Complex Systems 9 (1995) 29-45

Signal Flow Graphs as an Efficient Tool for Gradient
and Exact Hessian Determination

Stanislaw Osowski
Institute of the Theory of Electrical Engineering,
and Electrical Measurements, Technical University,
00-661 Warsaw, pl. Politechniki 1, Poland

Jeanny Herault
Laboratoire TIRF, INPG,
46, av. F. Viallet, 38031 Grenoble, France

Abstract. This paper presents the application of signal flow graphs to
the determination of the exact values of gradient vector and hessian
matrix for a linear system. It is shown all information about the
gradient and hessian is contained in the original and adjoint signal
flow graphs at different terminations. To determine the gradient we
have to perform two analyses, and to get the full hessian matrix we
perform (2K + 1) analyses of the graph (or the system), where K is
the number of internal nodes of the graph. The examples included in
the paper illustrate the method.

1. Introduction

The signal flow graph (SFG) [1, 2] is a graphical representation of a linear
system of equations of the form

Ax+b=0. (1)

The vector b corresponds to the excitations of the system. The matrix A
represents the connection weights between the variables forming vector x.
Without loss of generality we assume that all diagonal entries of A are equal
to —1, that is,

=1 a2 a3 - ai
ao -1 o3 . Ay

A= | o " @)
Apy Op2 Ap3 * " -1

The system (1) can be represented in pictorial form as a flow of signals be-
tween nodes, where each node corresponds to the variable z; and the value of

30 Stanislaw Osowski and Jeanny Herault

b3

Figure 1: SFG corresponding to the 3 x 3 system of linear equation
of the example.

the signal associated with the node is the sum of weighted signals flowing into
that node. Figure 1 presents the example of a 3-node graph that represents
the linear system of equations of the form

=1 aip a3 xy by
91 — 1 a93 ZTo -+ b2 =0,
az azy —1 T3 bs

Each node signal z; (i = 1,2,3) is given as the sum of weighted signals
entering the ith node, that is, z; = Z%zl,k;éi aix Ty + b;.

The SFG representation of the system has found many applications in
the analysis and synthesis of linear systems [1, 2, 5, 6, 11]. As a graphical
representation of the flow of the signals, the graph is an important factor
in understanding the behavior and performance of the system at different
working conditions. The Mason gain formula applied to the graphs simplifies
the problem of analysis of such system and yields the solution in an explicit
form of the parameters. There are already many computer programs that
solve SFGs in an efficient way, making this method of analysis very interesting
from the practical point of view.

The other application of the graph is the sensitivity calculation. Sensi-
tivity is an important measure of the quality of the circuit and its ability to
perform well in a noisy environment. It has been shown that the sensitivity
of the system, defined as the derivative of any of its signal with respect to
the gain of the branch, can be evaluated as the product of a signal in the
original graph G and a signal in the adjoint graph G [5, 11]. The linear
graph G is called adjoint to G if all its branches are reversed branches of
G. After reversing the directions of branches the roles of nodes have also

Signal Flow Graphs for Gradient and Exact Hessian Determination 31

(a) G

(b)

A
G

Figure 2: Illustration of the sensitivity calculation using SFG. (a)
Original graph G with terminations. (b) Terminations of adjoint
graph G.

been changed. The former summing node is now the simple source node,
and vice versa. The adjoint graph, which corresponds directly to the notion
of a transposed system in system theory, has been defined for both linear and
nonlinear branches. Here we will be concerned mainly with the linear ones.
If the 7th node signal in the original and adjoint graph are denoted by V; and
Vi, respectively, and the gain of the branch from the jth to the ith node is
denoted by W;;, then the sensitivity of any node signal V}, of the system with
respect to the gain W;; may be described by the formula [5, 11]

A

A 3
dWZ] V) ()

in which Iz(k) means the signal of the ith node in the adjoint graph G at the
unity excitation applied at kth node (Figure 2), and V; is the signal of the
jth node of G at normal excitations Vi, Vixo, - - -, Vexn-

The sensitivity and its extension in the form of a gradient is of great
importance in supervised learning strategies of neural networks [7, 11]. SFGs
represent a new look at the process of learning of such systems and may be
convenient in the analysis of a particular algorithm or its implementation in
circuit form.

