Complex Systems 9 (1995) 11-28

Nonbinary Transforms for
Genetic Algorithm Problems

Paul Field*
Department of Computer Science,
Queen Mary and Westfield College, University of London,
Mile End Road, London E1 4NS, England

Abstract. The Walsh transform is a powerful tool for transforming
from a string-based to a schema-based perspective. It has traditionally
been used in the study of deception to see fitnesses from a schema per-
spective but it has uses in studying the dynamics of genetic algorithms
(GAs) and the structure of GA models.

In this paper, Walsh coefficients and the closely related partition
coeflicients are generalized to nonbinary alphabets. For both cases,
the matrix form of the transform and inverse transform are presented.
The relationship between the two types of coefficient is examined and,
finally, an efficient algorithm for performing the nonbinary transforms
is developed.

1. Introduction

Problem representation is an important issue in genetic algorithm (GA) re-
search because the way in which a problem is represented can affect the
performance of the GA. At the heart of representation is the choice of an al-
phabet from which the strings that the GA manipulates are built. From the
perspective of GAs as “schema processors,” binary strings seem best because
they provide the greatest number of schemata. But this is simplistic. We at
least need to ask whether the extra schemata provided by a low cardinality
representation are in some sense useful. Although it is sometimes used to
support the binary case, the principle of minimal alphabets [8] states “the
user should select the smallest alphabet that permits a natural representation
of the problem.” We should consider the implications of forcing a problem
to be binary if this is unnatural; we could be doing damage that outweighs
the supposed benefits of extra schemata. Unfortunately, the majority of GA
theory centers on binary representations and provides no help with these
important questions.

*Electronic mail address: paulf@dcs.qmw.ac.uk.

12 Paul Field

Perhaps the most important tool for studying binary-represented GA
problems is the Walsh transform. Generally associated with the study of
deception, the Walsh transform is also a general tool for transforming from
a string-based to a schema-based perspective. In particular, [10] has shown
that the GA can be viewed as proceeding through nonuniform Walsh trans-
forms and [5] has applied the incremental combination transform (described
in this paper), to a complete nonbinary GA model to reveal the structure
within the model’s matrices. More traditionally, Walsh coefficients have been
used to simplify the computation of low order schemata fitnesses. Since low
order schemata survive genetic operators better than high order ones, they
and their fitnesses are important.

The Walsh transform is a powerful tool but it is limited to binary repre-
sentations and so has nothing to contribute to the alphabet debate; nonbinary
generalizations of the transform are needed. This problem is addressed in
[11] by generalizing partition coefficients to the nonbinary case. Partition
coefficients are close relatives of Walsh coefficients but, until now, have not
been as well understood. Walsh coefficients are the result of a change of ba-
sis and there is a fast transform algorithm available to compute them. This
paper presents a generalization of the Walsh transform called the incremen-
tal combination transform, describes the computation of nonbinary partition
coefficients using a basis transform, and develops fast algorithms for both
incremental combination and nonbinary partition transforms.

To begin we discuss the intuitive meaning of the coefficients and how they
are generalized to the nonbinary case. For an introduction to Walsh coeffi-
cients and their uses see [6, 7]. For a simpler and mainly nonmathematical
description of Walsh and partition transforms see [4]. For a description of
nonuniform transforms, which, because they operate on samples of the search
space, can be applied to real-world problems, see [3]. For a more practical
and nonbinary discussion see [5].

2. Generalizing binary coefficients

This section describes the intuitive meaning of binary coefficients and shows
how this meaning can be used to generalize them to nonbinary coeflicients.
Partition coefficients are used because they have a clearer intuitive meaning
than Walsh coefficients.

Partition coefficients allow us to compute a string or schema’s fitness from
the contributions of its alleles. For example:

F(11) = egp + e1y + eqa + €11,

where ey is the average fitness of all strings, e;x is the extra fitness that—
on average—a string gets for having a 1 as its first bit, and ey, is the average
extra fitness that a 1 at the second locus brings. Either or both of these
coefficients could be negative, in which case the 1 is, on average, pulling the
fitness of the string down. e;; is the extra fitness that a combination of 1s

Nonbinary Transforms for Genetic Algorithm Problems 13

brings over and above the individual contributions of the 1s. This accounts
for the whole being more (or less) than the sum of the parts.

