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Abst ract. This pap er pr esents th e applica tion of signal flow gra phs to
the det ermination of the exact values of gradient vecto r and hessian
matrix for a linear system. It is shown all information about the
gradient and hessian is cont ained in the or iginal and adjoint signa l
flow graphs at different terminations. To det ermine the gra dient we
have to perform two analyses , and t o get the full hessian matrix we
perform (2K + 1) ana lyses of the graph (or t he system), where K is
the nu mb er of internal nodes of the graph . T he examples included in
the pap er illust rate the met hod.

1. Introduction

T he signal flow graph (SFG) [1, 2] is a gra phical representation of a linear
syst em of equat ions of the form

Ax + b = O. (1)

T he vector b corresponds to the excitat ions of the system . The matrix A
represent s the connect ion weights between the variables form ing vector X .

W it hout loss of genera lity we assume that all diagonal entries of A are equal
to -1 , t hat is,

[-1a1 2 a13 aln

A = ~~~
- 1 a23 a2 n (2)

a n I a n2 a n3 - 1

T he system (1) can be repr esented in pictorial form as a flow of signals be­
tween no des, where each node corresponds to the variable Xi and the value of
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b2

F igure 1: SFG corresp onding to t he 3 x 3 system of linear equation
of t he example.

th e signal associated with the node is the sum of weighted signals flowing into
that node. Figure 1 presents the example of a 3-node gra ph that represents
the linear system of equations of th e form

Each node signal Xi (i = 1, 2, 3) is given as t he sum of weighted signals
entering the ith node, that is, Xi = L~=l ,k#i aikxk + bi ·

The SFG representa tion of the system has found many applica tions in
th e analysis and synthesis of linear systems [1, 2, 5, 6, 11J. As a gra phical
representation of the flow of the signals, the graph is an important factor
in un derstanding t he behavior and performance of th e system at different
workin g condit ions. The Mason gain formula applied to the graphs simplifies
th e problem of analysis of such system and yields the solut ion in an explicit
form of the parameters. There are already many computer pro grams th at
solve SFGs in an efficient way, makin g this meth od of analysis very interest ing
from the pr actical point of view.

The other applicat ion of the gra ph is the sensitivity calculat ion. Sensi­
tivity is an importan t measure of th e quality of the circuit and its ability to
perform well in a noisy environment. It has been shown that the sensit ivity
of the system, defined as the derivat ive of any of its signal with respect to
the gain of the bran ch, can be evaluated as the product of a signal in the
original graph G and a signal in the adjoint graph G [5, 11J. The linear
graph G is called adjoint to G if all its br anches are reversed branches of
G. Aft er reversing th e directions of branches the roles of nodes have also
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Figure 2: Illustr ation of the sensitivity calculat ion using SFG. (a)
Original graph G with terminat ions. (b) Terminations of adjoint
graph G.

been changed. The former summing node is now the simple source no de,
and vice versa. T he adjoint graph , which corresponds directly to the notion
of a transposed system in system theory, has been defined for both linear and
nonlinear br an ches. Here we will be concerned main ly wit h the linear ones.
If t he ith node signal in the original and adjoint graph are denoted by Vi and
i7i , resp ect ively, and the ga in of the br an ch from the .7th to the i th node is
denoted by W i j , t hen the sensit ivity of any node signal Vk of the system wit h
respect to t he gain W i j may be described by the formula [5, 11]

dVk = V·VCk)
dvVi j J'

(3)

in which t/;Ck) means the signal of the i th node in the adjoint graph Gat the
unity excitat ion applied at kt h node (Figure 2), and Vj is the signal of the
j th node of G at normal excitat ions v;,x1, v;,x2 , . . . ,Vexn .

T he sensit ivity and its extension in the form of a gradient is of great
import ance in supervised learn ing strategies of neur al networks [7, 11]. SFGs
represent a new look at the process of learning of such systems and may be
convenient in the analysis of a particular algorit hm or its implementation in
circuit form.
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In this pap er we will show that SFG is a convenient and efficient tool for
determining th e gradient and exact evaluation of the hessian matrix. The
sensitivity relation (3) will be generalized to t he grad ient of the specified
energetic function and th en to the mat rix of second-order der ivatives, the
hessian . Specific examples illust rating t he proposed method will be given
and discussed.