32 Stanislaw Osowski and Jeanny Herault

In this paper we will show that SFG is a convenient and efficient tool for
determining the gradient and exact evaluation of the hessian matrix. The
sensitivity relation (3) will be generalized to the gradient of the specified
energetic function and then to the matrix of second-order derivatives, the
hessian. Specific examples illustrating the proposed method will be given
and discussed.

2. Gradient determination using SFG

Usually in engineering applications—such as neural networks or an optimiza-
tion approach to the design of electronic circuits—the energetic (objective)
function is defined as the quadratic function of the chosen node signals; that
is,

B(W) = 5 >k —)’ @

uMa

where Vj, is the actual kth node signal, dj, is the desired value for this node,
and M is the number of output nodes that take part in the definition of the
energetic function. Although equation (4) is quadratic with respect to the
node signals it is generally nonlinear with respect to the optimized parameters
(adjusted weights W;;) because Vj, is a nonlinear function of the weights.

The gradient VE is defined as the vector of derivatives of the energetic
function with respect to the parameters (weights) of the system. Simple
differentiation of (4) leads to the relation

8Vk

8W - Z aW,] (5)

which states that the derivative of the objective function needs the calculation
of sensitivity of the appropriate node signals. Application of SFG can signif-
icantly simplify this process. Note that the adjoint SFG is a linear one (even
in the case of a nonlinear system, not considered here). Instead of applying
the unity excitation at the node ¥, of G and summing up the appropriately
weighted products of the signals of G and G, we can apply all excitations at
once (Figure 3) forcing the linear superposition rule to generate the relation
(5) in the form of simple multiplication of two signals, analogously to (3):

oFE ~
oWy, ViVi. (6)
The only difference between sensitivity (relation (3)) and gradient calcula-
tion (relation (6)) is the excitation of the adjoint graph [11]. In the case of
sensitivity it is the unity signal applied at the appropriate node of é, while
in the gradient calculation this signal is equal to the difference between the
actual value of V. and the target value dj.

The differential relations (3) and (6) have clear network interpretation
form, because each graph is equivalent to some network. The sensitivity or

Signal Flow Graphs for Gradient and Exact Hessian Determination 33

(2) G
Vex1 © Vi

o
Vexn M

(b)

° (Vi — dum)

Figure 3: The graphs G and G for gradient calculations. (a) Original
graph G with terminations. (b) Terminations of adjoint graph G.

gradient analysis requires that we enlarge the original network by the adjoint
one and analyze both. The results of the analysis form the gradient vector,
which among other things may be used to adapt the weights of the system to
provide the output vector Vg equal to d. The enlarged network presented
in the form of a self-adapting system is presented in Figure 4. The pairs of
learning vectors (Vy,d) are employed in the self-adaptation process. The
vector Vg is the excitation vector of the original system G, while the output
Vou and target vector d are the excitation for the transposed system G. The
outputs of both systems V and V are applied as the inputs to the block that
generates the gradient-based adaptive algorithm—such as steepest descent,
conjugate gradient, or variable metric—that adapts the weights of G and
G to make the output vector Vo of G equal to the target vector d. The
network is self-adapting and automatically adjusts its weights in the direction
of minimization of the defined energetic function. The enlarged network can
be fully realized in hardware form and its performance simulated on the
computer using a circuit analysis package.

