
Complex Syst ems 9 (1995) 11-28

N onbinary Transforms for
Genetic Algorithm Problems

Paul Field*
Department of Computer Science,

Queen Mary and Westfi eld College, University of London,
Mile End Road, London El 4NS, England

Abstract. The Walsh transform is a powerful tool for transforming
from a st ring-based to a schema-based persp ective. It has traditionally
been used in the st udy of deception to see fitn esses from a schema per
spe ct ive but it has uses in study ing the dyn am ics of genet ic algorit hms
(GAs) and the structure of GA models.

In this paper , Walsh coefficients and the closely related partition
coefficients are genera lized to nonbinary alphabe ts . For both cases,
the matrix form of the tr an sform and inverse tra nsform are pr esented.
The relationship between the two typ es of coefficient is examined and ,
fina lly, an efficient algorithm for performing the nonbinar y tran sforms
is developed .

1. Introduction

Problem representation is an import ant issue in genet ic algorithm (GA) re
search because the way in which a problem is repr esented can affect the
performan ce of the GA. At the hear t of repr esentation is the choice of an al
phabet from which the st rings that the GA manipulat es are bui lt. From t he
persp ecti ve of GAs as "schema pro cessors," binar y strings seem best becau se
they provide the greatest number of schemata. But this is simplist ic. We at
least need to ask whether the extra schemata provided by a low cardinality
represent at ion are in some sense useful. Although it is somet imes used to
support the bin ar y case , the pr inciple of minimal alph ab et s [8] states "the
user should select the smallest alphabet that permits a natural repr esentation
of the problem ." We should cons ider the imp lications of forcing a problem
to be binar y if this is unnat ur al ; we could be doing damage that outweighs
the suppose d benefits of ext ra schemata. Unfort unate ly, the majority of GA
theory cent ers on bin ary representations and provid es no help with the se
important questions.

*Electronic mail address: paulf©dc s . qmw.ac. uk .

12 Paul Field

Perhaps the most important tool for studying binary-represent ed GA
problems is the Walsh transform. Generally associated with the study of
deception, the Walsh transform is also a genera l too l for t ra nsforming from
a st ring-based to a schema-based perspect ive. In par t icular , [10] has shown
that the GA can be viewed as proceeding through nonuniform Walsh trans
forms and [5] has applied the incremental combination transform (described
in this pap er), to a complete nonbinary GA model to reveal the st ructure
within the model's matrices. More tradit ionally, Walsh coefficients have been
u ed to simplify the comp utation of low order schemata fitn esses. Since low
order schemata surv ive genet ic operators better than high order ones, they
and their fitnesses are important.

The Walsh transform is a powerful tool but it is limited to binary repre
sentations and so has nothing to cont ribute to t he alphab et debat e; nonbinary
genera liza tions of the transform are needed . This problem is addressed in
[11] by generalizing parti tion coefficients to the nonbinary case . Part it ion
coefficients are close relatives of Walsh coefficients but , until now, have not
been as well understood. Walsh coefficients are the result of a change of ba
sis and there is a fast t ra nsform algorithm available to compute them. This
pap er presents a genera lizat ion of the Walsh transform called th e incremen
tal combination transform ; describes the computat ion of nonbinary par tition
coefficients using a basis transform , and develops fast algorithms for both
incremental combination and nonbin ary partit ion t ra nsforms.

To begin we discuss the intuitive meaning of the coefficient s and how they
are genera lized to the nonbinary case . For an introduction to Walsh coeffi
cients and their uses see [6, 7]. For a simpler and mainly nonmathemat ical
description of Walsh and par t it ion tr ansforms see [4]. For a description of
nonuniform tra nsforms, which, because they operate on samples of the search
space, can be applied to real-world problems, see [3]. For a more practi cal
and nonbinary discussion see [5] .

2. Generalizing binary coefficients

This sect ion describes the intu itive meaning of binary coefficients and shows
how this meaning can be used to genera lize th em to nonbinary coefficients .
Partition coefficients ar e used because they have a clearer intuitive meaning
than Walsh coefficients .

Part it ion coefficient s allow us to compute a st ring or schema's fitness from
the cont ribut ions of it s alleles. For example:

where e## is the average fitness of all st rings, el# is the ext ra fitness that
on average-a st ring gets for having a 1 as its first bit , and e#l is the average
extra fitn ess that a 1 at the second locus br ings . Either or both of t hese
coefficients could be negat ive, in which case the 1 is, on average, pulling the
fitn ess of th e string down . ell is the ext ra fitn ess that a combinat ion of Is

Nonbinary Transform s for Genetic A lgorithm Problem s 13

brings over and ab ove the individual cont ribut ions of the Is. This accou nts
for the whole being mor e (or less) t han the sum of the par ts.

