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Abstract. We show that the restriction of the Bernoulli shift map
z «— rz (mod1) to the set of rationals between 0 and 1 can gener-
ate sequences of uniformly distributed pseudorandom numbers whose
periods exceed any given k& > 0, however large. Here » > 1 is an
integer.

1. Introduction

In this paper, we present an algorithm (Theorem 1) that generates sequences
of pseudorandom numbers, comprising rational numbers between 0 and 1,
with arbitrarily large periods. For any given positive integer k, however large,
this algorithm can be used to generate pseudorandom number sequences with
period greater than k. Moreover, at least for large periods, these pseudoran-
dom numbers are approximately uniformly distributed, the approximation
getting better as the period increases. These pseudorandom sequences are
generated using finite strings of r-ary digits which are Kolmogorov random,
that is, whose Kolmogorov complexity is close, in some sense, to the length
of the string. We explain this concept precisely in section 2.

In order for the main result of Theorem 1 to be of any utility, we need
Lemma 1 stated below, which is probably well known, but I can find no exact
reference. Before stating the lemma, we give meaning to the phrase “almost
all rationals.”

Let S denote an infinitely denumerable set with an operation of multipli-
cation defined on it. Define a real-valued mapping on S, denoted ||al|, a € S
such that:

©) [ladl < flall lo]l  Va,b € S;

(ii) the total number Ng(z) of elements a € S with ||a|| < 2 is finite for
each real z > 0.

Let
Sl] = {a € S]all < =}
Denote the cardinality of S[z] by card S[z]. Obviously, card S[z] = Ng(z).
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Consider F C S and let
Ble) = {a € E|lla]l < a}.

Let card E[z] = Ng(z). We define the relative density of E[z] in S[z] as
Ng(z)/Ns(z). The asymptotic relative density of E in S is then defined as

provided that this limit exists.

A property is said to hold for almost all elements of S if it is valid for all
elements in some subset of S having asymptotic relative density 1 in S. We
specialize this to the set of rational numbers between 0 and 1. Let

Q = {z|]z = p/qgwhere 0 < p < g are integers}.

Define a real-valued map on @ to be
1] =« (1)
q

Obviously, (1) satisfies the properties (i) and (ii) above.

We know that every rational number has either terminating or recurring
representation with respect to any base r > 1. We now state and prove
Lemma 1.

Lemma 1. Given any integer r > 1, almost all rationals have recurring
representation with regard to the base r (r-ary representation).

Proof. We prove this by showing that the set of rationals having terminating
r-ary representation have zero asymptotic density in Q. We call such a set T'.
A given rational number p/q has a terminating r-ary representation provided

¢ = arage ... (2)
where ay, as, . .., a, are the prime factors of » and my, my, . .., m, are integers
> 0. Let a; and a, denote the largest and smallest prime factors of r,
respectively. For a given integer m > 0, the set M of integers ¢ < ap'
which can be factorized as in equation (2), is equinumerous to the set of all
s tuples satisfying

log aL-‘.

The cardinality of this set is given by

mI’Iog u[_l
Tog ag

> (T ®)

k=1
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where the summand stands for the number of s tuples [6] satisfying the
equation

my+mg+--+m, = k.

Expression (3) is a polynomial in m, say P(m), and is an upper bound on
the number of integers ¢ < af* satisfying equation (2).
Now let,

Qlyl = {z € Qllzll < y}
where ||z|| is defined by (1) and y > 1 is real. We easily get

m
ar,

card Q[af] = No(af) = > ¢(q) > car”
gq=1
where ¢ is a constant and ¢(q) is the Euler function [8]. The last inequality
is proved in [2].
Next we define

Tly] = {z € @ n T||lz|| < y}.
Obviously,
card Ta}] = = > ¢(qg) < af P(m).