It should be restated that the linear graph is only a graphical represen-
tation of the linear system of equations expressed generally as Ax +b = 0,
where A contains the information of the weights, b is the excitation vector,
and x is the vector of node variables. On the other hand, the adjoint graph
represents another linear system of equations A'X + b = 0, where this time

34 Stanislaw Osowski and Jeanny Herault

* voul ‘
Gradient
Based A
Vex—™ G > Adaptive ~ A G
b Algorithm v -« d

Figure 4: Illustration of the use of the generalized concept of an ad-
joint system for self-adaptation (learning) of the system.

the excitation vector b is formed on the basis of a solution of a normal Sys-
tem. Pure numerical implementation of the algorithm is possible by applying
any numerical linear solver.

The important advantage of the flow-graph method is that it is a simple
way of taking into account the shared values of the weights. If any weight ap-
pears many times in the graph as the gain of different branches, the sensitivity
and gradient formulas with respect to this gain are the simple superpositions
of the appropriate individual derivatives of each branch separately. To be
more specific, if the weight W appears twice in the network, say between the
nodes 7, 7 and k, ! (the second index means the node from which the branch
starts), and all nodes are denoted by V' (normal system) and V (the adjoint
system), with appropriate index, respectively, then the gradient component
with respect to the shared weight W is described by the sum of two compo-
nents. This follows from the fact that the weight W appears twice (between
nodes i,j and k,1). For this particular case the appropriate component of
the gradient is given by

:99_1?/ = V;V; + WV, (7)
It can be stated that this rule, coming out from the signal flow relations,
corresponds directly to the active constraints method, the most effective way
of taking into account linear constraints in an optimization problem. Thanks
to this strategy the equality constraints of the type described above do not
complicate a learning process that involves the gradient; in fact the opposite
is true, reducing the problem complexity by reducing the number of effective
variables that appear in the calculations.

As an example consider the eigenvalue problem of the nxn real symmetric
matrix B [3] defined by

B = VLV

where L = diag[A;, Aa, . .., A,] with A; being the eigenvalue and V being the
orthogonal matrix composed of n orthogonal vectors v;, V = [v,,v,,. .. Vils

Signal Flow Graphs for Gradient and Exact Hessian Determination 35

where each vector v; is the eigenvector that corresponds to A;. The matrix
V is of unity length, that is, V!V = 1. By multiplying these equations at
each time ¢ by a nonzero vector x = [z1(t), 22(t), . .., z,(t)] it has been shown
[8] that we can formulate the eigenvalue problem as the minimization of the
following energetic function E:

1
E =l VILVx — Bx ||+ || V'Vx —x |13].

The weights Wj; to be calculated are the components of the eigenvectors
v; and the eigenvalues);. Figure 5(a) presents the SFG in a matrix form
that corresponds to the defined energetic function. The symbolic branches
depicted inside the boxes denote the entries of the matrix V and L (the
weights of the neural network). The terminating points (the nodes of the
graph) are the components of the appropriate vectors of the graph. The
branches denoted by the dashed lines define only the targets d®® and d®,
and do not belong to the graph G. The adjoint graph for the gradient
calculation is created by reversing the branches of G and, in the case of
matrix descriptions, by transposing corresponding matrices (Figure 5(b)).
The excitations of the adjoint graph are now formed by the appropriate
differences of the actual output and its target values—that is, §) = (y(!) —
d®) and §® = (y® — d®)—and are placed at the former output nodes.
To get the gradient component of any weight we have to multiply the node
signals from which the weight (branch) originates in the normal and adjoint
systems, as expressed by relation (6).

Applying this rule to the graphs of Figure 5 and taking into account that
the elements of the matrix V appear at three different places in the graph,
we get the final expressions for the components of gradient vectors:

e for eigenvalue A;,

o8
O\

= ;%

e for eigenvectors,

oFE

Buy [T+ W —)z + @ — dP)]
ij

which can be described more generally in vector notation form as

OB _ i+ (y® — dD)z + (y2 — dP).

ka
The bold letters stand for vectors and the indexed variables are the compo-
nents of the appropriate vectors as denoted in Figure 5. Note that only two
analyses of the system are required to obtain all components of the gradient.
The whole information is now contained in the solution of normal and adjoint
graphs.