In the binary case there is a nice symmetry. If a st ring does not have a
1 at a particular locus then it must have a O. T his mean s that the benefit a
string has from a 0 at , say, the first locus is the loss it suffers from not having
a 1 there (i.e. , -el#) . Here is an example:

T his departs slight ly from the definit ion of par tit ion coefficients in [11]
wherein redu ndant coefficients are allowed which , becau se we produce t he
coefficients from a change of basis, we must temp orar ily ignore. We disre
gard any coefficient whose lab el contains the implied allele (defined above) .
Using these redu ndant 'implied coefficients we could write the equation as :
f (10#) = e### + el## + e;);o# + eto#' Higher order implied coefficients
seem more intuitive as they hide t he puzzling (from the view of coefficients
as "benefits of combinat ions of Is") quest ions of why eto# = -el1# and

eto# = el1# '
T he difference of sign between Walsh and partition coefficients in the

binar y case can be interpret ed as a difference in which allele is implied from
the absence of which . T he Walsh coefficient Wl# can be interpr eted as the
benefit that a 0 at the first locus brings to a string and so - Wl # is the benefit
for a 1.

T he nonb inary case lacks the symmetry of the binar y case . We must
explicit ly decide which allele we want to imply from the absence of the others.
For notational convenience we will assum e that 0 is this implied allele. Using
the same intuitive mean ings for the coefficients we can write the equat ions
relat ing par tition coefficient s and fitnesses for a problem represented by a
single cardinality 4 gene :

f(O) = e# el - e2 e3

f (l) = e# + el

f (2) = e# + e2

f (3) = e# + e3· (1)

Here, el is the benefit of a 1, e2 the benefit of a 2, e3 the benefit of a 3, and
the benefit of a 0 is t he benefit of not having a 1, 2, or 3.

T he generalization of the Walsh t ran sform pr esented in this paper uses
similarly-genera ted incremental combination coefficients . T he equat ions re
lati ng fitn esses and incremental combinat ion coefficients are the same as
equa tio ns (1) except that addit ions and subtractions are exchanged.

We now have an informal feel for part ition and incremental combination
coefficients . In later sections the coefficients will be describ ed formally by
construct ing general ma tr ices to convert them to and from fitnesses. F irst ,
however , we must look at some of the background notat ion and assumptions
behind the formal pr esent ation.

14 Paul Field

3. Preliminaries

We assume t hat a GA pro cesses st rings of length l and that we have a fitness
fun ction f that map s every po ssibl e st ring to a positive real number. A value
(or allele) at locus i on the st ring is dr awn from a set of alleles (or gene) Gi .

Although , in genera l, alleles could be any sort of obj ect , t heir values are
unimpor tan t in this pap er so we simplify mat ters by ass uming that a gene
consists of cont iguous integers from 0 upwards. The cardinality of each gene
is c; = IG;!. Since the number of alleles in a gene is impor tant but the ir
values are not , we can specify t he set of strings , known as the representation
of a problem , by a vector of gene car dinalit ies c. St rict ly speaking , matrices
should be subscripted wit h the problem representa tion that they apply to
(i.e. , 1 (2,3,2) or Ie) but sometimes subscripts will be dr opped when they would
clutter an equat ion without adding clari ty.

We examine nonbinar y tran sforms using matrix not ati on (i.e. , 1= V- 1v)
and we need an ordering on st rings and coefficients to determine their po
sit ions wit hin their vectors . We ord er st rings and coefficient lab els so that
a < b f-+ 3j aj < bj 1\ Vi<j a i = b.. We also require that # < a where
a is the implied allele and is less t han any ot her allele. The ordering of
nonimplied alleles is unimpor tant. Other orderings can be accommodated
by applyin g p ermutation matrices to the t ra nsform matrices, bu t this would
unnecessarily complica te the presentation . For the purp oses of this pap er
we ord er st rings by the numeric ord ering of the alleles wit h the rightmost
be ing in the least significant p osit ion . As an example, strings of two t rinary
genes : G1 = G2 = {O, 1, 2} are ordered 00, 01, 02, 10, 11, 12, 20 , 21, 22. We
order the coefficient lab els in the same way, with # being smaller than any
number. For example:

foo v##

f01 V# l

1(2,3) =
f0 2

V(2,3) =
V# 2

flO V1#

1 11 Vl1

1 12 V 12

4 . The inverse partition transform

Secti on 2 describes how st ring fitnesses are const ructed from partition coef
ficient s, we start this sect ion by looking at the matrix form of the inverse
partition tran sform, which t ra nsforms part it ion coefficients int o fitnesses. To
travel the ot her way, fitnesses to coefficients, requires the partiti on t ransform
that is described in sect ion 5.

