Complex Systems 9 (1995) 47-72

Adaptively Resizing Populations:
Algorithm, Analysis, and First Results

Robert E. Smith*
Department of Engineering Science and Mechanics,
The University of Alabama,
Box 870278, Tuscaloosa, Al 35487 USA.

Ellen Smuda
Department of Aerospace Engineering,
The University of Alabama,
Tuscaloosa, Al 35487 USA

Abstract. Deciding on an appropriate population size for a given ge-
netic algorithm (GA) application can often be critical to the success
of the algorithm. Too small, and the GA can fall victim to sampling
error, affecting the efficacy of its search. Too large, and the GA wastes
computational resources. Although advice exists for sizing GA popu-
lations, much of this advice involves theoretical aspects that are not
accessible to the novice. This paper suggests an algorithm for adap-
tively resizing GA populations. The algorithm is suggested based on
recent theoretical developments that relate population size to schema
fitness variance. The algorithm is developed theoretically, simulated
with expected value equations, and tested on a problem where popula-
tion sizing can mislead the GA. The positive results presented suggest
that adaptively sizing GA populations may be a practical extension
to the typical GA. Such an extension frees the user from a critical
parameter decision, and expands the usefulness of GA search. More-
over, this extension creates a new, interesting class of genetic search
systems, where adaptive changes in population size reflect problem
complexity.

1. Introduction

A novice genetic algorithm (GA) user that sets out to apply a GA to an
optimization problem faces a series of decisions. First, it is discovered that
the problem must be encoded into a GA amenable representation. Next, the

*Electronic mail address: rob@comec4.mh.ua.edu

48 Robert E. Smith and Ellen Smuda,

user must choose selection, recombination, and mutation operators. Finally,
the user must choose a set of GA parameters, typically including a crossover
probability (p.), mutation probability (p,,), and population size (N).

For the purpose of this discussion, one can make the assumption that, for
a given set of parameters, a GA with a given set of operators is sufficiently
robust to cope with a variety of problem encodings. This, of course, ignores
the possible dilemma of deception in certain encodings, the relative merits
of various encoding alphabets, and the different effects of various operators.
However, GAs are generally robust, and this assumption allows us to focus
on tunable aspects of a given GA, rather than the wide variations of GA
implementations.

Given these assumptions, the key decisions of the user are parameter
settings. For setting p. and p,,, some heuristic guidance exists. Crossover
probabilities between 0.6 and 0.9 are recommended. Mutation rates should
be between 1/N and 1/¢ (where ¢ is the encoding length). In practice, GAs
are typically robust enough to cope with some variation in the settings of
these two parameters. Experience shows that, within the bounds of these
heuristics, variations in these parameters result in relatively small changes in
GA performance. However, variations in population size can have substantial
effects on GA performance on many problems. Too small a population,
and the GA can fall prey to sampling error. Too large a population, and
computational effort is wasted on extra fitness evaluations.

Some advice exists for sizing populations. In early papers on this topic,
Goldberg develops formulae and indicative plots for population sizing [1, 2].
These results are based on some limiting assumptions about the necessary
levels of schemata sampling in the GA. A more recent paper [3] presents
a formula for sizing populations that is directly based on schemata fitness
variance. This formula directly indicates the necessary schema sampling for
given schema statistics.

The formulae in [3] are useful, but they do present a difficulty for the
novice. Without an understanding of the GA theoretic concepts of schemata
and their statistics, the developments are inaccessible. Therefore, from the
viewpoint of a novice user, the GA may not seem robust at all. They may
comment, “I want to use the GA, but I don’t want to have to understand
it.” Thus, what appears to be a robust algorithm to an experienced GA user
may not be robust to the world at large.

One might comment that all optimization schemes suffer from this dif-
ficulty. To use them adequately for a broad range of problems, there must
be some understanding of the interactions of the parameters, and thus, some
understanding of the algorithm. However, parameters used in traditional
search algorithms are often easy for a novice user to access and understand.
These parameters are typically a desired accuracy for the search process or
its end result, and a constraint on the computational resources (time and
memory) that the user is willing to expend. In other words, the user need
only answer: “How good do I want my answer to be, how long do I want to
spend, and how much memory do I have in which to work?” The GA suffers

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 49

from the difficulty of having parameters (like population size) that are much
more difficult to relate to user needs.