36 Stanislaw Osowski and Jeanny Herault

(a) B
it e »
|
|
I
: v L v
| vij u Ai z vij ,
X ——»| x; po—b| 0—p—o > Q/v/y?D——» y®
| U e & g
l j
|
|
! Vv
|
I
! »l . Vi &)
L a7 2 EEE—
| Y P
I
|
|
S = SR - q®
M _ M
(b) v L Vi /()’i 4
7 A A ¥
W\j I . % : M _ g
i NI A / -
Y %
@ _ @
vi (i —d)
v

oy (y(2) P d(Z))

Figure 5: Signal flow graphs for eigenvalue problem. The boxes de-
note the matrices and the branches depicted inside the boxes are the
adjusted weights. (a) Original matrix flow graph. (b) Adjoint matrix
flow graph.

The SFG approach to the determination of the gradient may be applied
in many fields, especially those that use optimization methods. An example
of such a field is neural networks, where the flow graph approach presents a
new perspective on the learning paradigm of such systems [11]. They may be
used instead of backpropagation to train the hidden layers or to improve the
performance of the self-organizing neural networks, such as source separation
[9, 10].

3. Hessian determination using SFG

The hessian matrix H associated with the energetic function E(W), where
W is the vector of adjusted weights W = [Wy, W, ..., W,], is defined as the
quadratic symmetric matrix of the second-order derivatives of the energetic

Signal Flow Graphs for Gradient and Exact Hessian Determination 37

function
Hy Hpp -+ Hi,
o | o Hn oo M @)
H,, an vow Hie
where the (4, k)th component of it is defined by
2
k= amiaEWk - aiwk <88ME/> ' ©)

The hessian matrix is of great importance in many fields. In optimization
theory it is used in the second-order Newton’s method of optimization [4] to
define the direction p of search in n-dimensional space, p = —H 'V E. At
the same time it is the measure of the curvature of the error surface in the
optimized system, and as such, finds practical application in estimation of
the sensitivity of the system to a given parameter. Recently it has been used
as a measure of the saliency of weights in neural networks in the pruning
process, called Optimal Brain Damage [13, 14].

As seen from relation (9), to determine the hessian we need to repeat the
graph differentiation rule on each component of the gradient. However, in
this case we should take into account that the excitation of the adjoint graph
is also subject to differentiation. To avoid this inconvenience in hessian gen-
eration, we need to modify slightly the last step of the gradient calculation
and apply directly relation (5). Each kth component of (5) should be calcu-
lated independently at unity excitation applied at the kth (k=1,2,..., M)
node of G; by using relation (3) the final result is now given in the form

OF % 8V
Wiy = QWU

= Z (Vi — dp)V; V) (10)
L_.

where this time Vi(") is the ith node signal of G with only the unity excitation

applied at the kth node.

To simplify the notation let us assume that we consider only one output
node (M = 1), denoted here as V,, and that the weights W;, W}, have the
notations of the weights of graph branches, that is, W; = W;, W), = Wy,. By
applying relation (1()) for M =1 we get

0’E
OW;jOWy ~ oW

[V(")V (V, — d)] (11)

where V; and V, represent the solutions of the original graph G, V is the
solution of the adjoint graph with unity excitation applied at the former
output (o) node, and d represents the appropriate destination. The vari-
ables ‘Z(o),‘/j, and V, are the functions of the weights W;; of the system.
Differentiation in relation (11) leads to

PE v Vv - av,
= L ViV, = d) + ==V, — d) + =——=VV;. (12
am/” aWkl 8Wkl]() + 6Wkl 7 () + W ()

38 Stanislaw Osowski and Jeanny Herault

To get the final expression for the hessian on the basis of inspection of the
graphs we should express the derivatives of ‘71-(0),‘/], and V, in the form of
products of the appropriate variables of three graphs: the original one G, the
graph G adjoint to the original and graph G adjoint to G. Observe that the
internal structure of graph G after reversing the branches of G is identical
to G. The only difference between them may be in the excitations.