Obviously, the tran sform matrix depends on the repr esentation of the
problem. We denote t he inverse partition t ransform matrix as E - 1 and
subscript it with the rep rese ntation it applies to. The matrix form of the
tra nsform is simp ly a neat way of writ ing the equations relating fitnesses and

Nonbinary Transforms for Geneti c Algorithm Problems

partition coefficients . Using equat ions (1) as an example we have:

- 1
1 (4) = E0)e(4)

fo 1 [1- 1 -1 -1 e#

11 _ 1 1 0 0 e l
h - 1 0 1 0 e 2

13 1 0 0 1 e3

15

Each row of a transformation matrix corresponds to the calculat ion of a
fitn ess. Any single gene t ra nsform matrix E~) will be a c x c matrix wit h
I s in the first column (since every calculation requ ires the average fitn ess
coefficient), Is along the main diagonal (for the single coefficient that must
be added to e#), and -Is from the second column onwards in the top row
(sub tr act ing the coefficients for th e imp lied allele). Diagrammatically we
have:

E~) = [1 I-I] ,
c- l

where In is an n x n identity matrix.
Havin g dealt with the single gene case, we must move on to general rep

resent at ions. We will begin by looking at Er;,~2 ,2) and, by examining its
st ructure, we will develop the general formu la for E'i 1

.

E- 1 -
(3,2,2) -

1 - 1 - 1 1 - 1 1 1 - 1 - 1 1 1 -1
1 1 - 1 - 1 - 1 - 1 1 1 - 1 - 1 1 1
1 - 1 1 - 1 -1 1 -1 1 - 1 1 - 1 1
1 1 1 1 -1 - 1 -1 - 1 - 1 - 1 - 1 - 1
1 - 1 - 1 1 1 - 1 - 1 1 0 0 0 0
1 1 - 1 - 1 1 1 - 1 - 1 0 0 0 0
1 - 1 1 - 1 1 - 1 1 -1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 - 1 -1 1 0 0 0 0 1 - 1 - 1 1
1 1 - 1 - 1 0 0 0 0 1 1 - 1 - 1
1 - 1 1 - 1 0 0 0 0 1 - 1 1 - 1
1 1 1 1 0 0 0 0 1 1 1 1

The matrix has been divided and sha ded to show its st ructure . At t he top
level, the matrix consists of three typ es of identical blocks: all Os, the light
gray block, and the dark gray block. The dark gray block is simply the light
gray block with all it s elements negat ed. We could write :

16 Paul Field

which , st ruct urally, looks very similar to E (3) ' Examining the st ructur e of a
block B in the same way :

B=

1 - 1 - 1 1
1 1 - 1 - 1
1 - 1 1 - 1
1 1 1 1

which , st ruct urally, looks like E~) , as does B2 it self. What we have is t he
leftmost gene (cardinality 3) cont rolling the global st ructure of the matrix
using E(;) as a template into which smaller st ructure s are placed . In the

same way, the second gene controls mid-dist ance st ructure using E~) as a

template and the rightmost gene cont rols local structure using E~) .

The matrix op erat or called the Kr-onecker- pr-oduct (also kn own as the
dir-ect or tensor- pr-oduct) build s matrices in exact ly this way:

an B a12 B alnB

A 0B =
a21B a22 B a2nB

aml B am2B amnB

where A is an m x n mat rix , B is r x s , and A 0 B is mr x ns .
The Kron ecker pro duct has the following prop ert ies (e.g., [9]):

(A 0 B)- 1 = A-I 0 B - 1

(A 0 B)(C 0 D) = A C 0 B D

A 0 (B 0 C) = (A 0 B) 0 C

Using the Kron ecker produ ct we can write :

and in general:

e:: e:: s». E - l s». "'" e::C = (C1) '<OJ (c2) '<OJ • • • '<OJ (q) '

(2)
(3)
(4)

5. The partition tr ansform

T he Walsh transform matr ix consists of ort hogonal column vectors of equal
length and so it is, bar scaling , it s own inverse. Unfortunately, in general,
neit her the incremental combination t ransform nor the parti ti on tran sform
has ort hogonal column vectors and so we have to state both the tr an sform
and the inverse tr an sform explicit ly.

Vve can writ e the partit ion t ra nsform matrix Eo as:

Nonbinary Transforms for Genetic A lgorit hm Problem s

We can expand this using equation (2) :

which simplifies our prob lem somewhat . We sta te without pro of that :

1 1 1 1
c c c c

_1 1 - 1 1 _ 1
c c c c

E (c}
_ 1 _ 1 1 - 1 _1

= c c

1 _1 1 1 - 1
c

17

Informally, the first row sums all the fitn esses and divides by c, the number of
fitnesses. T his is what we would exp ect for e#, th e average fitn ess coefficient .
All the remaining rows are the negation of row 1, except that they have a
single fitness added. This is what we would expect from rearranging I , =
e# + ei to give ei = I. - e# .