This paper is the first outcome of a project to develop a GA whose pa-
rameters are more user accessible. The project’s current efforts are concen-
trated on the population sizing decision. This seems a logical first step, since
population sizing is a decision the user must make in any GA, and it is a
decision on which the novice has little accessible advice. The desired end
result of the project is the development of a GA where the user need only
specify a desired accuracy parameter, a computational time constraint, and
a memory constraint. This new GA system will adaptively resize the popu-
lation in an effort to meet user requirements. The remainder of this paper
will present a suggested technique for dynamically resizing populations given
these parameters. The technique is first developed theoretically, simulated in
expectation, and then tested on a problem where population sizing is critical
to GA performance.

2. Algorithm development

To design an algorithm for adaptively resizing populations, one must form
a basis for resizing and design a procedure that exploits that basis. The
following sections undertake that task.

2.1 Population sizing theory

The technique presented here is based on recent suggestions on population
sizing from [3]. Thus, a brief summary of these developments is provided.

Theory suggests that GAs search by implicitly evaluating the mean fit-
ness of various schemata based on a series of population samples, and then
recombining highly fit schemata. Since the schemata average fitness values
are based on samples, they typically have a nonzero variance. Consider the
competing schemata:

Hi=% %% %x110%x*x0
and
Hy=% %% * 010 % % 0

Assuming a deterministic fitness function, variance of average fitness val-
ues of these schemata exist due to the various combinations of bits that can
be placed in the “don’t-care” (*) positions. This variance has been called
collateral noise [4]. Let f(H;) and f(H,) represent the average fitness values
for schemata H; and Ha, respectively, taken over all possible strings in each
schema. Also let of and o3 represent the variances taken over all correspond-
ing schemata members.

The GA does not make its selection decisions based on f(H;) and f(Hs).
Instead, it makes these decisions based on a sample of a given size for each
schema. We call these observed fitness values f,(H;) and f,(H;). Observed

50 Robert E. Smith and Ellen Smuda

fitness values are a function of n(H;) and n(H,), the number of copies of
schemata H; and Hy in the population, respectively. Given moderate sample
sizes, the central limit theorem® tells us that f, values will be distributed
normally, with mean f(H) and variance o2 /n(H).

Due to the sampling process and the related variance, it is possible for the
GA to err in its selection decisions on schema H; versus H,. In other words,
if one assumes f(Hy) > f(Hs), there is a probability that f,(H;) < fo(Hs).
If such mean fitness values are observed the GA will incorrectly select Hy over
H,. Given the f(H) and o? values, one can calculate the probability of such
an error based on the convolution of the two normals. This convolution is
itself normal with mean f(H;)— f(H,) and variance (o2 /n(H;))+ (03 /n(Hs)).
Thus, the probability that f,(H;) < f,(Hs) is a, where

(f(Hy) = f(H,))?
(03/n(H1)) + (03/n(H2))’

and z(«) is the ordinate of the unit, one-sided, normal deviate. Note that
z(a) is, in effect, a signal-to-noise ratio, where the signal in question is a se-
lective advantage, and the noise is the collateral noise for the given schemata
competition.

For a given z, a can be found in standard tables, or approximated. For
values of |z| > 2 (two standard deviations from the mean), the gaussian tail
approximation can be used:

22(a) =

_exp (—22/2)

(2+/2n)

For values of |z] < 2, one can use the sigmoidal approximation suggested in
[5]:
1
0=——
1+ exp(—1.62)

Given this calculation, one can match a desired maximum level of error in
selection to a desired population size. This is accomplished by setting n(H;)
and n(H,y) such that the error probability lower than the desired level. In
effect, raising either of the n(H) values “sharpens” (lowers the variance of)
the associated normal distribution, thus reducing the convolution of the two
distributions. _

In [3] it is suggested that if the largest value of 2°M)g?/|f(H,) — f(Hs)|
is known for competitive schemata of order o(H), one can conservatively size

I Technically, the central limit theorem only applies to a random sample. Therefore,
the assumption that the mean of observed, average fitness values are the same as average
fitness values over all strings is only valid in the initial, random population, and perhaps
in other populations early in the GA run. However, GA theory makes the assumption
that selection is sufficiently slow to allow for good schemata sampling. This common
assumption is made in this work as well.

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 51

the population by assuming the n(H) values are the expected values for a
random population of size N. This gives the sizing formula

0% + 02
(f(Hy) — f(Hs))*

Particular versions of this formula for various problem configurations and
levels of deception are considered in [3]. These developments are not consid-
ered here, but may have implications for later developments of the suggested
adaptive resizing algorithm. Important heuristics are also suggested in [3].