qeEM

Now, given y > 1, choose m such that 7" < y < a. This gives,

Nr(y) = card T[y] < Np(al') < af P(m)
No(y) = card Qly] > No(af™) 2 caf™ ™.
Thus the relative density of T'[y] in Q[y] is bounded above by
Ne(y) _ P(m)
Noly) — cap™
Taking the limit as y — oo, the left-hand side of the previous inequality gives
the asymptotic relative density dg(T). Since m increases monotonically with
y and P(m) diverges as a polynomial in m while the denominator diverges
exponentially, the right-hand side of the above inequality tends to zero as
y — oo. Thus do(T) # 0. Since by definition do(T") > 0, we must have
dQ (T) =0. =
Thus almost all rationals have recurring r-ary representations. There are
two cases of recurring representation : purely and mixed. A purely recurring
representation consists of an infinite periodic sequence of digits with period
n. A mixed recurring representation comnsists of finitely many nonperiodic
digits followed by an infinite periodic sequence of digits.
For a given r, we call any string constructed out of {0,1,...,r — 1} a
r-ary string. The digits are called rary digits. A string « having n digits is
said to be of length n, denoted |z|.
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2. Random strings of digits: Kolmogorov complexity

We briefly review the concept of Kolmogorov complexity of a finite string = of
length n and use it to define a finite random string of r-ary digits [3,5,10-15].
Without losing any generality, we take r = 2 while discussing this concept.

Kolmogorov complexity concerns the problem of describing a finite object
x. Since a finite object can be coded in terms of a finite binary string, we can
take this string to be our object. It is useful to think that the complexity
of specifying an object can be facilitated when another object is already
specified. Thus we define the complexity of an object x given an object y.
Let p € {0,1}*. We call p a program. Any computable function f together
with strings p and y such that f(p,y) = = is a description of z. We call f
the interpreter or decoding function. The complexity Ky of  with respect to
f, conditional to y, is defined by

K¢(z|ly) = min{|p| : p € {0,1} and f(p,y) = =}.

If there is no such p, then K¢(z|y) = oo.

The invariance theorem [3,10,11,15] asserts that each finite object has
an intrinsic complexity that is independent of the means of description.
Namely, there exist asymptotically optimal functions (universal Turing ma-
chines) such that the description length with respect to them minorizes the
description length with respect to any other function, apart from an additive
constant, for all finite objects.

Invariance Theorem. There exists a partial recursive function fo, such
that, for any other partial recursive function f, there is a constant cy such
that for all strings x,y, Ky (z|ly) < Ks(zly) + ¢5.

Clearly, any function fy that satisfies the invariance theorem is optimal in
the sense discussed previously. Therefore, we are justified to fix a particular
partial recursive function fy and drop the subscripts on K. We define the con-
ditional Kolmogorov complezity K (z|y) of z under condition of y to be equal
to Ky, (x|y) for this fixed optimal fo. We can now define the unconditional
Kolmogorov complezity (or Kolmogorov complexity) of z as K (z) = K(z|e)
where ¢ denotes the empty string (Je| = 0).

We are basically concerned with Lemma 2, which is the most important
consequence of the invariance theorem [14].

Lemma 2. There is a fized constant ¢ such that for all x of length n,
K(z) < n+c. (4)

Thus K(z) is bounded above by the length of z modulo an additive
constant. The constant ¢ turns out to be the number corresponding to
the machine 7' that just copies its input to its output, in some standard
enumeration of Turing machines and can be conveniently chosen. We are
interested in the binary strings = of length n for which K(z) > n — ¢ where
¢ > 0 is a constant. If ¢/n is understood to have a fixed fractional value,
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we call such strings c-incompressible, or simply incompressible. Lemma 3 [4]
answers the question: How many strings are incompressible?

Lemma 3. For a fized ¢ < n, out of all possible binary strings of length n
at most one in 2° has K(z) <n — c.

Thus, if we fix ¢/n to be a small fraction, then the fraction of ¢-incompres-
sible binary strings increases exponentially with n as (1 — 27(/")")_ Gener-
ally, let g(n) be an integer function. Call a string x of length n g-incompressible
if K(z) > n — g(n). There are 2" binary strings of length n, and only
2m=9()  — 1 possible descriptions shorter than n — g(n). Thus the ratio
between the number of strings « of length n with K(z) < n — g(n) and the
total number of strings of length n is at most 279" a vanishing function
when g(n) increases unboundedly with n.