6 . The incremental com b ina t ion t ransfor m

T he nonbinary par t ition transform presented above is all tha t is needed to
tra nsform from a st ring-based to a schema-based perspect ive. In addit ion,
partition coefficients have a clearer intuitive meaning than Walsh or incre
ment al combina tion coefficients . So why do we need the increment al com
bin ation transform? Until now, par ti tion coefficients have not been as well
understood as Walsh coefficients and so Walsh coefficients have been used for
nearly all transform-based GA theory. The easiest way to generalize such the
ory to nonbinary alphabets is to use the incremental combination t ra nsform
and coefficients , which are nonbinary genera lizations of the Walsh t ransform
and coefficients. Using the nonbinary partit ion t ra nsform is slight ly more
difficult because it is not a generalization of the Walsh t ransform; it is only
related . Sect ion 7 will help those wishing to use the partit ion t ransform
to genera lize binary theory. Another reason for using the incremental com
bination t ra nsform is that its t ra nsform matrix is symmetric, whereas th e
partition tr ansform matrix is not.

In the single gene case , the inverse increment al combina tion tr ansform
matrix V(~}1 will be E~) with all element s except th ose in the first column
negated. Diagrammatically we have:

1/: - 1
(c) =

This simply reflects the difference in signs between incremental combina tion

18 Paul Field

and par tit ion coefficients . T he single gene fC transform matrix is:
1. 1. 1. 1.
c c c c
1. 1. - 1 1. 1.
c c c c

",<c) = 1. 1. 1. - 1 1.
c

1. 1. 1. 1. - 1c
In the same way as the par ti tion transform, the general transform matri

ces are form ed using the Kronecker product :

Vc = "'<C1) 0 "'<C2) 0 . . . 0 "'<c,)

V- 1 '1.- 1 ,0, '1.- 1 ,0, ,0, '1.- 1
c = (cd 'CY (C2) 'CY • • • 'CY (c,) '

We can easily show that this is a generalizat ion of the Walsh transform .
T he Kronecker product formulation of the (inverse) Walsh (Hadamard) t rans
form is given in [1] as :

W1 = [~ - ~]
WI = WI- 1 0 Wl,

since W 1 = 11(;)1, bot h this and the increment al combina tion formulation

reduce to the Kron ecker product of I 11(;)1 matr ices.

7. The relatio nsh ip b etween in cremental combination and
pa r t ition coefficient s

'He have already seen that the difference between incremental combination
and partit ion coefficients is simply one of sign. However, not all of the co
efficients have different signs. We can investigate the relationship formally
by finding the matrix T that transforms one set of coefficient s into the ot her
(for a particular representation c). Note that T , like th e transform matrices
we have already seen, effects a change of basis:

T = V E - 1

To find the struct ure of T , we expand the right-hand side using equa
tion (3):

t; = (",<cd 0 "'<C2) 0 . . . 0 ",<c, »)(E0~) 0 E0~) 0 . .. 0 E0~»)

= "'<cd E0~) 0 ",<c2)E0~) 0 . .. 0 ",<c,) E0~)

= T (C1) 0 T (C2) 0 · · · 0 T (c/)

where

1

o

- 1
- 1

o

-1

Noiibuuuy Transforms for Geneti c Algorithm Problems 19

Note th at since T(c)T(c) = I , T(c) = T(: r
From T , we can generate a formu la rela ting individual coefficients:

ei = (- 1)dv i ,

where d is the number of defined (i.e., not #) loci in th e coefficient label i .

8 . Implied co efficient s

Alth ough they are redundan t , it can be useful to calculate the coefficients
whose lab els contain the impl ied allele. These coefficients make it easier to
see t he effects of allele combinations involving t he impli ed allele. They are
also useful for calculating fitn esses by hand since th ey redu ce the complex
-ity of expressions and remove the problem of deciding whether to add or
subt ract higher-order coefficients (see sect ion 2 for an example) . However,
there is no point in calculati ng them just for the sake of it . In the worst
case (binary) there will be 31 - 21 implied coefficient s in comparison to 21

nonimplied coefficient s. Schema values can be calculated without imp lied
coefficients using th e par t it ion-schema and incremental combina tion schema
tra nsforms developed in [5J.