2. G radient deter m ination usi n g SFG

Usually in engineering applications-such as neural networks or an optimiza­
t ion approach to the design of elect ronic circuits- the energet ic (objective)
function is defined as the quadrat ic fun ct ion of the chosen nod e signa ls; that
is,

(4)

(5)

(6)

where Vk is th e actual kth nod e signal, dk is the desired value for this nod e,
and M is the number of output nod es th at take part in the definition of the
energetic function. Although equa tion (4) is quad ratic with respect to the
nod e signals it is genera lly nonlinear with respect to the optimized par ameters
(adjusted weights W i j ) because Vk is a nonlinear function of the weights .

The gradient VE is defined as the vector of derivatives of the energet ic
function with respect to the parameters (weights) of the system. Simple
differenti ation of (4) leads to th e relation

8E M 8Vk
8W = L (Vk - dk)8W

'1 k= l ' 1

which states that the derivative of the objective function needs the calculat ion
of sensit ivity of the appropriate node signals. Appli ca tion of SFG can signif­
icant ly simplify this pro cess. Note that the adjoint SFG is a linear one (even
in the case of a nonlinear system, not considered here). Instead of applying
the unity excitation at the node Vk of Gand summing up the appropriately
weight ed products of the signals of G and G, we can apply all excitations at
once (Figure 3) forcing the linear superposit ion rule to genera te the relation
(5) in the form of simple multiplicat ion of two signals, analogously to (3) :

8E ~
- - = VV:8W

i j
1 , .

The only difference between sensitivity (relation (3)) and gradient calcula­
t ion (relation (6)) is the excitat ion of the adjoint graph [11]. In the case of
sensit ivity it is the unity signal app lied at the appropr iate node of G, while
in the gradient calculation t his signal is equal to the difference between the
actual value of Vk and the target value dk .

The differential relat ions (3) and (6) have clear network interpretation
form , because each graph is equivalent to some network. The sensit ivity or
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Figur e 3: The graphs G and G for gra dient calculations . (a) Origina l
graph G wit h te rm inations . (b) Terminations of ad joint gra ph G.

gradient analysis requires that we enlarge the original network by the adjoint
one and analyze both. T he results of the ana lysis form t he gradient vector ,
which among other things may be used to adapt t he weights of the system to
provide the output vecto r V out equal to d . The enlarged network pr esent ed
in the form of a self-adapting system is pr esented in Figure 4. The pairs of
learn ing vectors (Vex, d ) are employed in the self-adaptation process. T he
vector Vex is the excitation vecto r of the original system G, while the output
V out and tar get vector d are the excitation for the t ranspose d system G. The
out puts of both systems V and V are ap plied as the inputs to the block t hat
generates the gradient -base d adaptive algorit hm-such as steepes t descent ,
conjugate gradient , or variable metric- that adapts the weights of G and
G to make the output vector V out of G equal to the target vecto r d . The
network is self-adapting and automatically adjus ts its weights in the direction
of minimization of th e defined energetic function. The enlarged network can
be fully realized in hardware form an d its performance simulate d on the
comp uter using a circuit analysis package.

It should be rest at ed t hat the linear graph is only a graphical represen­
tati on of t he linear system of equations expressed generally as Ax + b = 0 ,
where A contains the information of the weights, b is the excitation vector ,
and x is the vector of node var iables. On the other hand , the adjoint graph
represents anot her linear sys tem of equations Atx + b = 0 , where t his t ime
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Figur e 4: Illust rat ion of th e use of the generalized conce pt of an ad­
joint sys te m for self-adaptation (learn ing) of the sys tem .

the excitat ion vector b is formed on the basis of a solut ion of a norm al sys­
tem. Pure numerical implementation of the algorithm is possible by applying
any numerical linear solver.