The formula presented above is a thorough compilation of the concepts
of schemata variance and its relationship to population sizing. However, it
does present some difficulties from the viewpoint of robustness for the novice.
The values and ranges of f(H) are not known beforehand for any schemata,
although these values are implicitly estimated in the GA process. Moreover,
the values of o2 are neither known nor estimated in the usual GA process.

In addition, the formula does not consider the relative importance of
schemata competitions. If two competing schemata have fitness values that
are nearly equal, the overlap in the distributions will be great, thus suggesting
a large population. However, if the fitness values of these schemata are nearly
equal, their importance to the overall search may be minimal, thus precluding
the need for a large population on their account. To compensate for this
effect, one could consider the absolute expected selection loss due to an error
in selection L(Hy, Hs), as opposed to the probability of such an error:

N = 22(a)2°)

L(Hy, Hy) = |f(Hy) — f(Hy)|a(Hy, Ha).

The technique suggested here will attempt to dynamically size a popula-
tion based on matching the selection loss L to a desired target for this loss
L; provided by the user. To do so, one must estimate schemata variance, a
topic taken up in section 2.2.

2.2 Estimating variance and selection loss

The standard GA estimates schema mean fitness values through repeated,
probabilistic selection and recombination of strings, based on the fitness value
of each single string. The fitness of a single string that belongs to a schema is
the smallest sample possible for evaluating a meaningful average fitness value
for that schema. Clearly, this minimal sample cannot be relied upon to deliver
an adequate average fitness. However, the GA uses a population of strings to
implicitly deliver the schema average fitness for a larger sample, while never
explicitly evaluating the average of the sample. Also, under many selection
schemes, the GA makes selection decisions over competing schemata in small
increments (small changes in population proportions), thus distributing the
evaluation of schemata averages fitness values over time. This spatially and
temporally distributed evaluation is key to a GA’s implicit parallelism [7], as
well as its easy exzplicit use on parallel computers. The distributed approach

wt
8]

Robert E. Smith and Ellen Smuda

Table 1: A mated pair of sample strings and their fitness values.

string fitness
S551010100111010 100
S,1100101100101 50

also maintains the GA’s naturally inspired character. In developing a method
for estimating variance, it would be desirable to maintain a similar approach.

Clearly, one cannot evaluate an estimate of schema variance based on a
single member of that schema. To evaluate a variance, one must consider at
least two points. Consider the fitness variance of a pair of strings, in partic-
ular, the variance of mates. What schemata variances does one learn about
by observing the variance in fitness between two strings? In a determinis-
tic problem, any variance is caused by the bits where the two strings differ.
Thus, the variance in fitness of two strings gives an estimate of the fitness
variance of the schemata that the strings have in common. For example,
consider the strings and fitness values in Table 1. The strings S; and S,
share schema

Hy o = %% 010 % 1 % % % s

and indicate that an estimate of its average fitness is f(Hi2) = (f(S1) +
1(S9))/2 = 75. The indicated variance is given by

2o _ (f(S1) = f(Hip))? + (f(S2) — f(Hip))® _ (f(S1) — f(S2))* _
o2, = = = 625.

. 9 4
Although this is a very crude estimate of schema fitness variance, it is no
more crude than the estimate of schema average fitness implicit in the usual
GA.

Note at this point that almost all children of a pair of strings will share
the same common schemata as their parents. Only children who mutate in
the defined bits of the shared schema will fail to share this schema with their
parents. This fact will prove useful in the algorithm in section 2.3.

To size populations based on the developments in [3] competing schemata
must be considered as a basis for calculating «. To do so, we consider a
competition of pairs of schemata. Recall that each pair can be used to gain
variance information on their common schemata. When two such pairs are
compared, information is obtained about fitness differences that result from
any bits that are common within each pair, and are in common bit positions
in the competing pairs. These are the competitive schemata indicated by a
competition of pairs. For instance, consider the strings S; and Sy in Table 1,
competing as a mating pair against the strings in Table 2, arranged as another
mating pair. Strings S3 and Sy share schema

Hz = 1% %00 % 1 % % s sok

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 53

Table 2: Another mated pair of sample strings and their fitness values.

string fitness
S3/111000111110 152
S,/100001100001 68

and indicate that f(Hs,) = 110 and 03, = 1764. The schemata H;, and
Hj 4 share defined positions 4, 5, and 7. Thus, the competition of string pair
Sy and Sy against string pair S; and S, gives information about the following
two competitive schemata

H{Z:***io*u****
Hy = %% %00 % 1 s s s sk
:

both of which are in partition [8]
Ji234 = % #EE % £ ko % ok,

Thus, from this information, one can begin to obtain an estimate of «,
and thus L, for the schemata indicated by this competition of pairs. To
complete this calculation, one must determine the number of copies in the
current population for each of the two competing schemata under considera-
tion, n(Hj ,) and n(Hj,). Discussion of methods for obtaining these counts
and their computational expense will be deferred to the conclusion of this
paper. For now, assume that such a count can be obtained at reasonable
computational expense.