It is easiest to calculate implied coefficients at the same time as the usual
coefficients and to do so only involves ad ding an ext ra row to the single-gene
t ra nsform matrices:

1 1 1 1
c - 1 -1 -1 - 1

+ 1 -1 c- 1 - 1 - 1
E(c) = ~ - 1 -1 c- 1 - 1

- 1 - 1 -1 c - 1

The second row is new, it computes the coefficient et for a single gene.
The comp lete t ra nsform matr ix E+ can be const ructed using the Kronecker
product in the usual way.

Similarly, to calculate imp lied incremental combination coefficients at the
same t ime as the usual coefficients, th e single-gene increment al combinat ion
matrices should be altered to be of the form :

1 1 1 1
1 - c 1 1 1

+ _ 1 1 1 - c 1 1
1I(c) - ~ 1 1 1- c 1

1 1 1 1 - c

Again, the second row is new and the complete tran sform matrix V+ can be
constructed using the Kron ecker product .

These tra nsforms can be implemented as fast transforms using th e tech
niques described in sect ion 9.

20 Paul Field

9. Fast transforms

Performing an incremental combinat ion or part ition tr an sform by naive ma
trix mult iplicat ion will take O(N 2) op era tions (where N is th e size of the
t ransform matrix) . Even ass uming we can create the transform matrix wit h
no time overheads we will st ill need 2N units of memory; N for t he fitness
vector, N for the coefficient vect or. We could take adva ntage of Os in the ma
t rix but this only helps for high cardinality representat ions. However , there
is an algorit hm , analogous to the fast Walsh transform , that can perform the
tr an sforms (and their inverses) in only O (N log N) operations for the worst
case (i.e., no zeros in t he matrix) and can tr an sform the data in-situ , thus
needing only N unit s of memory.

The algorithm takes advantage of identi cal calculations in the t ransform
matrix . For example, look at E~:2) :

:1

The arrows show identical calculations . Calculat ions in t he right column
have to be negat ed to become identi cal. Instead of 3 x 4 = 12 addit ions or
subtractions, we only need two operat ions per column plus four operations
to combine the columns , making eight op erat ions.

These ident ical calculat ions are produced by the Kronecker product . A
matrix generated by a Kronecker product is mad e up of ident ical blocks (bar
sca ling) so only the calculat ions for one block in each column of blocks need
to be done. T he increment al combination and par ti t ion tran sforms are, in
genera l, created from many Kro necker products. We will form mat rices X i

that perform only the necessary calculat ions for each column of blocks at
each level of st ructure in a matrix.

The following const ruction of a fast algorithm is not spec ific to the tr ans
form s presente d in this pap er ; it can be applied to any matrix form ed by
Kronecker pro ducts. This formulation has been developed independentl y
and it is almost certainly not original; much work has been done on fast
tr an sform s (e.g., [13]). It does, however , have the virtue of being fairly sim
ple and self-contained .

A matrix mult iplicat ion:

(5)

where each B, is a b, x b, matrix , can be implemented as :

where

X i = 1..r(1,i - 1) Q9 B i Q9 I -y(i+l ,n)

(6)

(7)

Nonbinary Transforms for Genetic Algorithm Problems

(l) = { TIf=1i , l ::::: t L
"f, u 1 l > u

and In is the n x n identi ty matrix.

9 .1 P roof of equiva le nce of equations (5) and (6)

The first ste p is to prove by indu ction that

k

II X i = e, @ B 2 @ . . . @ s, @ I"'(kH ,n)'
i = l

T he base case (when k = 1 is proved using equation (7):

x, = 1"'(1,0) @ e, @ I "'(2,n)

= I I @ e. @ I "'(2,n)

= Bl @ I"'(2,n)'

21

(8)

(9)

To prove th e ind uctive case, equat ion (9) is assumed to be tr ue for k - 1:

k-l
II X i = s, @ B 2 @ .. . @ B k- l @ I"'(k,n)'
i = l

(10)

By definition of pro duct , subst it uting in equations (10) and (7) and re
arr anging using equa tions (3) and (4) :

k (k- l)QXi = QXi x,
= (n, @ B 2 @ @ B k- l @ I"'(k,n))X k

= ((B l @ B 2 @ @ B k- l) @ I"'(k,n)) (I"'(l,k- l) @ (B k @ I"'(k+l,n)))

= (B l @ B 2 @ @ B k-l)I"'(l ,k- l) @ I"'(k,n) (Bk @ I"'(kH, n))

= (B 1 @ B 2 @ @ B k- d @ (B k @ I "'(k+1,n))

= B 1 @ B 2 @ @ B k- 1 @ e, @ I "'(k+l ,n)

which proves equa t ion (9) . From this we see that

n

II X i = B 1 @ B 2 @ .. . @ e; @ I"'(nH ,n)
i = l

= e, @ B 2 @ @ e; @ I I

= B, @ B2 @ @ B;

= M .