The important advant age of the flow-graph met ho d is t hat it is a simple
way of taking into account the shared values of the weight s. If any weight ap­
pears many tim es in the graph as the gain of different bran ches, the sensitivity
and gradient formulas with respect to this gain are the simple superpositions
of the appropriate individu al derivatives of each branch separa tely. To be
more specific, if the weight W appears twice in t he network , say between the
nodes i , j and k, l (the second index means"the node from which the br anch
starts) , and all nodes are denoted by V (normal system) and V (the adjoint
system) , with appropriate index, respect ively, then the gradient component
with respect to the shared weight W is described by the sum of two compo­
nents. This follows from the fact that the weight W appears twice (be tween
nodes i , j and k, l ). For this par ticular case the ap propr iate component of
the gradient is given by

(7)

It can be stated tha t this ru le, coming out from the signal flow relations,
corresponds directly to the act ive const ra ints method , the most effect ive way
of taking into account linear cons tra ints in an opt imization problem. Thanks
to th is stra tegy th e equality constra ints of the type described above do not
complicate a learning process th at involves the gradient; in fact the opposite
is true, reducing t he problem complexity by reducing the number of effect ive
variables that appear in the calculat ions.

As an example consider the eigenvalue prob lem of t he ti x n real symmetric
matr ix B [3] defined by

B = V tLV

where L = diag[AI, A2, .. . , An] with Ai being the eigenvalue and V being t he
or thogona l matrix composed ofn orthogonal vecto rs V i , V = [VI' V2, . . . , v-l,
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wher e each vector V i is th e eigenvector that corresponds to '\' The matrix
Y is of uni ty length , that is, V 'V = 1. By multiplyin g these equations at
each time t by a nonzero vector x = [Xl (t),X2(t ), .. . , xn(t )] it has been shown
[8] that we can formulat e the eigenvalue problem as the minimization of the
following energet ic function E:

E = ~[I 1 v-rv- - Bx II~ + II v-v- - x II ~ ] ·

The weights Wij to be calculated are the component s of the eigenvecto rs
V i and the eigenvalues Ai. Figure 5(a) pr esents the SFG in a matrix form
that corresponds to the defined energe tic fun ct ion . The symbolic br an ches
dep icted inside the boxes denote the ent ries of the matrix Y and L (the
weight s of the neural network) . The terminat ing point s (the nodes of t he
graph) are the components of the appropriate vectors of the graph. The
br an ches denoted by the dashed lines define only the targets d(1) and d (2) ,
and do not belong to the grap h G. The adjoint graph for the gradient
calculat ion is created by reversing the br an ches of G and, in the case of
matrix descriptions, by tran spo sing corres ponding matrices (Figur e 5(b)) .
The excitat ions of the adjoint graph are now form ed by the appropriate
differences of the actual output and it s targ et values-that is, y(1) = (y (1) ­
d(1)) andy(2) = (y (2) - d (2))- and are placed at the form er output nodes.
To get the gradi ent compo nent of any weight we have to mult iply the node
signals from which the weight (br an ch) originat es in the normal and adjoint
systems, as expressed by relat ion (6) .

Applying thi s ru le to the graphs of Figur e 5 and t aking into account that
the elements of the matrix Y appear at three different places in the graph ,
we get the final expressions for t he components of gradient vectors:

• for eigenvalue Ai ,

BE ,
BAi = uiz,

• for eigenvectors,

BE = [x u + (y(l) _ d(l ))Z' + (y (2 ) _ d(2 ))U ']
'" ' J , 'J z 'J
UVi j

which can be described mor e generally in vector notation form as

The bold let ters st and for vectors and the indexed vari ab les are the compo­
nents of the appropriate vectors as denoted in Figur e 5. Not e that only two
analyses of the system are required t o obtain all components of the grad ient.
The whole information is now contained in t he solut ion of normal and adjoint
graphs.
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Fi gure 5: Sign al flow graphs for eigenvalue pr oblem . The boxes de­
note the matrices and the branches depict ed inside the boxes are t he
adjuste d weights. (a ) Ori gin al matrix flow graph . (b) Adj oint matrix
flow graph .

The SPG approac h to the det ermination of the gradient may be applied
in many fields , especially those that use opt imization methods. An example
of such a field is neur al networks, where the flow graph approach pr esents a
new perspective on the learning par adi gm of such syste ms [11]. They may be
used inst ead of backpropagation to train t he hidden layers or to improve the
performance of the self-organizing neur al networks, such as sour ce separa ti on
[9 ,10 ].