For clarity let us improve the notation further. By f/j(e) and ‘7]-(6) we
denote the responses at the jth node of the graphs G and G, respectively,
with the excitation placed at the eth node. These excitations are of unity
values. The variables V; of the original graph G will be denoted here without
any superscript.

Relation (12) has transformed the calculation of the hessian to the de-
terminations of three sensitivities. Two of them are of the original graph
and one of the adjoint graph. Taking into account that the direction of the
branch W;; in G is opposite to the general convention (it starts now from the
ith and ends up in the jth node) and repeating the sensitivity calculations
to obtain 9V;/0Wy, OV, /Wy, and a\Z.“’)/aWkl, we get the final expression

for the component of the hessian in the following form:
2E s b -

R pACL VAR VAL P Dy 7y _
Bm]ala[rkl k ‘/2 V7 (VO d) + Vk ‘/l‘/;, (‘/D d)

+ROVT;. (13)

To get one entry of the hessian matrix we have to analyze three graphs: the
original graph with fixed original excitations Vi, the adjoint graph G with
unity excitation applied at the node (which appears in the superscript of the
appropriate variable ‘7) and graph G of the internal structure identical to G
with unity excitation applied at the node indicated here by the superscript
of the variable V. If we follow the procedure of exciting the systems, we
find that the analysis of the original system G is just part of the analysis of
system G. Thus the determination of the full n x n hessian matrix requires
only the analysis of two graphs (G’ and G) irrespective of the size of the
problem. The adjoint graphs G and G are to be analyzed at the excitations
applied at different points indicated by the superscripts of the appropriate
variables in relation (13). For full hessian matrix determination we have to
apply the unity excitations in G' and G at every internal node. Denoting
the total number of nodes by K (including the M output nodes) we have to
analyze each of the graphs, G and G, at most K times. Taking into account
that the original graph analysis is included in the results of analyses of G,
we find that the total number of analyses of the system equals 2K.

It should be pointed out that the crucial point in the graph analysis of
the linear system, using for example the Mason rule or any of its derivatives
[2, 6], is the determination of the so-called principal determinant A, which is
independent of the excitations and is the same for all graphs in our problem.
From the mathematical point of view this means that we have to solve the
system of algebraic equations Ax + b = 0 for graphs G and G, and A% +

Signal Flow Graphs for Gradient and Exact Hessian Determination 39

b = 0 for graph G at the same matrix A and at different excitation vectors
b and b. The LU decomposition or inverse of the matrix A should be done
only once, and multiple solutions of G and G are found by putting the value
1 in different positions of the zero excitation vectors b and b.

To illustrate the practical aspects of determining the hessian matrix let
us consider the linear system presented by the graph of Figure 6(a). Let
us assume one original excitation V., = E applied at the node V; and the
output V, placed at node V. Let the energetic function E(W), where W =
[Wig, Woy, Way, W], be assumed as follows:

B(W) = 3(V, - df

where d is the required destination. The graphs G and G corresponding to the
given graph of the system are presented in Figures 6(b) and 6(c), respectively.
The excitations and output nodes are not denoted there; they will change
their positions according to the number indicated in the superscript of the
appropriate variable. From inspection of the corresponding graphs it is seen
that the gradient vector can be expressed in the form

vzv(”(vo d)
vp_| 0B OE OB 0E b DV, - d)
- 8W12 8W21 8W31 8W32 B ‘/1 VE’,(S) ()

VZVé(B)(o - d)

The hessian is the 4 x 4 symmetric matrix, hence we have to determine only
10 entries of it. From relation (13) it directly follows that