22 Paul Field

9 .2 Operati on counts for M v and X 1(X2 (... (Xnv) .. .))

A matr ix mult iplication N v involves multip licat ion and additio n operations .
A clever mu lt iplicat ion will avoid these operations for °elements in Nand
may be able to avoid mult iplications for 1 and -1 element s too . Such a clever
mu ltip lica tion could potent ially take advantage of 0, 1, or - 1 in v bu t we
assume tha t v is arbitrar y and so is un likely to contain these element s. To
t ake advant age of v would also require dynam ic run-time analysis, whereas
our a priori knowledge of N allows a static examina tion . For simplicity, we
will only count addit ions and subtract ions but we will take advantage of °
element s.

T he numb er of operat ions (i.e., addit ions and subtract ions) required to
perform N v can be calculated from the nu mber of nonzero elements in N :

ops(N) = dN - r»

where dN is the number of nonzero elements in N and T N is t he number of
nonzero rows. We subtract the number of nonzero rows because summing n
elements only requires n - 1 addit ions . To calculate ops(M), we need to kn ow
how nonzero elements and rows are combined by t he Kr onecker product . If
C =A 0B:

de = dAdB
r c = TATB ·

This gives a st raightforward equation for ops(M) :

n n

ops(M) = II dB; - II TB,·
i=l i = l

To work out ops(I1Xi) , we calculate ops(X i) :

d n

dx , = ')'(1, i - l)')'(i + 1, n)d Bi = t II bj
, j = l

and then sum all the ops (X i) :

(11)

(12)

Nonbinary Transforms for Genetic Algorithm Problems

Table 1: How the incremental combination and partition transforms
fit into the general fast transform formulation.

Gener al form ulation Ie transform P artition transform
M "Vc E c
v v e
Ell E2 , . . .En Y(cd , y(C2) , . . . v, c/} E (c,) , E (C2) , . .. E (q)

bi Ci c;

10. The time complexity of the fast nonbinary transforms

23

The equat ions pr esented in sect ion 9 are applicable to any Kronecker product
formed matr ix M . This sect ion int erprets them for the incremental combina
t ion and partition transforms listed in Tab le 1. Mappings similar to Tab le 1
apply for the inverse transforms.

It is important to calculate the number of operations needed for th e tr an s
forms (and inverses) to predict how fast the fast transforms really are . The
calculation is easiest for the inverse tran sforms, so we will star t wit h those.

Rememberin g that the size of the transform mat rix is N = ni=lc, (t he
product of the gene cardinalit ies) , and noting that c= .:.IN (i.e., t he geomet
ric mean of the cardinalities), we can calculate the number of ope ra t ions for
direct mu ltiplication by the t ransform matrix from equation (11):

dE- , = C + 2(c - 1) = 3c - 2
(c)

T E - l = C
(c)

I I

OpS(E~ l) = ops(Vc- 1
) = II (3Ci - 2) - II Ci ~ O(3loge NN) .

i= l i=l

In cont rast , t he fast formulation using equation (12) gives:

(

I) I 3Ci - 2 - C

ops(II Xi) = }} Cj ~ Ci '

= 2Nt (1 - ~)
i = l c,

= 2 (1 - DN logeN

= O (Nloge N)

where cis the harmonic mean of the gene cardinalities: c= 1/ 2:i=l~ .

We can obtain the sa me time complexit ies for t he noninverse transforms
by not icing that :

24 Paul Field

1 0 0 0 !. !. !. !.
c c c c

- 1 1 0 0 0 1 0 0

E(c) = E'(c)E"(c) = - 1 0 1 0 0 0 1 0

- 1 0 0 1 0 0 0 1

and because

d E' = d E" = 2c - 1

'rE' = 'rE" = C

we can calculate that ops(E(:;)) = dE' - TE' + d E" - TE" = 2c - 2. This
is the same as for E- 1 (although we have a division then as well) and so,
informally, we can see tha t the inverse tra nsform is as easy to compute as
th e transform. There is an equivalent breakd own for V .