Intuitively, incompressibility implies the absence of regularities, since reg-
ularities can be used to compress descriptions. Accordingly, we identify in-
compressibility with the absence of regularities or randomness. In particular,
we call c-incompressible strings c-random. We do not deal here with the in-
finite random sequences of digits.

3. Main results

We now state and prove our main results.

Lemma 4. Suppose an r-ary string x of length n has complexity K (x). Cut
this string after the sth digit so that the concatenation of the two resulting
substrings (partitions), say x; and x4, can give the original string. Let K (z1)
and K (x5) denote the complezities of these partitions. Then K (z;)+K (z3) >
K(x).

Proof. Suppose K(z1) + K(z3) < K(z). However, the string z can be
produced by using the minimal programs corresponding to x; and z, in
succession. This gives the complexity of z to be < K(z1) + K (z3) < K(x),
which contradicts our premise that the complexity of z is K(z). m

Corollary 1. If a string x of lengthn is c-random, then any two partitions of
x, say 1 and x4, are at least 2c-random. A string generated by concatenating
x1 and xy 18 c-random.

Proof. Let |z1] = nq, |za] = na, with ny+ny, = n. Without losing generality
we can choose the constant ¢ appearing in the inequalities K (z;) < n; + ¢,
K(zy) <mp+ ¢, and K(z) < n+ ¢, which are true by virtue of Lemma 2,
to satisfy ¢ > ¢. Now assume that z; is not 2¢-random so that K(z;) <
ny —2c. Subtracting K (z;) from the left-hand side and n; —2c from the right-
hand side of the inequality K (z;) + K(z2) > K(z) > ny +ns — ¢ we get
K(z3) > ny+c > ny+¢ which contradicts the requirement K (z5) < ny+¢
imposed by Lemma 2.
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As for the second part of the corollary, if the two partitions are concate-
nated to produce the original string, there is nothing to prove. Now suppose
that the partitions z; and z, are concatenated in the reverse order, giving a
string zy,, = zox; with complexity

K(ziy) < n—c, (5)

which means that y,, is not c-random. Then the string x can be printed
in the following way. Produce x;,, and print the last n; digits first and the
first ny digits next. This will enhance the length of the minimal program
producing x by min(logny,logn,) which we take to be logn,. Thus

K(z) < K(ziy) +1logn; < n—ec. (6)

The last inequality follows from (5) and logn; < n — c¢. Inequality (6)
means that  is not c-random, which contradicts our premise and completes
the proof. m

Definition. A string z of length n is said to be random if K(z) > n —
O(logn).

Corollary 1 can be easily extended to the case of a random string of length
n, as is done in Corollary 2.

Corollary 2. If a string x of length n is random, then any two partitions of
x, say Ty and xo, are random. A string generated by concatenating x, and xs
is random.

Proof. In the previous statement and in the proof of the Corollary 1, if we
replace ¢ by a function f(n) = O(logn), then we can also replace 2¢ by

f(n). m
In Theorem 1 we make use of Corollary 2.

Definition. We call the map x «— rz (mod 1) on Q, that is, the Bernoulli
shift [7), restricted to rationals a shift over rationals (SOR). Here v > 1 is
an integer.

Theorem 1. Let n = n(r,zo) denote the period of the recurring r-ary rep-
resentation of o € Q. Then, for almost all o € Q, at least the first n
iterations of the SOR generate a sequence of pseudorandom numbers with
period {To, 1, ..., Tn_1} such that the first (most significant) n digits of the
r-ary representation of each x; (i = 0,1,...,n—1) is a random string, pro-
vided the first n digits of the r-ary representation of xy is a random string.