Given these factors, a competition of two pairs can be used to calculate
an estimated selection loss:

L(Hy3,Hsy4) = |f(H12) — f(Hsa)|a(Hy2, Hs),

where a(H; 2, Hs4) is calculated using either the sigmoidal or gaussian tail
approximations, and an estimated z value, given by

(f(Hyz2) — f(Hs4)) .
\/(U%,Z/W(Hi,z)) + (03,4/n(Hj,))

The following section will show how this estimated selection loss can be
used to adaptively resize populations.

=

2.3 An adaptive population sizing algorithm

Consider the following steps to adaptively resize populations. Assume that
the user has supplied a desired target value for acceptable selection loss L;.
Start with a small, randomly initialized population, and repeat the following
steps until population size and distribution stabilizes.

54 Robert E. Smith and Ellen Smuda

1. Randomly put population members together in mating pairs.

2. Determine the shared schemata in each mating pair.

3. Put together competitions of mating pairs.

4. Determine the competitive schemata for each mating pair competition.
5. Obtain a count of each competitive schema.

6. Calculate L for each mating pair competition.

7. Use f// L, as a basis for assigning more (or fewer) population members.

8. Construct new population members by crossover and mutation of se-
lected mating pairs.

As previously noted, almost all of the children of a given mating pair will
have the common schema from that pair. Thus, one can expect that the
schema survival relationships of the typical GA will extend to the common
schemata in the suggested algorithm.

It is desired that the suggested process converge to a population where ex-
pected selection losses match the target value L;. Consider the following use
of L/L; values. Each L/L; value is mapped to an expected one step growth
rate for the associated mating pair competition, via a sigmoid function:

2y
1+ exp (—ﬁ (LA‘ — 1))

G=(01-7v)+

where v is a desired, maximum, expected percentage increase (or decrease)
per generation, and [is a parameter. This growth factor can be mapped to
any one of a variety of selection schemes [9].

Of course, this represents the introduction of two new parameters, which
may defeat the original purpose of this work: to increase ease of GA use.
However, if robust heuristics can be determined for these parameters, ease
of use will not be affected. In the simulations presented in section 3, f =1
and v = 0.9 yielded an effective population size.

The G factor is associated with all four strings in the mating pair com-
petition. One should ask how this factor should be divided between the two
competing mating pairs. L gives no information on which schemata’s num-
bers should be increased in the given competitive partition. For lack of a
better strategy, one can inject a degree of selection by dividing the change
in number of the schemata under consideration based on relative fitness. For
instance, if G 534 reflects a competition of mating pair Sy, S, against Ss, Sy,
then

" f(Hiz) f(Hiz)
Lap= <1 f(Hi2) + f(HSA)) " (GLMAf(Hm) +f(H3,4)>

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 55

and

o f(Hsa) f(Hsa)
G = <1 F(Hyz) + f(Hs,4)> - (Gl*z**”’*“f(Hl,z) % .f'(H3,4)>

where G, and G54 are respective growth factors for the two mating pairs.

Given a one step growth rate for each mating pair, new copies can be
assigned. The L /L values for each mating pair competition will effect popu-
lation growth through this selective process. When f,/ L, is greater than one
(for a given mating pair competition), population size will increase (with re-
spect to that competition). When L /Ly is less than one, population size will
decrease. When L /L; values are equal to one, population growth will cease.
When population growth ceases, or population size becomes relatively sta-
ble, the regular GA can begin to select purely based on fitness. This divides
the GA selective process into two distinct phases. First is a selection based
on variance, with variable population size. Next is selection based on fit-
ness, with a fixed population size. This is a clear division of exploration and
exploitation phases. Later revisions of the algorithm will require a gradual
transition between these phases. Viewed in this light, the suggested algo-
rithm bears some resemblance to the exploration-exploitation strategies for
reinforcement learning problems suggested in [10].

When population size adjustment ceases in the suggested scheme, the
proportions of various schemata will not be evenly distributed in any given
partition. However, the fitness biasing used to divide growth factors should
help to insure that high fitness schemata in any given partition will be likely
to have a higher number of copies.