11. Implementing the fast transform

To implement the fast t ra nsform, we must implement multiplication by an
X i mat rix. Although it might initially appear that we need to generate each
X i matrix, in fact they can be hard coded. This is easy to see if we look
at the struct ure of an X i matrix. As an example, we will look at X 2 for
the inverse partition transform with a problem represent ation (3, 2, 2). It s
formula is:

X2 = 1-r(1,1) ® E~) ® I.'((3,3) = 13 ® E~) ® 12

and the mat rix itself is:

lj 0 - IJ 0 0 0 0 0 0 0 0 0
0 I 0 1L- I 0 0 0 0 0 0 0 0
n 0 II 0 0 0 0 0 0 0 0 0
0 I o r I 0 0 0 0 0 0 0 0
0 0 0 0 IJ 0 - IJ 0 0 0 0 0
0 0 0 0 o L I 0 1-I 0 0 0 0
0 0 0 0 II I 0 11 0 0 0 0 0
0 0 0 0 o III o r--r 0 0 0 0
0 0 0 0 0 0 0 0 IJ 0 - IJ 0
0 0 0 0 0 0 0 o 0 L I OIL- I
0 0 0 0 0 0 0 oIII I 0 IT1 0
0 0 0 0 0 0 0 0 o r 1 o 1 1

(13)

In equat ion (13), the left-hand identi ty matrix h controls th e global st ruc
ture so we see three blocks along the main diagonal of the X 2 matrix (shaded
very light gray) . The right -hand identity matrix controls the local struc ture.
A good way to look at this is as if the E~) matrix has been scaled up or

exploded and copies made of it along the main diagon al (exploded E~) ma
trices are shown boxed with their elements shaded) . From the formula for X i

Nonbinary Transforms for Genetic Algorithm Problems 25

we would exp ect to see , (I ,i- I) blocks each containing , (i + 1, n) exploded
E~~) matrices. The distan ce between elements of each exploded matrix is

,(i + 1, n).
If we have routines that can multiply matrices (such as E(c),E~) , V(c), and

V(~/) taking account of an offset and an explosion factor , then to mu ltiply by
X i we simply call the appropriate ro ut ine repea tedly wit h the appropriate
parameters. T hese parameters are eas ily generated "on-the-fly" so the X i
matrix does not have to be explicit ly calculated or stored .

A C implementat ion of the incremental combination transform using these
ideas is pr esented in Appendix A. It should be noted that this implementa tion
performs transforms in situ (requiring only N un its of memory), whereas
the fast Walsh transform implementation pub lished in [6] uses 2N un it s of
memory.

12 . Conclusion

In this paper two related nonb inary transforms generalized from the binary
case have been shown . In ad dit ion to providing the foundat ions for general
izing binar y-based GA theory, this pap er has also pr odu ced a fast (binary)
par tit ion transform as a special case of the fas t part it ion transform . T his
has not , to the author 's knowledge, been previously pub lished for binary
problems.

Uses of the nonbinary transforms developed in this pap er , including a dis
cussion of nonuniform transforms (for which all fitnesses in the search space
do not need to be known), are pr esented in [5]. Also in [5], the nonb inary
transforms are pr esented as part of a complete nonbinary theoret ical frame
work for GAs that is used to try to resolve the alphabet problem discussed
in the introdu ction.

A p pen d ix A . C source code for t he fast in crem ental
combination t ransform

Note that C arrays are indexed from O. Following t his, t he X matrices are also
lab eled from o. Also not e t hat as sert is a debu gging te st and is not compiled
in pr oduction code (i.e., code compiled with the NDEBUG macro defined) .

A slight ly more robust implementation with data file inpu t/ ou tput , a
command line int erface, and supp or t for the partition transform is available
from the author .

For large data sets , a noticeab le spee d gain may result from avoiding the
B_multiplyO fun ction call in fas t _mult i ply 0 by subs titu ting the partic
ular instance of B_multiply O direct ly into the source code.

t ypedef voi d (*mat r ix_mul t ip l y_f n)
(uns i gne d n, doub le data[] ,
unsigned dataoff s et , uns igned matrix_expl ode_s cale) ;

26 Paul Field

unsigned gamma(int l ower, int upper , unsigned be])
{ int i ;

unsigned t otal ;

total = 1 ;
for (i = l ower ; i <= upper ; i ++)
{ total *= b[i] ;
}

return (total) ;
}

voi d fast_multipl y (double data[] , unsigned be],
uns i gned n , matrix_multiply_fn B_mul t i ply)

{ i nt i ;
unsigned blocks, subblo cks , blocks i ze, subblock, bl ock ;
unsigned blockstart;

/ * Xn (which i sn ' t used)
blocks = gamma(O,n- l,b) ;
blocks i ze = 1 ;

i s made of nxn blocks */

f or (i = n-l ; i >= 0; i--)
{ /* Mul t i ply by Xi */

subblocks = blocksize ;
bl ocksize *= b [i] ;
blocks / = b [iJ ;

/* Qui ck ways of ca lculat i ng */
/* va r i abl e s without us ing */
/*'gamma' in each l oop */

asser t (b locks
assert (s ubb locks
asser t (blocks i ze

gamma (0 , i - l , b» ;
gamma(i +l, n- l, b» ;
gamma(i , n-l, b» ;

for (block = 0; block < blocks ; block++)
{ blockst ar t = block*blocks i ze ;

f or (subblock = 0; subblock < subblocks ; subblock++)
{ B_mul tipl y(b[i] , dat a , blockstart+subblock , subblocks) ;