In the binary case there is a nice symmetry. If a string does not have a
1 at a particular locus then it must have a 0. This means that the benefit a
string has from a 0 at, say, the first locus is the loss it suffers from not having
a 1 there (i.e., —e1x). Here is an example:

F(104) = eppp + erp — egap — €11

This departs slightly from the definition of partition coefficients in [11]
wherein redundant coeflicients are allowed which, because we produce the
coefficients from a change of basis, we must temporarily ignore. We disre-
gard any coefficient whose label contains the implied allele (defined above).
Using these redundant implied coefficients we could write the equation as:
FA0#) = eppp + e1pp + 6;0# + e;ro#. Higher order implied coefficients
seem more intuitive as they hide the puzzling (from the view of coefficients
as “benefits of combinations of 1s”) questions of why ef},# = —epp and
63—0# — 611#.

The difference of sign between Walsh and partition coefficients in the
binary case can be interpreted as a difference in which allele is implied from
the absence of which. The Walsh coefficient wy4 can be interpreted as the
benefit that a 0 at the first locus brings to a string and so —w;4 is the benefit
for a 1.

The nonbinary case lacks the symmetry of the binary case. We must
explicitly decide which allele we want to imply from the absence of the others.
For notational convenience we will assume that 0 is this implied allele. Using
the same intuitive meanings for the coefficients we can write the equations
relating partition coefficients and fitnesses for a problem represented by a
single cardinality 4 gene:

fO)=ep—e —es—e3

f)=es+e

f2)=eg+e

f(3) =ex+es. (1)

Here, e; is the benefit of a 1, e, the benefit of a 2, e3 the benefit of a 3, and
the benefit of a 0 is the benefit of not having a 1, 2, or 3.

The generalization of the Walsh transform presented in this paper uses
similarly-generated incremental combination coefficients. The equations re-
lating fitnesses and incremental combination coefficients are the same as
equations (1) except that additions and subtractions are exchanged.

We now have an informal feel for partition and incremental combination
coefficients. In later sections the coefficients will be described formally by
constructing general matrices to convert them to and from fitnesses. First,
however, we must look at some of the background notation and assumptions
behind the formal presentation.

14 Paul Field

3. Preliminaries

We assume that a GA processes strings of length [and that we have a fitness
function f that maps every possible string to a positive real number. A value
(or allele) at locus 4 on the string is drawn from a set of alleles (or gene) G;.
Although, in general, alleles could be any sort of object, their values are
unimportant in this paper so we simplify matters by assuming that a gene
consists of contiguous integers from 0 upwards. The cardinality of each gene
is ¢; = |G;|. Since the number of alleles in a gene is important but their
values are not, we can specify the set of strings, known as the representation
of a problem, by a vector of gene cardinalities €. Strictly speaking, matrices
should be subscripted with the problem representation that they apply to
(i-e., fi232) or fz) but sometimes subscripts will be dropped when they would
clutter an equation without adding clarity.

We examine nonbinary transforms using matrix notation (i.e., f = V1)
and we need an ordering on strings and coefficients to determine their po-
sitions within their vectors. We order strings and coefficient labels so that
a <b+ Jja; < by AVigya, = b We also require that # < o where
« is the implied allele and is less than any other allele. The ordering of
nonimplied alleles is unimportant. Other orderings can be accommodated
by applying permutation matrices to the transform matrices, but this would
unnecessarily complicate the presentation. For the purposes of this paper
we order strings by the numeric ordering of the alleles with the rightmost
being in the least significant position. As an example, strings of two trinary
genes: Gy = Gy = {0,1,2} are ordered 00, 01, 02, 10, 11, 12, 20, 21, 22. We
order the coefficient labels in the same way, with # being smaller than any
number. For example:

Jfoo Vgt
for Vg1
F fo2 = Vg2
fom = Jio vies) = V1
f11 V11
fi2 V12

4. The inverse partition transform

Section 2 describes how string fitnesses are constructed from partition coef-
ficients, we start this section by looking at the matrix form of the inverse
partition transform, which transforms partition coefficients into fitnesses. To
travel the other way, fitnesses to coefficients, requires the partition transform
that is described in section 5.