Proof. This proof applies to zy € @ having a recurring r-ary representation.
By virtue of Lemma 1, this means that the proof applies to almost all zy € Q.
There are two possibilities: xy may have either purely recurring or mixed
recurring representation. We deal with these two cases separately.
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Case I: Purely recurring representation.

Let {dy,ds,...,d,} be the first (most significant) n digits (the first pe-
riod) of the r-ary representation of xy. Operate by SOR on z, to get z;
whose first n digits are {ds,ds,...,d,,d;}, because SOR removes d; from
the r-ary representation of xy to generate that of z;. Thus the string of the
first n digits of the rary representation of z; is obtained by partitioning that
of xy after d; and concatenating the two partitions in reverse order. There-
fore, by corollary to Lemma 4, the string formed by the first n digits in the
r-ary representation of z; is random, provided the corresponding string for z,
was random. By the same argument, further iterations of the SOR, x4, «
x; (mod 1) (t = 1,2,...,n — 2) generate rational numbers s, ..., z,—; hav-
ing r-ary representations whose first (most significant) n digits form a random
string, provided the corresponding string for zy, was random. After the nth
iteration, the same cycle {zg, 1, ..., T,—1 } repeats due to periodicity of the
representation.

Case II: Mized recurring representation.

Let the r-ary representation of zg be periodic after the first m nonperiodic
digits and let the period be n. Consider the most significant m +n — 1 digits
of #;1 = rzy (mod1). This is the partition of size m +n — 1 of the string of
most significant m + n digits in the r-ary representation of . By corollary
to Lemma 4, this partition is a random string, provided the corresponding
string for zy; was random and the next m — 1 iterations generate m — 1
more rationals having a random string of digits of length > n as the most
significant digits in their rary representations, provided the corresponding
string for z, was random. After m iterations, r-ary representation of z,, is
purely recurring and Case I applies. ®

We now show that the sequence of pseudorandom numbers produced
by the SOR as in Theorem 1, is uniformly distributed [9]. Note that the
frequency of occurrence of all the r digits {0,1,...,7—1} in a string of r-ary
digits of length n is close to n/r, provided n is large. In fact, the probability
that this frequency deviates from n/r by an amount greater than a fraction
6 of n is bounded above by

Ln exp (_71 K & n) (7)

where L and K are constants that depend on r [8]. Since rationals are
dense in (0,1), those having r-ary representations with very large periods
are abundantly available (see the beginning of section 4).

Now divide [0,1) into 7 intervals

s+1
T

<y <

(s =0,1,...,7r=1). (8)

I|l®»

The (s + 1)th interval contains just those numbers whose r-ary representa-
tion begins with s. Suppose we construct the sequence of pseudorandom
numbers zg,Z1,...,T,—1 using Theorem 1. It is easily seen that each one
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of the first n = n(r,xo) digits {dy,da, ...,d,} of the rary representation of
o successively becomes the most significant digit of the r-ary representation
of {x1,xs,...,2,—1}. Since all digits occur with equal frequency n/r, (neg-
lecting very small fluctuations decaying exponentially with n), each of the r
intervals defined above will contain n/r numbers out of the pseudorandom
sequence {Zg, &1, ...,Ty_1}. We now divide each of the intervals given by
(8) into r subintervals so that the (s + 1)th subinterval contains numbers
whose r-ary representations have s as their second digit. The fraction of
pseudorandom numbers that fall in the interval corresponding to the ordered
pair of digits (s,t) equals the number of pairs (s,?) occurring in the string
of the first n digits in the rary representation of z,. The number of such
pairs is (n — 1)/r? provided that this string has n = n(zo,7) large enough
to make the fluctuations given by (7) negligible. Thus the expected number
of rationals from the pseudorandom sequence in each of the 72 intervals is
(n—1)/r* &~ n/r*. We can continue dividing [0,1) in the same way, each
time getting r%, 7%, ... intervals with the expected equal occupancy given by
(n=2)/r* = n/r® (n—3)/r* =~ n/r* ... rationals from the pseudorandom
sequence. This shows that the distribution of pseudorandom numbers is uni-
form over the pattern of intervals described, provided n = n(xq,r) is large
enough to make the fluctuations given by (7) negligible. Since the rationals
are dense in (0, 1), for any given k, however large, there exist infinite o € Q
with n(zg,r) > k. Therefore, we can always choose xq with n(zg,r) > k
for any given k.