&E e s g
oo = V2 WV = &)+ GEVEV(Y, - &) + BV,
&°E s esiidi s
S = VA, —)+ BTV, —)+ BT,
&E o s e
e~V Ve ValVe =)+ VOVOV(V, - 4) + TPV,
OE
— = = VPRV -) + BNV~ 4+ TR
8W218W31 (d) 13 1() + 2 Ty
O°E
_ V(3)V(2)V V(l)V(3)V - (3) (S)VV
Wy 0War (Vo —d) + o (d) + V 2
PE _ _ 550y oMHO) 5OHO)
SO 12 —d)+ ¥ - WV,
W1 0Way =V Vi(Vo = d) + V5 V3" Va (Vo — d) + V37 V5" ViV,
82
- = VOV, - &) + VOV, — d) + VTP,
W,
BB ame — e
oz = V2 VOV, — d) + BOTIN(Y, - d) + VOV
21
°E

gz = Vo WOVi(Vo = d) + GPVP(Y, — d) + BTN
31

40 Stanislaw Osowski and Jeanny Herault

0’FE

sz = VOOV, = &) + TPV, - d) + TGPV
32

As seen from these expressions the graphs G and G should be analyzed at the
unity excitations applied to all three nodes. If the values of the weights of
the graph are given in numerical form, the problem is equivalent to the direct
solution of the appropriate matrix equations Ax +b = 0 and A'% + b=0,
where in this particular case we have

-1 Wy 0 Vi
A= | W,y -1 0 x=| W
W Wi —1 Vs

while b and b are the excitation vectors specially selected for each graph (as
described above). In the case of the symbolic weights of the graph we can
apply the Mason topological formula, from which we obtain

D=1-W;,Wy

=E/D
Vo = EWy /D
= E(Wsy + Wy Ws,)/D
V, =V
and
Wl=1/D
v‘” Wis/D
P8 =0
V® =Wy /D
V? =1/D
‘7;3(2) =0
V) = (Way + Wi Wan) /D
= (Wsy + Wiy Ws1)/D
PO — g
and
W =1/D
‘7(1) = W21/D

(1) = (Ws1 + W1 Ws,)/D
V1(2) - ng/D
W =1/p
V(Z) (Wsy + WiaWa1)/D

Signal Flow Graphs for Gradient and Exact Hessian Determination 41

(a) Vex=E 1 Vi
W3,
Vi 1
9 va
W2y
Va
U s
W, W
® P
Wi ﬁ & Vl
c
() Wa1
A
\%
Wai 4 %
V3
Wy
A
Va
v

Figure 6: The signal flow graphs for hessian determination of the
example. (g) Original graph G. (b) Adjoint graph G. (c¢) Graph G
adjoint to G.

V® =0
7®
V& =1,

The significant feature of the obtained results is the determination of ex-
act values of the components of the gradient and hessian in a form very
convenient from an algorithmic point of view. Instead of lengthy analytic
calculations of derivatives, it is enough to analyze the system a few times at
differently placed excitations.

The important advantage of the proposed hessian formula is a signifi-
cant savings in memory requirements. For large-scale circuits, like neural
networks, the number of weights is very high, whereas the number of nodes
(neurons) is much smaller. This difference is typically of at least one or
two orders. If we take, for example, the network of K = 100 neurons and
n = 5000 weights, we would need n*/2 = 1.25 x 107 units of memory (the
hessian matrix is symmetric and it is enough to memorize half of its entries).
At the same time all the information needed to reproduce the full hessian
using our formulation requires only 2K? units to keep the solutions of our

42 Stanislaw Osowski and Jeanny Herault

three graphs. For our numerical example the memory requirement is limited
to approximately 2 x 10* units of memory.

Much more striking is the comparison of calculations needed to obtain the
full hessian. To get all entries of the hessian we need to perform 2K analyses
and 3n? multiplications for each output unit of the system. All analyses are
performed on the same matrix A, so the number of multiplications needed
for them is proportional to (K® + 3K?). This means that the total number
of multiplications in this case is proportional to (3n2M + K* + 3K?).