Obviously, the transform matrix depends on the representation of the
problem. We denote the inverse partition transform matrix as E~! and
subscript it with the representation it applies to. The matrix form of the
transform is simply a neat way of writing the equations relating fitnesses and

Nonbinary Transforms for Genetic Algorithm Problems 15

partition coefficients. Using equations (1) as an example we have:

fuy = Egyeq

fo 1 -1 =1 =17 ey
fl _ 1 1 0 0 €1
fol |1 0 1 0 es
f3 1 0 0 1 €3

Each row of a transformation matrix corresponds to the calculation of a
fitness. Any single gene transform matrix E(_C)1 will be a ¢ X ¢ matrix with
1s in the first column (since every calculation requires the average fitness
coefficient), 1s along the main diagonal (for the single coefficient that must
be added to ey), and —1s from the second column onwards in the top row
(subtracting the coefficients for the implied allele). Diagrammatically we
have:

-1
Ic—l

where I, is an n x n identity matrix.

Having dealt with the single gene case, we must move on to general rep-
resentations. We will begin by looking at E(g;’z) gnd, by examining its
structure, we will develop the general formula for E;!.

1 =1 -1 1}-1 1 1 11 1 1 -1

1 1 -1 -1 -1 1 11 -1 1 |

1 -1 1 =1{=1 4=t 10 1 | 1

1 1 1 1}-1 -1 -1 -1|-1 -1 -1 -1

1 -1 -1 1] 1 -1 =1 1} 0 0 O O

Bl = 1 1 -1 -1 1-1-1{ 0 0 O O
(3,2,2) 1 -1 1 -1 1 -1 1 -1/ 0 0 0 O
1 1 1 111 1 1 1] 0 0 0 O

1 -1-1 1, 0 0 O O] I -1 -1 1

1 1 -1 -1 0 0 0 O I 1 -1 -1

1 -1 1~-1 0 0 O O I -1 1 -1

1 1 1 1) 0 0 0 o 1 1 1 1

The matrix has been divided and shaded to show its structure. At the top
level, the matrix consists of three types of identical blocks: all Os, the light
gray block, and the dark gray block. The dark gray block is simply the light
gray block with all its elements negated. We could write:

B -B -B

Egon=|B B 0
B 0 B

16 Paul Field

which, structurally, looks very similar to Es). Examining the structure of a
block B in the same way:

1 -1[1 1

B | L 1]l -1 :{Bz —Bz]
1 -1 1 -1 By By
I R I

which, structurally, looks like E(_z)l, as does B, itself. What we have is the
leftmost gene (cardinality 3) controlling the global structure of the matrix
using E<_3>1 as a template into which smaller structures are placed. In the
same way, the second gene controls mid-distance structure using E<_2>1 as a
template and the rightmost gene controls local structure using E(‘z)l

The matrix operator called the Kronecker product (also known as the
direct or tensor product) builds matrices in exactly this way:

anB alzB — CllnB
A ® B= CLZ%B (,I/ZZB . a27.,,B
CLTn]_B CLsz — amnB

where A is an m X n matrix, B isr X s, and A ® B is mr X ns.
The Kronecker product has the following properties (e.g., [9]):

(A®B) '=A"'®@ B! 2)
(A® B)(C ® D) = AC® BD (3)
A®(B®C)=(A®B)®C (4)

Using the Kronecker product we can write:

-1 _ -l -1 -1
Eign = gy © By © By

3,2,2

and in general:

<1 g =) =)
B =By @By @ - ®Eg,.

5. The partition transform

The Walsh transform matrix consists of orthogonal column vectors of equal
length and so it is, bar scaling, its own inverse. Unfortunately, in general,
neither the incremental combination transform nor the partition transform
has orthogonal column vectors and so we have to state both the transform
and the inverse transform explicitly.

We can write the partition transform matrix E; as:

cr)

= N —1
E.= (BN " = (B, @EL® @) .