3. Computational simulation

The suggested algorithm’s behavior can be simulated by considering a sin-
gle partition of competitive schemata. Before doing so, it is useful to il-
lustrate the sampling error effects that can occur due to finite population
size. This can be accomplished in simulation by considering eight competing
schemata in an order three partition. Consider f(H) and o values for the
eight schemata in Table 3. The values in Table 3 were selected to show a
variety of combinations of fitness and variance for simulating the population
resizing scheme.

Iterating proportion equations [11] will show the expected performance
of fitness proportionate selection on these schemata:

fiPit

t+1
}Di — s

2Bk

for all 7 and j in the competitive partition. However, this expected value
model does not consider variance effects. As an abstraction of actual fitness

56 Robert E. Smith and Ellen Smuda

Table 3: Mean fitness values and variances for eight schemata.

schema | f(H) o
1 1.00 | 64
2 0.90 | 13.2
3 0.80 | 3.2
4 0.70 | 10.0
5 0.65 | 16.4
6 0.95| 2.0
7 0.80 | 20.0
8 0.72| 0.4

proportionate selection under sampling noise, consider iteration of a noisy
proportion equation:

B

X Pifj

where the f’ values are given by the f values with zero-mean gaussian noise
added. The variance of this noise is given by the o values listed in Table 3,
divided by appropriate counts of the corresponding schema. To simulate a
count of each schema, assume a population size N, and let n(H;) = P;N.
The proportion values will also be rounded to reflect the simulated finite
population size.

Figure 1 shows typical results of iterating the noisy proportion equations
with N = 1024. The highest fitness schema quickly takes over the popu-
lation. This result occurs consistently with this population size. However,
with N = 64, the results are quite different. Figure 2 shows a typical run. As
shown in this example, the population often fails to converge to the highest
fitness schema. The propensity of the proportion equations to miss the high-
est fitness schema increases with decreasing population size. Figure 3 shows
a convergence histogram for 25 runs for N = 64. This histogram shows the
proportion of each schema at the end of 100 generations, averaged over the
25 runs. In all 25 runs, some schema overtakes nearly the entire popula-
tion (well over 98%). The histogram indicates the schema that overtakes the
population is often not the most fit schema. Figures 4 and 5 show similar
histograms for N = 128 and N = 32, respectively. Clearly, sampling error
can cause selection error, and associated failure to converge to the highest
fitness schemata in a partition. Since selection error is a function of popula-
tion size, the population resizing algorithm should reduce selection error to
a point where correct convergence occurs.

The f and o values listed above are used in an expected value model
to simulate the action of the suggested population resizing algorithm. Note
that this simulation considers the probability of any two schemata ¢ and j
coming into competition as P;P;.

t+1
P e

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 57

Generation

Figure 1: Simulated evolution of schema proportions under selection
with noisy fitness values (N = 1024). Symbols are as follows: —o=H,
—x=Hy, — +=H3, *=Hy, o-x=Hs, o—+=Hg, o-*=Hy7, and —=Hj.

0 e 8 100
Generation

Figure 2: Simulated evolution of schema proportions under selection
with noisy fitness values (N = 64). Symbols are as stated in Figure 1.

58 Robert E. Smith and Ellen Smuda

0.6 T T T T

o
S
T
.

Percentage
o
w
:
L

0.2t J
0.1} 1

o ‘ ‘ . . . l ‘
o 1 2 3 4 5 6 7 8 9

Schema

Figure 3: Histogram indicating the converged schemata distribution
with each percentage averaged over 25 simulations under selection
with noisy fitness values (N = 64).

Percentage
o
=N
T
.

o
w
T
.

O
)
T
.

0.1f 1

GO 1 2 3 4 5 6 7 8 9

Schema

Figure 4: Histogram indicating the converged schemata distribution
with each percentage averaged over 25 simulations under selection
with noisy fitness values (N = 128).

Adaptively Resizing Populations: Algorithm, Analysis, & First Results

0.6

0.5

0.4

Percentage
o
w

0.2

0.1

[]

Figure 5: Histogram indicating the converged schemata distribution
with each percentage averaged over 25 simulations under selection

3

4 5
Schema

with noisy fitness values (N = 32).

600
500
400
%300
200

100

Figure 6: Evolution of numbers of schemata in simulation of the pop-
ulation resizing scheme. Symbols are as stated in Figure 1.