In the most widely used general approximate perturbation method of the
hessian calculation, we first need to perform (n + 1) analyses of the system
to get the gradient. In completely dense cases of the hessian, an additional n
evaluations of gradients along n directions d* are necessary to obtain %n(n-}—l)
entries of the hessian. This is due to the approximation formula

H(x)d' = VE(x — d*) — VE(x) (14)

for : = 1,2,...,n. All together this makes n(n + 1) analyses of the system.
Comparing this to 2K analyses required generally in our proposed method,
we find that the rate of improvement is proportional to n?/2K, in which n
is the number of weights and K is the total number of neurons (hidden plus
output). It should be noted that the number of operations to be done at the
full hessian approximation is prohibitively high, and this method is applied
only for small or sparse problems [15]. Different methods for approximating
hessian generations are used, such as Gauss-Newton or Levenberg-Marquardt
regularization and their derivatives [13, 15, 16, 17]. Those methods use in-
formation from the gradient and the last iteration results to reproduce the
hessian at each cycle. Even then application of the gradient formula pre-
sented in this paper may greatly reduce the number of computations (two
analyses of the system instead of N + 1 to obtain the value of the gradi-
ent vector). Application of our method has the additional advantage that
the gradient is an exact value and the problem of approximation of a badly
conditioned system is partly avoided.

Recently the original method of exact hessian determination for multilayer
perceptron system was reported [18]. However, it applies only to feedforward
systems and makes use of many simplifications that arise from this fact. As
reported by the author, the number of analyses of the system (per training
pattern) is at most equal to twice the number of hidden K} and output
M neurons, and this corresponds to 2K (in our notation K = Kj + M).
The total number of mathematical operations scales like the square of the
number of weights (n?) in the system, where for the full feedforward network
n = K,(M + K;), in which K; denotes the number of input nodes.

For the purpose of comparison we consider the same case using our
method. At K input nodes, K} hidden neurons, and M output neurons we
need to perform 2(Kj + M) analyses of the system, and one analysis of the
feedforward system requires a number of multiplications that is proportional
to K (K; + M). That makes 2K, (K}, + M)(K; + M) total multiplications
nedeed for the analyses of the system. The simplifications that follow from

Signal Flow Graphs for Gradient and Exact Hessian Determination 43

the nature of the feedforward system result in a reduction of the different
nonzero entries of the hessian to K, M only. Determination of each entry
requires an additional six multiplications. In this case the number of multi-
plications in our method scales like 2K, (K}, + M)(K; + M) + 6K, M. If we
examine different figures for the number of nodes we find that this number
is smaller than the [Kj,(M + K;)]? needed by the Bishop method. Moreover,
it should be noted that our approach is more general and applicable to the
recurrent system as well.

4. Conclusions

This paper has presented the graph application to the exact calculation of the
gradient vector and hessian matrix. By introducing the concept of adjoint
graphs, simple formulas for defining the gradient vector and then the hessian
matrix have been obtained. It was shown that all information about the
first- and second-order derivatives of the energetic function is contained in
the solution of the normal graph G and the graph G adjoint to it. To get
the full hessian matrix we need to solve the graph G once with originally
given excitations, and K times with the unity excitation applied at each of
K internal nodes of the graph. We also need to repeat these K solutions for
the adjoint graph G. The (2K + 1) analyses of the graphs are equivalent to
the solutions of two matrix equations Ax + b = 0 and A'&+b = 0, with the
same matrix A representing the weights of the graph and different vectors b
and b that contain all zeros except one position equal to unity (for graphs
G and C:‘), or representing the given excitation of the original system (for a
given graph G).

Instead of lengthy mathematical manipulations to determine the deriva-
tives—which are extremely tedious and susceptible to errors, especially for
the recurrent systems—we have the simple mathematical formulas based on
the direct solution of two systems: the original and the adjoint. The method
is algorithmic in its nature and is very easy in computer implementation.
It may be applied in either numeric form (solution of two systems of linear
algebraic equations) or in symbolic form using the Mason gain formula.

The method provides a significant reduction in memory requirements of
the computer system and at the same time reduces the complexity of the
calculations proportionally to the squared number of the nodes of the system.