Nonbinary Transforms for Genetic Algorithm Problems 17

We can expand this using equation (2):
Ee =By @ By @ -+ ® By

which simplifies our problem somewhat. We state without proof that:

1 1 1 1
c c c c
1 1 1 1
c ! c c c
1 1 1 1

E(c)_ € c 1 c c
1 1 1 1
= B = w4

Informally, the first row sums all the fitnesses and divides by ¢, the number of
fitnesses. This is what we would expect for e4, the average fitness coefficient.
All the remaining rows are the negation of row 1, except that they have a
single fitness added. This is what we would expect from rearranging f; =
ex + e; to give e; = f; — ex.

6. The incremental combination transform

The nonbinary partition transform presented above is all that is needed to
transform from a string-based to a schema-based perspective. In addition,
partition coefficients have a clearer intuitive meaning than Walsh or incre-
mental combination coefficients. So why do we need the incremental com-
bination transform? Until now, partition coefficients have not been as well
understood as Walsh coefficients and so Walsh coefficients have been used for
nearly all transform-based GA theory. The easiest way to generalize such the-
ory to nonbinary alphabets is to use the incremental combination transform
and coefficients, which are nonbinary generalizations of the Walsh transform
and coefficients. Using the nonbinary partition transform is slightly more
difficult because it is not a generalization of the Walsh transform; it is only
related. Section 7 will help those wishing to use the partition transform
to generalize binary theory. Another reason for using the incremental com-
bination transform is that its transform matrix is symmetric, whereas the
partition transform matrix is not.

In the single gene case, the inverse incremental combination transform
matrix V(Zl will be E(zl with all elements except those in the first column
negated. Diagrammatically we have:

1
o — |a
Vo =| 1 W

—de—-1

This simply reflects the difference in signs between incremental combination

18 Paul Field

and partition coefficients. The single gene IC transform matrix is:

11 1 1

c ¢ c c

1 1 1 1

é ¢ 1 c ¢

1 1 1 1
‘/(c): ¢ © c 1 3

1 1 3 1

e © (-} YRR e 1

In the same way as the partition transform, the general transform matri-
ces are formed using the Kronecker product:
‘/E = ‘/(Cl) ® I/(cz) ®---& ‘/(c,
-1 _ -1 -1 -
Vit =Voi @V @@ Vg
We can easily show that this is a generalization of the Walsh transform.
The Kronecker product formulation of the (inverse) Walsh (Hadamard) trans-
form is given in [1] as:

1 1
W= |1]
W, =W;_, @ Wy,

since W; = Vz) , both this and the incremental combination formulation
reduce to the Kronecker product of [V(E)l matrices.

7. The relationship between incremental combination and
partition coefficients

We have already seen that the difference between incremental combination
and partition coefficients is simply one of sign. However, not all of the co-
efficients have different signs. We can investigate the relationship formally
by finding the matrix T' that transforms one set of coefficients into the other
(for a particular representation). Note that T, like the transform matrices
we have already seen, effects a change of basis:
T=VE™
To find the structure of T', we expand the right-hand side using equa-
tion (3):
(‘/(01 ® ‘/(cz) ®...® ‘/(Cl))(61) ® E(c ®...QF cl))
=VienEpy ® Vc2>E(C2) ®...® VieyEpy
=Tie) @Tea) @+ ® Ty

where

Ty = Vc)E(c) = =

Nonbinary Transforms for Genetic Algorithm Problems 19

Note that since TiTiey = I, Tiey = T(Z)l-
From T', we can generate a formula relating individual coefficients:

e; = (—1)dvi,

where d is the number of defined (i.e., not #) loci in the coefficient label 4.

8. Implied coefficients

Although they are redundant, it can be useful to calculate the coefficients
whose labels contain the implied allele. These coefficients make it easier to
see the effects of allele combinations involving the implied allele. They are
also useful for calculating fitnesses by hand since they reduce the complex-
ity of expressions and remove the problem of deciding whether to add or
subtract higher-order coefficients (see section 2 for an example). However,
there is no point in calculating them just for the sake of it. In the worst
case (binary) there will be 3" — 2! implied coefficients in comparison to 2!
nonimplied coefficients. Schema values can be calculated without implied
coefficients using the partition-schema and incremental combination schema
transforms developed in [5].