200

Cycles

400

59

60

Robert E. Smith and Ellen Smuda

100

Generation

Figure 7: Evolution of population proportions starting from the re-
sulting population size and proportions from the population resizing
scheme, under selection with noisy fitness values. Symbols are as
stated in Figure 1.

0.9r b

Percentage
o o o o
(44 (=) ~ (=]

I
»
T
L

0.3 -
0.2t |
0.1f 1

%1 2 3 4 5 6 7 8 9

Schema

Figure 8: Histogram of converged schemata distribution with each
percentage averaged over 25 simulations starting from the resulting
population size and proportions from the population resizing scheme,
under selection with noisy fitness values.

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 61

Given a starting population size of N = 64, with equal initial numbers
of each schema in the competitive partition, Figure 6 shows the results of
simulating the population resizing scheme. The final population size from
this simulation is 2048.

Given the resulting proportions and population size at cycle 500 in Fig-
ure 6, one can iterate the noisy proportion equations to simulate selection
after population resizing. Figure 7 shows the results of these iterations. Note
that the simulation quickly converges to the highest fitness schemata. Fig-
ure 8 shows a histogram of the convergence of 25 similar runs. In all of these
runs, the most fit schema overtakes the population. Small proportions of
other schemata shown in the histogram are only due to the persistence of
these schemata at near zero proportions at the end of some of the runs.

4. Implementation

The results presented in section 3 are only those of simulations. They cer-
tainly do not reflect the complexities of a live GA run with the suggested
population sizing scheme. In particular, the schema fitness and variance val-
ues used in the simulation are assumed to be explicitly given, as opposed to
estimated from the stochastic process inherent to a real GA. However, such
expected value simulations have been useful in past GA studies [11, 12]. The
simulations only consider the competitive schemata in a single partition. In
a real GA, there will be an interplay of many partitions of schemata, some
of which indicate that the population should be larger, some of which indi-
cate that the population should be smaller. The results of the simulations
used here indicate that the suggested scheme may be an effective method for
automatically resizing populations. This section presents the next phase of
testing the method: its implementation in a real GA.

The interplay of multiple schemata competitions in the real GA led to
somewhat different dynamics than those of the simulations. In particular, the
variations in population size were broader than desired. Often the population
would expand to a much larger value than was necessary for a given test
problem (see below). This expansion seems to be due to the conservative
nature of the loss measure. Recall that expansion is based on the estimated
expected loss,

L(Hm, H3,4) = |f(H1,2) - f(H3,4)|Ot(H1,2, H3,4)-

The system must obtain the given level of target loss for every schemata
competition, which is difficult in the real GA, and introduces broad, sustained
oscillations in the population size. To reduce these oscillations, the criteria
is relaxed:

|f(Hi2) — f(Hs4)|

L(H =
(s Fsa) = g + (7T

a(H1,27H3,4)~

In effect, this weights the importance on any one selection loss less severely
for larger population sizes. This seems logical in connection with the real

62 Robert E. Smith and Ellen Smuda

GA, since it is less critical for the GA to select correctly every time in a
given competition if that competition occurs several times in the population.

In implementing the algorithm simulated in previous sections, we must
more seriously consider the transition from population sizing to actual selec-
tion. In the simulations, the transition was made abruptly, after the popu-
lation size had obviously stabilized. While evaluating stability is easy in an
expected value simulation, it is difficult in an actual GA, where the complex
interplay of various schemata make the convergence of population size less
obvious. Although the population size may converge in expectation, it will
still vary around the mean in the real GA. This effect makes the decision to
switch to pure selection difficult. Rather than attempting to use some statis-
tical measure to make this decision (and possibly introducing more tunable
parameters), the implementation presented here folds selection and popula-
tion resizing into one continuous operation.

In the implementation presented here, growth or decay is accomplished
by a procedure that is similar to stochastic remainder selection [13]. First,
the growth rate is multiplied by two. If the growth rate for a mating pair is
2- G4 2, the pair is given the integer part of 2- G 5 children deterministically,
and an extra copy with probability equal to the fractional part of 2- Gy 5. If
the growth rate for a particular competition G 5 3 4 is greater than or equal to
one, the growth rate is divided between the two mating pairs based on relative
fitness, as was suggested earlier. If f(Hy2) = f(Hs4) and Gio34 < 1, the
growth rate is also divided as was indicated in previous sections. However, if
the growth rate Gy o34 is less than one, all of the losses are assigned to the
less fit mating pair. In other words, if f(Hyo) > f(Hs4) and Gio34 < 1, the
growth rate is divided as follows:

Gip =1,
G34=G1p34-

The motivation for this method is based on the population sizing theory
discussed previously. A growth rate of less than one indicates that the vari-
ance level of the schemata competition at hand is such that selection can be
performed with some confidence in the results. If the algorithm is started
with a small population size, this condition will not occur frequently until
late in the run, when the population size is corrected downward. Thus, the
algorithm should have two distinct phases, with population expansion and
little selection early on, and population contraction with selection later.