The method may find practical application anywhere, where the curvature
of the error surface and the information of the second-order derivatives of the
energetic function is important—for example in the variety of second-order
Newton’s methods of optimization [3, 4], in the area of neural networks to
develop new generation learning strategies based on second-order optimiza-
tion algorithms, or on pruning of such networks [13, 14]. The method is
applicable to both feedforward and feedback systems, presenting a new and
efficient look at these old and still important problems.

44

Stanislaw Osowski and Jeanny Herault

Acknowledgments

This paper was completed while the first author was with the Laboratoire
TIRF, INPG, Grenoble, France, financed by the EEC mobility grant.

References

[1]

2l

B8l

(10]

(11]

[12]

(13]

L. O. Chua and P. M. Lin, Computer Aided Analysis of Electronic Circuits
(Englewood Cliffs, NJ: Prentice Hall, 1975).

S. Mason and H. Zimmerman, Electronic Circuits, Signals and Systems (New
York: Wiley, 1960).

G. Golub and C. Van Loan, Matriz Computation, (North Oxford Academic,
1990).

P. Gill, W. Murray, and M. Wright, Practical Optimization, (New York: Aca-
demic Press, 1981).

A.Y. Lee, “Signal Flow Graphs—Computer Aided System Analysis and Sen-
sitivity Calculation,” IEEE Transactions on Circuits and Systems, 14 (1974)
227-228.

C. Acar, “New Transformations in Signal Flow Graphs,” Electronics Letters,
7 (1971) 27-28.

L. Almeida, “Backpropagation in Perceptrons with Feedback,” pages 199-208
in Neural Computers, edited by R. Eckmiller and C. Malsburg, (1987).

A. Cichocki and R. Unbehauen, “Neural Networks for Computing Eigenvalues
and Eigenvectors,” Biological Cybernetics, 68 (1992) 155-164.

J. Herault, C. Jutten, and B. Ans, “Detection de Grandeurs Primitives dans
un Message Composite par une Architecture de Calcul Neuromimetique en
Apprentissage non Supervise,” Actes du X’eme Collogque GRETSI, Nice, 2
(1985) 1017-1022.

C. Jutten and J. Herault J, “Blind Separation of Sources, Part I: An Algo-
rithm Based on a Neuromimetic Architecture,” Signal Processing, 24 (1991)
1-29.

S. Osowski, “Signal Flow Graph Approach to the Learning Rule of Neural
Networks,” Workshop on Massively Parallel Computations, Leysin, (March
1992) 13-24.

D. Hush and B. Horne, “Progress in Supervised Neural Networks,” IEEE
Signal Processing Magazine, 1 (1993) 8-39.

Y. Le Cun, J. Denker, and S. Solla, “Optimal Brain Damage,” pages 598-605
in Advances in Neural Information Processing Systems 2, edited by D. Touret-
zky (San Mateo, CA: Morgan Kauffman, 1990).

Signal Flow Graphs for Gradient and Exact Hessian Determination 45

(14]

B. Hassibi and D. Stork, “Second Order Derivatives for Network Pruning: Op-
timal Brain Surgeon,” in Advances in Neural Information Processing Systems
5 (San Mateo, CA: Morgan Kauffman, 1993).

T. Coleman and J. More, “Estimation of Sparse Hessian Matrices and Graph
Coloring Problems,” Mathematical Programming, 228 (1984) 243-270.

M. Bartholomew-Biggs, “The Estimation of the Hessian Matrix in Nonlinear
Least Squares Problems with Nonzero Residuals,” Mathematical Program-
ming, 12 (1977) 67-80.

T. McCormick, “Optimal Approximation of Sparse Hessian and Its Equiva-
lence to a Graph Coloring Problem,” Mathematical Programming, 26 (1983)
153-171.

C. Bishop, “Exact Calculation of the Hessian Matrix for the Multilayer Per-
ceptron,” Neural Computation, 4 (1992) 494-501.