It is easiest to calculate implied coefficients at the same time as the usual
coefficients and to do so only involves adding an extra row to the single-gene
transform matrices:

1 1 1 1]
g3 % -3 3
1] -1 e-1 = 1
<
Ey=7] -1 -1 c—-1 ")
| =1 A =1 .. e

The second row is new, it computes the coefficient ef for a single gene.
The complete transform matrix E+ can be constructed using the Kronecker
product in the usual way.

Similarly, to calculate implied incremental combination coefficients at the
same time as the usual coefficients, the single-gene incremental combination
matrices should be altered to be of the form:

[1 1 1 1]

l-c 1 1 1

1 1-c 1 1
Va=2-11 1 1-e 1

111 1-c |

Again, the second row is new and the complete transform matrix V' can be
constructed using the Kronecker product.

These transforms can be implemented as fast transforms using the tech-
niques described in section 9.

20 Paul Field

9. Fast transforms

Performing an incremental combination or partition transform by naive ma-
trix multiplication will take O(N?) operations (where N is the size of the
transform matrix). Even assuming we can create the transform matrix with
no time overheads we will still need 2NV units of memory; N for the fitness
vector, IV for the coefficient vector. We could take advantage of Os in the ma-
trix but this only helps for high cardinality representations. However, there
is an algorithm, analogous to the fast Walsh transform, that can perform the
transforms (and their inverses) in only O(N log N) operations for the worst
case (i.e., no zeros in the matrix) and can transform the data in-situ, thus
needing only N units of memory.

The algorithm takes advantage of identical calculations in the transform
matrix. For example, look at Eé}2>:

== 3
1l LN
=1 1. =1*)=
Ll

RS N | S U

The arrows show identical calculations. Calculations in the right column
have to be negated to become identical. Instead of 3 x 4 = 12 additions or
subtractions, we only need two operations per column plus four operations
to combine the columns, making eight operations.

These identical calculations are produced by the Kronecker product. A
matrix generated by a Kronecker product is made up of identical blocks (bar
scaling) so only the calculations for one block in each column of blocks need
to be done. The incremental combination and partition transforms are, in
general, created from many Kronecker products. We will form matrices X;
that perform only the necessary calculations for each column of blocks at
each level of structure in a matrix.

The following construction of a fast algorithm is not specific to the trans-
forms presented in this paper; it can be applied to any matrix formed by
Kronecker products. This formulation has been developed independently
and it is almost certainly not original; much work has been done on fast
transforms (e.g., [13]). It does, however, have the virtue of being fairly sim-
ple and self-contained.

A matrix multiplication:

Mv=(B,®B;® - ® By)v, (5)
where each B; is a b; X b; matrix, can be implemented as:

Mv = X1(Xa(. .. (X)), (6)
where

Xi = L) ® Bi ® Liiyim @

Nonbinary Transforms for Genetic Algorithm Problems 21

= { Tt 15 0

and I, is the n x n identity matrix.

9.1 Proof of equivalence of equations (5) and (6)

The first step is to prove by induction that

k
H Xi=B1®B,® --®@ B ® Ly(k+1,n)~ (9)

i=1
The base case (when k = 1 is proved using equation (7):

X1 = Lo ® B ® Liow
=1, ® B ®Lyan
=3 Bl ® I’y(2,n)-

To prove the inductive case, equation (9) is assumed to be true for k£ — 1:

k-1
H Xi=B1®B;®-® Bi_1 ® Ly n)- (10)

i=1

By definition of product, substituting in equations (10) and (7) and re-
arranging using equations (3) and (4):

=1

= (B]_ ® B2 R Q& Bk—] ® I’y(k,n))Xk
= ((31 ®By®-+-QBr1)® I’y(k:,n,)) (Iy6-1) ® (Br ® Lyi41,n)))
=(B1®B:® - ® Br_1)Lya,5-1) ® Lyem) (Bk ® I-y(k+1,n))

=(B1®B:®---®By_1)® (Bk ® I'y(k+1,n))
=B®B;® @ Br_1 ® By ® Lj(j41n)

H %= (HX) X,

which proves equation (9). From this we see that

[[Xi=Bi®B:® - ® B, ® Lins1)
=1

:B1®B2®"'®Bn

=M.