3. Hessian determination using SFG

The hessian matrix H associated with th e energet ic fun ction E (W ), where
W is the vector of adjuste d weight s W = [W 1 , W2 , ... , Wn ], is defined as the
quadratic symmetric matrix of the second-order derivatives of the energet ic
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function

r

n., H12 . .. H1n

H = " : ~~2 :: : " :

Hn 1 Hn 2 . . . Hn n

where the (i , k)t h component of it is defined by

tt.; = 8::: Wk = 8~k (::J .

(8)

(9)

(10)

The hessian matr ix is of great imp ortance in many fields. In optimizat ion
theory it is used in t he second-order Newto n 's method of optimizat ion [4] to
define the dir ect ion p of search in n-dimensional space , p = - H-1\7E . At
th e same tim e it is th e measur e of th e curvat ure of th e erro r surface in the
opt imized system, and as such, finds pract ical applicat ion in est ima t ion of
the sensitivity of t he system to a given parameter. Recent ly it has been used
as a measure of the saliency of weight s in neural networks in the pruning
process, called Optimal Brain Damage [13, 14].

As seen from rela tion (9) , to det ermine the hessian we need to repeat the
gra ph different iation ru le on each component of the gradient. However , in
this case we should take into account that the excitation of the adjoint graph
is also subject to differenti ation. To avoid t his inconvenience in hessian gen­
eration, we need to mod ify slightly the last ste p of the gradient calculation
and ap ply dir ectly relation (5). Each kt h component of (5) should be calcu­
lat ed independently at uni ty excita tion applied at the kt h (k = 1,2 , .. . , M )
node of G;by using relation (3) the final resul t is now given in the form

8E ~ 8Vk ~ ~(k)
8W = L ..,(Vk - dk)8W = L ..,(Vk - dk)Vj V;

' J k= l 'J k= l

where this t ime O;(k ) is the ith node signal of Gwit h only t he uni ty excitat ion
applied at the kth node.

To simplify th e not ation let us assume that we consider only one out put
nod e (M = 1), denoted here as Va' and that the weights Wi ,Wk have the
notations of the weight s of gra ph branches, that is, Wi = Wij ,Wk = Wkl . By
applying relat ion (10) for M = 1 we get

8
2
E = _8_ [V;t°)Vj(Vo _ d)] (11)

8Wij8Wkl 8Wkl

where Vj and Vo represent the solutions of the original gra ph G, O;(o) is the
solution of the adjo int gra ph with unity excitat ion applied at the former
output (0) node, and d represent s th e appropriate destination . The vari­
ables 0;(0) , Vj , and Vo are th e funct ions of the weights W i j of the system.
Differentiation in relati on (11) leads to

8
2E

= 8V;tO\(V _d) + 8Vj V (o)(V _ d) + 8Vo V (o)V (12)
8Wij8Wkl 8Wkl J ° 8Wkl' ° 8Wkl ' 1"
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(13)

To get the final expression for the hessian on the basis of inspection of t he
graphs we should express the deriva tives of i/;(O), Vj , and Vo in the form of
products of t he appropriate var iab les of three graphs: the original one G, the
graph Gadjoint to the original and graph Gadjoint to G. Observe that the
internal structure of graph G afte r reversing the branches of G is identi cal
to G. The only difference between them may be in the excitat ions.

For clarity let us imp rove the not at ion fur ther. By - r and Vj(e) we

denote the resp onses at the j th nod e of the graphs G and G, resp ectively,
wit h the excitat ion placed at the eth nod e. These excitat ions are of uni ty
values. The variables Vj of the original graph G will be denoted here without
any superscript.

Relation (12) has t ransform ed the calculat ion of the hessian to the de­
terminat ions of three sensitivities. T wo of them are of the original graph
and one of the adjoint graph . Taking into account that the directi on of t he
br an ch Wi j in G is opposite to the general convention (it star ts now from the
ith and ends up in the jth node) and repeating the sensitivity calculations

to obtain EJVj/EJWk l , EJVo/EJWk l , and EJi/;(o) /EJWk l , we get the final expression
for th e component of the hessian in the following form:

EJ
2
E = i/; (o)v. (i) V (V _ d) + i/; (j )V;V(o)( V - d)

"'W.."'W k l J 0 k I , 0
U 'J U kl

+i/; (o)V;V (o)V
k I , J '