In an actual implementation of the algorithm, another important decision
is how to set the mutation rate. Since the mutation rate is usually tied to
population size in a GA, there is no clear way to set a fixed value for the
mutation rate in a GA where population size varies. In this implementation,
the mutation rate is held at 1/N, where N is population size, throughout the
run.

Since the algorithm suggested is based on competitions of four strings at
a time, it is helpful for the population size to remain a multiple of four. In
the implementation presented here, this is accomplished as follows. If the

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 63

new population size is not a multiple of four, a random decision is made
as to whether to add or subtract individuals. This prevents a bias towards
population expansion or reduction. If subtraction is selected, the last few
individuals are deleted from the population. If addition is selected, individu-
als are randomly created. In either case, the resulting population size is the
nearest multiple of four.

In addition to the previously discussed details, we must also consider that
small values of L; are likely to dictate population sizes that are larger than are
practical. Thus, user-dictated memory and computational time limitations
must be added to the algorithm. In the implementation given here, indi-
viduals are randomly deleted when a maximum population size is exceeded.
There may be better strategies for such deletion, including deletion based on
fitness. Such strategies are an avenue for future study. Another important
extension of this implementation is a user-specified limitation based on com-
putational time. Implementing such a limitation will require estimates of GA
convergence time for a given population size, and corresponding adjustments
of the maximum population size. Previous studies of convergence times for
GA selection schemes may be helpful in this extension [9].

5. Testing

This section formulates a test problem for the resizing technique, and demon-
strates the technique’s effects on this problem. It will be useful to employ
a test problem where it can be demonstrated that the results of a fixed-
population size GA vary with the selection of the population size. To do
this, it is necessary to insure that mutation alone is not sufficient to (eventu-
ally) locate the problem’s optima. If mutation is sufficient, then the eventual
convergence of the GA to the optima is assured. Population size may affect
transient response of the GA, but this would not be sufficient for the desired
illustration of the population sizing scheme’s effects. Because of this, it is
necessary to have at least a partial degree of deception in the problem [13],
so that order one building blocks alone cannot lead to the optima.
Consider the following problem:

miz+ by ifx < Fy
mex + by otherwise

fitness = f(z) = {

where z is the interpretation of the GA bit string as an integer, scaled to a
real number between zero and one, and m; = —0.533, by = 0.5, my, = 16,
by = —15, and F, = 15/16. A plot of this function is shown in Figure 9.
The deception in this function can be shown by considering the four order
one schemata competitions represented by the four most-significant bits in
z, listed in Table 4. The function is partially deceptive, since the first two
schemata competitions have selective pressure towards the false optima (z =
0), while the last two have selective pressure towards the true optima (z = 1).
Moreover, the order four competitive partition in the most-significant bits is
not deceptive, as is shown in Table 4. If disruption of the schema 1111

64

Robert E. Smith and Ellen Smuda

Table 4: Approximate order one schema average fitness values for the

partially deceptive function.

schema H | approximate average fitness f(H)
Ok |, kokk 0.3672
Ikkx | kkk 0.1679
*0kk | kokk 0.2987
*1kk | kokok 0.2359
kO L, kkk 0.2668
*k1k | kokk 0.2683
*¥k%0 L kkk 0.2501
*kkl | kkk 0.2683

Figure 9: A partially deceptive function that the GA can solve.

...x%x is low, it would be expected that the GA would select this schema
over others in its partition, and the process would converge to the correct

optima.