22 Paul Field

9.2 Operation counts for Mv and X;(X5(...(X,v)...))

A matrix multiplication Nv involves multiplication and addition operations.
A clever multiplication will avoid these operations for 0 elements in N and
may be able to avoid multiplications for 1 and —1 elements too. Such a clever
multiplication could potentially take advantage of 0, 1, or —1 in v but we
assume that v is arbitrary and so is unlikely to contain these elements. To
take advantage of v would also require dynamic run-time analysis, whereas
our a priori knowledge of N allows a static examination. For simplicity, we
will only count additions and subtractions but we will take advantage of 0
elements.

The number of operations (i.e., additions and subtractions) required to
perform Nv can be calculated from the number of nonzero elements in N:

ops(N) =dy —ryn
where dy is the number of nonzero elements in N and 7y is the number of
nonzero rows. We subtract the number of nonzero rows because summing n
elements only requires n—1 additions. To calculate ops(M), we need to know

how nonzero elements and rows are combined by the Kronecker product. If
C=A®B:

dc = dadp
Tc = TATB.

This gives a straightforward equation for ops(M):

ops(M) Hde II7s. (11)

To work out ops(I] X;), we calculate ops(X;):

dxzyﬂj—l)@+1nd3—

i

1. j=1
TR n
WZ;H@
i j=1
dBi —TB; L
ops(X;) = — 1%

and then sum all the ops(X;):

ops([] %) = Y ops(X (Hb)Zde;B (12

Nonbinary Transforms for Genetic Algorithm Problems 23

Table 1: How the incremental combination and partition transforms
fit into the general fast transform formulation.

General formulation | IC transform Partition transform
M Vz Ee

v v (23

By, By, ... B View Vi), - - - Viey | Bter), Bea)s - - - B

bi C; Ci

10. The time complexity of the fast nonbinary transforms

The equations presented in section 9 are applicable to any Kronecker product
formed matrix M. This section interprets them for the incremental combina-
tion and partition transforms listed in Table 1. Mappings similar to Table 1
apply for the inverse transforms.

It is important to calculate the number of operations needed for the trans-
forms (and inverses) to predict how fast the fast transforms really are. The
calculation is easiest for the inverse transforms, so we will start with those.

Remembering that the size of the transform matrix is N = [T, ¢; (the
product of the gene cardinalities), and noting that ¢ = v/N (i.e., the geomet-
ric mean of the cardinalities), we can calculate the number of operations for
direct multiplication by the transform matrix from equation (11):

dE<—> =c+2(c—-1)=3c—2
rpg = ¢

l
ops(E; ") = ops(V;) = [[(3¢; — 2) H ¢~ 038V N,
=1
In contrast, the fast formulation using equation (12) gives:

ops(H X = (ﬁ cj) i 3c; —

J=1 =1
L 1
=2N)Y (1 - —)
i=1 1

1
:2(1— :)NlogéN

c
= O(Nlog; N)

1

where ¢ is the harmonic mean of the gene cardinalities: ¢ =1/ Y_, =

We can obtain the same time complexities for the noninverse transforms
by noticing that:

24 Paul Field

100 ...0 t 4 & .3
110 ..0ll010..0
Eyg=FwE' =] -1 0 1 ollo o1 ... 0
~100 1]loo o 1

and because

dE' :dEu =2c—1

rgr =7Tgn =¢C

we can calculate that OpS(E(_C)l) = dg —rg + dgr — rgn = 2¢ — 2. This
is the same as for E~! (although we have a division then as well) and so,
informally, we can see that the inverse transform is as easy to compute as
the transform. There is an equivalent breakdown for V.