To get one entry of the hessian matrix we have to analyze three graphs : the
original graph wit h fixed original excitations v.,x, t he adjoint graph G wit h
uni ty excitat ion applied at the node (which appears in t he superscript of the
appropria te variable if ) and graph Gof the intern al st ructure identical to G
with uni ty excitation applied at the node indicated here by the superscript
of the variable V. If we follow t he pr ocedure of excit ing the systems , we
find that the analysis of the original sys tem G is just part of the analysis of
sys tem G. Thus the det ermination of the full n x n hessian matrix requires
only the analysis of two graphs (G and G), irrespective of the size of the
pr oblem . The adjoint graphs G and G are to be analyzed at the excitat ions
applied at different points indicated by the superscripts of the appropriate
variables in relati on (13) . For full hessian matrix determination we have to
apply the uni ty excitat ions in G and G at every intern al node. Denot ing
the total number of nodes by K (including the M output nodes) we have to
analyze each of the grap hs, Gand G, at most K t imes. Taking into account
that the original graph analysis is includ ed in t he results of analyses of G,
we find that the total number of analyses of the system equals 2K.

It should be po inted out that the crucial po int in the graph analysis of
the linear system , using for example the Mason rule or any of its derivatives
[2, 6], is the determinat ion of the so-called pr incip al det erminan t 6. , which is
independent of t he excitations and is the same for all graphs in our problem.
From the mathemat ical point of view this mean s that we have to solve the
system of algebraic equations Ax + b = 0 for graphs G and G, and Atx +
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b = 0 for graph G at the same matrix A and at different excitation vectors
b and b. The LU decomp osition or inverse of the matr ix A should be done
only once, and multiple solutions of G and Gare foun d by putting the value
1 in different posit ions of the zero excitation vecto rs b and b.

To illustr ate the pract ical aspects of det ermining the hessian matrix let
us consider the linear system present ed by the graph of Figure 6(a). Let
us assume one origina l excita tion Vex = E applied at the node VI and the
output Vo placed at node V3 . Let the energetic function E(W) , where W =
[WI2,W21, W31,W32], be assumed as follows:

E(W) = ~ (Vo - d)2
2

where d is the required destina tion. The gra phs Gand Gcorresponding to the
given gra ph of the system are present ed in Figures 6(b) and 6(c), respectively.
The excitat ions and output nodes are not denoted there; they will cha nge
th eir posit ions according to the number ind icat ed in the superscript of the
appropriate variable. From inspection of the corres ponding graphs it is seen
that t he gradient vecto r can be expressed in the form

V2VP)(VO - d)
VI tI;(3) (VO- d)
VIVP)(VO- d)
V2VP)(VO- d)

The hessian is the 4 x 4 symmet ric matr ix, hence we have to determine only
10 entries of it. From relation (13) it direct ly follows that

8
2
E = i/; (3)i/Y )V; (11: - d) + i/; (2)9, (3)v, (11: - d) + i/;(3)9,(3)V, V;8W

128W21
2 1 2 0 2 1 1 0 2 1 1 2

8
2
E = i/; (3)1%(1)V; (11: _ d) + i/;(2)9,(3)v, (11: - d) + i/; (3)9,(3)V, V;

8W
128W31

3 1 2 0 3 1 1 0 3 1 1 2

8
2
E = i/;(3)i/:(1 )V; (11: _ d) + ti;(2)9,(3)V; (11: - d) + ti;(3 )iI,( 3)V; V;

8W128W32 3 2 2 0 3 1 2 0 3 1 2 2

8
2
E = ti;(3)1%(2)v, (11: _ d) + ti;(1) i/;(3) v, (11: - d) + ti; (3)i/; (3)V, V,

8W218W31 3 1 1 0 3 2 1 0 3 2 1 1

8
2
E = ti;(3)i/: (2)V, (11: _ d) + ti;( I) i/;(3) V; (11: - d) + ti;(3) i/; (3)V, V;

8W
218W32 3 2 1 0 3 2 2 0 3 2 1 2

8
2
E = ti;(3) i/: (3)V, (11: _ d) + ti;(I) ti;(3)V; (11: - d) + ti;(3)ti;(3) V, V;

8W318W
32

3 2 1 0 3 3 2 0 3 3 1 2

8
2
E _ 9,(3) i/: (1) V; (11: _ d) + OY)O?) V; (11: - d) + 9,(3) 9,(3) V; V;8w 2 - 1 2 2 0 1 1 2 0 1 1 2 2
12