It is not the case that we are getting the uniform distribution of {zy, ...,
Zn—1} due to some special characteristics of the way we are dividing [0, 1)
into subintervals. In fact, any division of [0,1) into subintervals of equal
length satisfies inequality (8) for some h, (h = 2,3,4,...). Suppose h #
7. Divide the interval [0,1) into h® subintervals of equal length for some
¢ > 0. For every ¢ > 0, it is possible to find integers m and k such
that 0 < (h™* — mr™*) < e. On the given mesh of A’ intervals we now
superimpose a mesh of 7/ intervals such that r~1 < mh® < r7. We divide
this superimposed mesh into partitions of approximately 77 /h* intervals such
that each partition closely overlaps each of the A subintervals of the original
mesh. Since the distribution of pseudorandom numbers is uniform over the
above partitions it is uniform over the h’ subintervals, each with length h=*.

4. Discussion

Theorem 1 gives an algorithm to generate sequences of pseudorandom num-
bers {zq, . .., Zn_1} whose period is not less than that of the r-ary representa-
tion of zy namely n = n(r,z¢). A very important advantage of this method
lies in the fact that we can choose n = n(r,z;) as large as we please. If we
choose zy = p/q such that ¢ is relatively prime to both p and r, then the
period n = n(r,zg) is given by the smallest v satisfying 7 = 1 (mod ¢), that
is, the smallest v such that (r” — 1) is divisible by ¢ [8]. For instance, with
r = 3 and 7o = 0.1875000000000001 (¢ = 10'¢), this period is of the order
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of 10™. In fact, given any values k and r, it is possible to choose zg = p/q
that has a recurring r-ary representation with period n greater than k. Since
rationals are dense in (0, 1), the rationals having r-ary representation with
period greater than a given fixed integer are infinitely abundant. Thus the al-
gorithm given by Theorem 1 can generate sequences of uniformly distributed
pseudorandom numbers with arbitrarily large periods.

Suppose we want to choose r and zy = p/q such that n = n(r,xq) > k
where k is some fixed integer. This can be done, for example, as follows.
Choose r to be a prime and 2y = p/q such that p and ¢ are relatively
prime and ¢ = 7% + 1. Thus ¢ and r are also relatively prime and the period
n(r, zo) is given by the smallest v such that 7 — 1 is divisible by ¢ = 7% + 1.
Therefore, ¥ — 1 > 7% + 1 giving n = v > k. The actual digits of p can
be chosen from a table of random numbers [1].

In order that Theorem 1 applies in practice, we have to compute the
successive values of rz (mod1) using fully rational arithmetic and not by
the floating point arithmetic that is available on most computers. This fa-
cility is offered by all the computer algebra systems. This slows down the
computation, but is not really a bottleneck as one can generate a huge bank
of pseudorandom numbers, and issue them to various computing processes
(either parallel or sequential) as and when required.

We have carried out statistical tests for randomness as given in [9] for a
large sample of pseudorandom sequences generated using Theorem 1, each
of the length of a few thousand. Each of these sequences has passed the
frequency test and the serial tests satisfactorily. The serial test was repeated
by choosing the pairs of numbers with the gap between them increasing from
0 to 23 in steps of 1. Thus, in these sequences, the pairs of numbers with
gaps up to 23 are uncorrelated.

As we know, SOR cuts the r-ary representation of a rational number
after the first digit and chops it off. It is possible to think of a large class
of maps that chop the string of r-ary digits at different places in successive
iterations. Although these maps will generate pseudorandom sequences in
the sense of Theorem 1, the periods of these sequences will not, in general,
be equal to the period of the r-ary representation of the seed g, in which
case the pseudorandom numbers may not be uniformly distributed.
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