11. Implementing the fast transform

To implement the fast transform, we must implement multiplication by an
X; matrix. Although it might initially appear that we need to generate each
X; matrix, in fact they can be hard coded. This is easy to see if we look
at the structure of an X; matrix. As an example, we will look at X, for
the inverse partition transform with a problem representation (3,2,2). Its
formula is:

X2 = 17(1,1) ® E<_2; ®]7(3,3) = Is ® Eé; ® -[2 (13)
and the matrix itself is:
1] 0[=1] 0 0 0 0 0 O 0 0 O
O[I] O/=L] 0 0 0 0 0 O O O
“11lo[1l 0ol 0o 0 0 0 0O 0O 0 O
o[1l o[1] 0 0 0 0 0 O O O
0 0 0 O[1] O0[=L] 0 0 0 0 O
0 0 0 O|O[I] O[] 0 0 0 0
0 0 0 o[1llo[T] 0f O 0 O O
00 0 0 O[Tl 0[1l0 0 0 0
00 0 0 0 0 0 O[1] 0[=1] 0
00 0 0 0 0 0 o0fO0[I] 0=
00 0 0 0 0 0 0[1 OL-I—’_E‘
L0 o0 0 0 0 0 0 0 O[LLl 0[T1]]

In equation (13), the left-hand identity matrix I3 controls the global struc-
ture so we see three blocks along the main diagonal of the X, matrix (shaded
very light gray). The right-hand identity matrix controls the local structure.
A good way to look at this is as if the E(;; matrix has been scaled up or
exploded and copies made of it along the main diagonal (exploded E(_2)1 ma-
trices are shown boxed with their elements shaded). From the formula for X;

Nonbinary Transforms for Genetic Algorithm Problems 25

we would expect to see (1,7 — 1) blocks each containing (i + 1,n) exploded
E(“C.l) matrices. The distance between elements of each exploded matrix is
v(i+1,n).

If we have routines that can multiply matrices (such as Ey, E (_C)l, Viey, and
V(Z)l) taking account of an offset and an explosion factor, then to multiply by
X; we simply call the appropriate routine repeatedly with the appropriate
parameters. These parameters are easily generated “on-the-fly” so the X;
matrix does not have to be explicitly calculated or stored.

A Cimplementation of the incremental combination transform using these
ideas is presented in Appendix A. It should be noted that this implementation
performs transforms in situ (requiring only N units of memory), whereas
the fast Walsh transform implementation published in [6] uses 2N units of
memory.

12. Conclusion

In this paper two related nonbinary transforms generalized from the binary
case have been shown. In addition to providing the foundations for general-
izing binary-based GA theory, this paper has also produced a fast (binary)
partition transform as a special case of the fast partition transform. This
has not, to the author’s knowledge, been previously published for binary
problems.

Uses of the nonbinary transforms developed in this paper, including a dis-
cussion of nonuniform transforms (for which all fitnesses in the search space
do not need to be known), are presented in [5]. Also in [5], the nonbinary
transforms are presented as part of a complete nonbinary theoretical frame-
work for GAs that is used to try to resolve the alphabet problem discussed
in the introduction.

Appendix A. C source code for the fast incremental
combination transform

Note that C arrays are indexed from 0. Following this, the X matrices are also
labeled from 0. Also note that assert is a debugging test and is not compiled
in production code (i.e., code compiled with the NDEBUG macro defined).

A slightly more robust implementation with data file input/output, a
command line interface, and support for the partition transform is available
from the author.

For large data sets, a noticeable speed gain may result from avoiding the
B_multiply () function call in fast_multiply() by substituting the partic-
ular instance of B_multiply () directly into the source code.

typedef void (*matrix_multiply_fn)
(unsigned n, double datall,
unsigned dataoffset, unsigned matrix_explode_scale);

26 Paul Field

unsigned gamma(int lower, int upper, unsigned b[])
{ int 1i;
unsigned total;

total = 1;

for (i = lower; i <= upper; i++)
{ total *= b[il;

}

return(total);

}

void fast_multiply(double datal], unsigned b[],
unsigned n, matrix_multiply_fn B_multiply)
{ int 1i;
unsigned blocks, subblocks, blocksize, subblock, block;
unsigned blockstart;