8
2
E _ i/; (3) 1%(2 )1.1, (V - d) + i/;(1)i/; (3) V, (V - d) + i/;(3)i/; (3)V, V,

8W:?1 - 2 1 1 0 2 2 1 0 2 2 1 1

:~ = VP)V"?)V1(VO- d) + VP)VP)V1 (Vo - d) +W3)~(3)~VI
31
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As seen from these expressions the graphs Gand Gshould be analyzed at the
uni ty excit at ions applied to all t hree nodes. If t he values of the weights of
the graph are given in numerical form, the probl em is equivalent to the direct
solut ion of the appropriate mat rix equations Ax + b = 0 and A tx + b = 0,
where in this particular case we have

A = [ ;2~ ~1~ ~ ] X= [ ~ ]
W31 W32 -1 V3

while b and b are t he excitat ion vecto rs specially select ed for each graph (as
describ ed above) . In t he case of the symbo lic weight s of the grap h we can
apply the Mason topological formula , from which we obtain

D = 1 - W12W21

V1 = EID
112 = EW2l/D

113 = E (W31 + W21W32 )I D
Va = V3

an d

if?) = l iD
-(1)
V2 = W12 ID
ifP) = 0
- (2)
V1 = W2l/D
0;(2) = u»
ifs(2 ) = 0
- (3)
~ = (W31 + W21W32 )ID
- (3)
V2 = (W32 + W12W31 )I D

if? ) = 1

and

~(1 ) = l iD

11;(1) = W2l/D
- (1)
V3 = (W31 + W21W32 ) ID
- (2)
V1 = W 121D
VP) = uo
- (2)
V3 = (W32 + W12W31 )I D
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(b)

(a) Vex=E
0--_- ........
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Figure 6: The signal flow graphs for hessian determination of the
example. (a) Original graph G. (b) Adjoint graph G. (c) Graph G
adjoint to G.

V;(3) = 0

VP) =0

VP) =1.

T he sign ificant featur e of the obtained result s is t he det erminat ion of ex­
act values of the components of the gradient and hessian in a form very
convenient from an algor it hmic point of view. Instead of lengthy analytic
calculat ions of derivatives, it is enough to analyze the syst em a few times at
differently placed excitations.

T he import ant advantage of the proposed hessian formul a is a ' signifi­
cant savings in memory requirement s. For lar ge-scale circuits, like neural
networks, the number of weights is very high , wher eas th e number of nodes
(neurons) is much smaller. T his difference is typ ically of at least one or
two orders. If we take, for example, the network of K = 100 neurons and
n = 5000 weight s, we would need n 2/2 = 1.25 x 107 uni ts of memory (the
hessian matrix is symmetric and it is enough to memorize half of it s ent ries) .
At the same t ime all the information needed to reproduce the full hessian
using our formulation requires only 2K2 un its to keep the solu tions of our
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three graphs. For our numerical example the memory requirement is limited
to approximately 2 x 104 unit s of memory.

Much more st riking is the comparison of calculat ions needed to obtain the
full hessian. To get all entries of the hessian we need to perform 2K analyses
and 3n 2 multiplications for each out put unit of th e system. All analyses are
performed on the same matrix A , so th e number of multiplications needed
for th em is proport ional to (K 3 + 3K2

) . This means tha t the total numb er
of mult iplications in this case is proportional to (3n2 M + K 3 + 3K 2

) .

In the most widely used general approxima te perturbation meth od of the
hessian calculation, we first need to perform (n + 1) ana lyses of th e system
to get the gradient . In completely dense cases of the hessian , an additional n
evaluat ions of gradients along n direct ions d ' are necessary to obtain ~n(n+ 1)
ent ries of the hessian . This is due to the approximat ion formula