/ * 'bl ocks t art+subblock' be cause each subblock is */
/* ' shifted ' down and right by one row/column f rom */
/* the previous subb lock */

}
}

}

}

voi d InvVc_multiply (uns i gned c, double data[] ,
unsigned dataoffset,
unsigned mat r ix_expl ode_s ca l e)

Nonbinary Transforms for Genetic Algorithm Problems

{ doub le sum;
unsigned row, colurnn _data_idx ;

/* Mult iply one r ow at a time (row ° is cal culat ed */
/* in sum as we go along) */
sum = data Cdataoffset] ;
colurnn_data_idx = dataoffset;
for (row = 1 ; r ow < c ; row++)
{ col urnn_data_i dx += mat r ix_explode_sc al e;

sum += dataCcolurnn_dat a_idx] ;
dataCcolurnn_data_idx] = dataCdataoffset]

data Ccolurnn_data_ idx] ;
}

dataCdataoffset] sum ;
}

27

voi d Vc_multiply(uns igned c , doubl e data C], unsigned dataoffset,
unsigned mat r i x_explode _scal e)

{ double r owO_sum;
unsigned col , r ow, col urnn_dat a_i dx;
r owO_sum = 0;
col urnn data_i dx dataoffset ;

/* Multipl y row ° */
f or (co l = 0 ; col < c ; col++)
{ rowO_sum += dat aCcolumn_dat a_ i dx] ;

column_dat a_idx += mat r ix_exp lode_scale;
}

rowO_sum /= c;
data Cdataoffset] = rowO_sum;
/* Mul t i ply remaining r ows */
co lurnn_data_i dx = da t aoffset ;
f or (row = 1; r ow < c ; r ow++)
{ colurnn_data_idx += mat r i x_explode _scal e ;

dataCcolurnn_data_idx] = rowO_sum
data Ccolurnn_data_idx] ;

}
}

vo i d I C_t r an sf or m(doubl e data C],
unsigned car di na l it ies C],
uns i gned ge nes, bool invers e)

{ fast_multiply (data , car di nal i t ies , genes,
inverse ? InvVc_multiply : Vc_multiply) ;

}

28

R eferences

Paul Field

[1] Xiaoyun Qi, Abdollah Homaifar , and J ohn Fost , "Analysis and Design of a
Genera l GA Decep tive P roblem ," in Belew and Booker [2].

[2] Proceedings of the Fourth Intern ational Conference on Genetic Algorithm s,
Richard K. Belew and Lashon B. Booker editors , Un iversity of Californi a ,
San Diego (Morgan Kaufmann, San Mateo, 1991).

[3] Clayton L. Br idges and David E. Goldb erg, "T he Nonuniform Walsh-schema
Transform," in Rawlins [12].

[4] Paul Fi eld , "Walsh and Part it ion Functions Made Easy," pr esent ed at the
AISB 1994 Workshop on Evo lutionary Computing , University of Leeds, Eng
land .

[5] Paul Field , "A Mul tar y Theory for Geneti c Algorithms: Unifying Binary and
Nonbinary Representa tions ," PhD thesis, Qu een Mar y and Westfi eld College,
London , 1995 .

[6] David E. Goldberg , "Genetic Algorit hms and Walsh fun cti ons: Part 1: A
Gentle Int rodu cti on ," Complex Systems, 3 (1989) 129- 152.

[7] David E. Goldb erg, "Genetic Algor it hms and Walsh Functions: Part II , De
ception and its An alysis ," Complex Systems, 3 (1989) 153- 17l.

[8] David E. Goldberg, Genetic Algorithms in Search, Optimization and Machin e
Learning (Addison-Wesley, Reading, 1989).

[9] A. Gr ah am, Kronecker Products and Matri x Calculus with Applications (E llis
Horwood , Chichest er , 1981).

[10] Gunar E. Liepins and Michael D. Vose, "Deceptiveness and Genetic Algorithm
Dyn amics," in Rawlins [12].

[11] Andrew J. Mason , "Par tit ion coefficients, Static Deception , and Deceptive
Problems for Nonbinary Alphab ets ," in Belew an d Boo ker [2].

[12] Gregory J. E . Rawlins (editor), Foundations of Genetic Algorithms (Morgan
Kaufmann, San Mateo, 1991).

[13] Douglas F. Elliott and K. Ramam ohan Rao, Fast Transforms: Algorithms,
Analyses, Applications (Academic Press, ew York , 1981).