/* Xn (which isn’t used) is made of nxn blocks */
blocks = gamma(O,n-1,b);
blocksize = 1;

for(i =n-1; i >= 0; i--)
{ /* Multiply by Xi */

subblocks = blocksize; /* Quick ways of calculating */
blocksize *= b[i]; /* variables without using */
blocks /= bl[il; /*’gamma’ in each loop */
assert(blocks == gamma(0, i-1, b));
assert(subblocks == gamma(i+1,n-1, b));
assert(blocksize == gamma(i, n-1, b));

for (block = 0; block < blocks; block++)
{ blockstart = block*blocksize;
for (subblock = 0; subblock < subblocks; subblock++)
{ B_multiply(b[i], data, blockstart+subblock, subblocks);
/* ’blockstart+subblock’ because each subblock is */
/* ’shifted’ down and right by one row/column from */
/* the previous subblock */

¥
}
}

void InvVc_multiply(unsigned c, double datall],
unsigned dataoffset,
unsigned matrix_explode_scale)

Nonbinary Transforms for Genetic Algorithm Problems 27

{ double sum;
unsigned row, column_data_idx;

/* Multiply one row at a time (row O is calculated */
/* in sum as we go along) */
sum = data[dataoffset];
column_data_idx = dataoffset;
for (row = 1; row < c; rowt++)
{ column_data_idx += matrix_explode_scale;
sum += datal[column_data_idx];
data[column_data_idx] = data[dataoffset] -
datal[column_data_idx];
¥
data[dataoffset] = sum;
e

void Vc_multiply(unsigned c, double data[], unsigned dataoffset,
unsigned matrix_explode_scale)
{ double rowO_sum;
unsigned col, row, column_data_idx;
rowO_sum = 0;
column_data_idx = dataoffset;

/* Multiply row O */

for (col = 0; col < c; col++)

{ rowO_sum += datal[column_data_idx];
column_data_idx += matrix_explode_scale;

¥

rowO_sum /= c;

data[dataoffset] = rowO_sum;

/* Multiply remaining rows */

column_data_idx = dataoffset;

for (row = 1; row < c; row++)

{ column_data_idx += matrix_explode_scale;
data[column_data_idx] = rowO_sum -

data[column_data_idx];
}
¥

void IC_transform(double datal],
unsigned cardinalities[],
unsigned genes, bool inverse)
{ fast_multiply(data, cardinalities, genes,
inverse ? InvVc_multiply : Vc_multiply);
}

28

Paul Field

References

(1]

2]

3l

[4]

[6]

[7]

[9]

[10]

(11]

(12]

[13]

Xiaoyun Qi, Abdollah Homaifar, and John Fost, “Analysis and Design of a
General GA Deceptive Problem,” in Belew and Booker [2].

Proceedings of the Fourth International Conference on Genetic Algorithms,
Richard K. Belew and Lashon B. Booker editors, University of California,
San Diego (Morgan Kaufmann, San Mateo, 1991).

Clayton L. Bridges and David E. Goldberg, “The Nonuniform Walsh-schema,
Transform,” in Rawlins [12].

Paul Field, “Walsh and Partition Functions Made Easy,” presented at the

AISB 1994 Workshop on Evolutionary Computing, University of Leeds, Eng-
land.

Paul Field, “A Multary Theory for Genetic Algorithms: Unifying Binary and
Nonbinary Representations,” PhD thesis, Queen Mary and Westfield College,
London, 1995.

David E. Goldberg, “Genetic Algorithms and Walsh functions: Part I. A
Gentle Introduction,” Complex Systems, 3 (1989) 129-152.

David E. Goldberg, “Genetic Algorithms and Walsh Functions: Part II, De-
ception and its Analysis,” Complex Systems, 3 (1989) 153-171.

David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning (Addison-Wesley, Reading, 1989).

A. Graham, Kronecker Products and Matriz Calculus with Applications (Ellis
Horwood, Chichester, 1981).

Gunar E. Liepins and Michael D. Vose, “Deceptiveness and Genetic Algorithm
Dynamics,” in Rawlins [12].

Andrew J. Mason, “Partition coefficients, Static Deception, and Deceptive
Problems for Nonbinary Alphabets,” in Belew and Booker [2].

Gregory J.E. Rawlins (editor), Foundations of Genetic Algorithms (Morgan
Kaufmann, San Mateo, 1991).

Douglas F. Elliott and K. Ramamohan Rao, Fast Transforms: Algorithms,
Analyses, Applications (Academic Press, New York, 1981).