H (x)d i = \lE (x - d i
) - \lE (x ) (14)

for i = 1,2 , . . . ,n . All together this makes n(n + 1) analyses of the system.
Comparing this to 2K analyses required generally in our proposed method,
we find that the rate of improvement is proportional to n2/ 2K , in which n
is the numb er of weight s and K is the total number of neurons (hidden plus
output) . It should be noted that the number of opera tions to be done at t he
full hessian approximat ion is prohibitively high , and this meth od is applied
only for sma ll or sparse problems [15J. Different methods for approxima ting
hessian generat ions are used , such as Gauss-Newton or Levenberg-Marquardt
regularization and their derivat ives [13, 15, 16, 17]. Those met hods use in­
format ion from the grad ient and the last iteration results to reproduce the
hessian at each cycle. Even then application of the gradient formu la pre­
sented in this pap er may greatly redu ce the numb er of computat ions (two
analyses of the system inst ead of N + 1 to obt ain th e value of th e gradi­
ent vector). App lication of our met hod has th e addit ional advantage th at
th e gradient is an exact value and the problem of approximat ion of a bad ly
condit ioned system is part ly avoided.

Recent ly the original method of exact hessian determinat ion for multilayer
perceptron system was repor ted [18]. However , it applies only to feedforward
systems and makes use of many simplificat ions that arise from this fact. As
reported by th e aut hor , the number of analyses of the system (per training
pat tern ) is at most equal to twice the number of hidden Ki; and output
M neurons, and this corresponds to 2K (in our nota tion K = Kh + M) .
The total numb er of math emati cal operations scales like the square of the
numb er of weights (n2

) in the system, where for the full feedforward network
n = Kh(M + Ki ) , in which K, denotes the number of input nod es.

For the purpose of comparison we consider the same case using our
method . At K, input nodes, K h hidden neurons, and M out put neurons we
need to perform 2(Kh + M) analyses of the system, and one analysis of the
feedforward system requires a number of multiplicat ions tha t is proportional
to Kh(Ki + M ). That makes 2Kh (Kh + M )(Ki + M ) total multiplications
nedeed for the analyses of the system. The simplifications that follow from
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the nature of the feedforward syste m result in a redu ction of the different
nonzero ent ries of th e hessian to KhM only. Determination of each ent ry
requires an addit ional six mult iplications. In this case the number of multi­
plications in our method scales like 2Kh(K h + M)(K i + M) + 6KhM . If we
examine different figur es for the number of nodes we find tha t thi s number
is smaller than the [Kh(M + K i )]2 needed by the Bishop method. Moreover ,
it should be noted tha t our approach is more genera l and applicable to the
recurrent system as well.

4 . Conclusions

This pap er has presented the gra ph application to th e exact calcula t ion of the
gradient vector and hessian matrix. By int roducing the concept of adjoint
graphs, simple formulas for defining th e gradient vector and then the hessian
matrix have been obtained. It was shown that all information about the
first- and second-order derivatives of th e energet ic funct ion is cont ained in
the solut ion of the normal gra ph G and the graph G adjoint to it . To get
the full hessian matrix we need to solve the gra ph G once with origina lly
given excitations, and K times with the unity excitation applied at each of
K internal nodes of the graph. We also need to repeat these K solut ions for
the adjoint gra ph G. The (2K + 1) analyses of the graphs are equivalent to
the solut ions of two matr ix equations Ax + b = 0 and Atx + b = 0, with the
same matrix A representing the weights of the gra ph and different vectors b
and b that contain all zeros except one posit ion equal to unity (for gra phs
G and G), or representing the given excitat ion of the original system (for a
given graph G).

Instead of lengthy math ematical manipu lations to determine the deriva­
tives- which are ext remely tedious and susceptible to err ors , especially for
the recur rent systems-we have the simple math ematical formulas based on
the direct solut ion of two systems: th e origina l and the adjoint . T he method
is algorithmic in its nature and is very easy in computer implementa tion.
It may be applied in either numeric form (solut ion of two systems of linear
algebra ic equa tions) or in symbolic form using the Mason gain formula.

The met hod provides a significant redu ction in memory requirements of
th e comput er system and at the same time reduces the complexity of the
calculat ions pr oportionally to the squared number of the nodes of the system.

The method may find practical application anywhere , where the curvature
of the err or sur face and th e information of the second-order derivatives of the
energet ic fun ct ion is imp ort ant- for example in the variety of second-order
Newton's methods of optimization [3, 4], in the area of neural networks to
develop new genera tion learn ing st ra tegies based on second-order optimiza­
tion algorithms, or on pruning of such networks [13, 14J. The method is
applicable to both feedforward and feedb ack systems, presenting a new and
efficient look at th ese old and st ill important problems.
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