ion or algebraic sum
has been pr esented. T he resulting CA can be implement ed using the CAM
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(a)

(b)

(d)

(c)

f••
·~i

itt~!1
(e)

F igure 3: Exec ut ion of the local rule on a CA of size N = 64.

environment . The algebraic sum is execut ed in parallel in constant t ime by
using the RB represent ation of numbers. The method present ed in [5], which
performs binary addition on CAs in linear running time, is enhanced.

A property of the RB number algebra ic sum, performed with the ru les of
Table 1, is that the algebraic sum of two st rings, considered as the concatena­
tion of many RB numb ers , gives a result ing st ring that is the concatenation
of RB sums (e.g. , [12]). This property is very useful if CAs with large N are
used.
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