However, it is easy to imagine the GA being misled by the function plot-
ted in Figure 9. If high order bits are set to zeros (through disruption of
the high-order schema or selection error), the remainder of the string will
improve overall performance by moving away from the true optima at = = 1.
However, the linkage in the high order building blocks is tight, and the GA
is not usually misled by this function, even with relatively small population
sizes, as Figures 10 and 11 illustrate. These figures show GA results for

Adaptively Resizing Populations: Algorithm, Analysis, & First Results

Table 5: Approximate order four schema average fitness values for the
partially deceptive function.

schema H | approximate average fitness f(H)
0000 ... %%k 0.4843
0001 ... %k* 0.4509
0010 ... *xx 0.4174
0011 .. .%%x 0.3840
0100 ... **x* 0.3506
0101 ... %%k 0.3171
0110 ...%%* 0.2837
0111 ... %%k 0.2502
1000 ... *** 0.2168
1001 ... %%x 0.1833
1010 ... %% 0.1499
1011 .. k% 0.1164
1100 ... %% 0.0830
1101 ... ®xx 0.0496
1110 ... *xx 0.0161
1111 .. oxxx 0.5241

Fitness

0'30 100 200 300 400 500

Generation

Figure 10: Average results for ten simple GA runs with population
size 50 on the partially deceptive problem. The best fitness individual
located thus far is shown with a solid line, maximum fitness in the
current generation is shown with a dashed line, and average fitness in
the current generation is shown with a dotted line.

65

66 Robert E. Smith and Ellen Smuda

1 e e T R s o Aot S A e S e S B s e
0.9{' L

0.8} -

0.7 J

Fitness

0.6 |
0.5 1

0.4} 1

0'30 100 200 300 400 500

Generation

Figure 11: Average results for ten simple GA runs with population size
100 on the partially deceptive problem. The best fitness individual
located thus far is shown with a solid line, maximum fitness in the
current generation is shown with a dashed line, and average fitness in
the current generation is shown with a dotted line.

populations of size 50 and 100 (respectively), with bit strings of length 21,
crossover rate p. = 0.6, mutation rate p,, = 0.001, and tournament selec-
tion with tournaments of size two [9]. The results shown are averaged over
ten independent runs. For a population size of 50, the GA converges to the
true optima nine out of ten times. For the population size of 100, the GA
consistently converges to the true optima. Qualitatively similar results were
obtained with other parameter settings.

Given a partially deceptive problem that the GA can solve (with ap-
propriately linked building blocks), we decrease the selective signal-to-noise
ratio, using the previously demonstrated problem, concatenated with a 21-
bit, bitwise linear problem. In other words, consider interpreting the first 21
bits of the string as x in the previous problem, and each of the remaining
bits as a separate variable z;. The suggested fitness function is

0.9 &
fitness =0.1- f(z) + — - > ;.

21 =
In effect, the previously discussed partially deceptive function is added to the
simplest of all problems for the GA. However, the results are not what might
be expected. Figures 12 and 13 illustrate the effects of GAs with various
population sizes on this problem. Figure 12 shows the best individual found
up to the current generation and Figure 13 shows the maximum individual

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 67

0.95

09-}:

0.8l

0.75}

0'70 100 200 300 400 500

Generation

Figure 12: Plots showing the best individual found up to the cur-
rent generation for various population sizes on the modified partially
deceptive problem. Plots represent an average of ten runs. Popula-
tion size 50 is shown with a solid line, 100 with a dashed line, 200
with a dotted line, 500 with a dashed-dotted line, and 1000 with a
large-dotted line.

in the current population. Other parameters are the same as in the previ-
ous example. Each line on these plots represents an average of ten GA runs.
Note that the function f(z) represents the final 10% of fitness in these exper-
iments, and that if the GA is misled to z = 0, the maximum fitness is 0.95.
With small population sizes, this happens often. As the population size is
increased, the GA more frequently finds the correct solution. Qualitatively
similar results were obtained for different parameter settings.

The failures in these runs are caused by the low signal-to-noise ratios for
the critical, higher order bits of parameter . In effect, for small populations
the GA initially concentrates its selective decisions on the most important
bits. These bits are the 21 x;. The higher order bits of x are carried along
in these selective decisions, often with incorrect values. These bits are what
have been called hitchhikers in the GA theoretic literature [14]. In effect,
hitchhikers are the result of insufficient population size.

Given a problem where population sizing can be seen as critical to overall
performance, the effects of adaptive population sizing can be examined, with
a foundation for interpreting effects. Figures 14 and 15 show the results of
a representative run of the adaptive population sizing code. This run used
the parameters shown in Table 6. Results of similar, independent runs were
qualitatively similar. The GA consistently sized the population in a similar

68

Robert E. Smith and Ellen Smuda

T T
u:;7?;yk~ﬂ—pgamaqf. Lo s S A

<A
& o

e A P e 4 N e g g Ty
: y ¢ o
S P i]
R

0.95

0.9

0.85[. -

Fitness

0.8H:

0.75
0.7
0'650 100 200 300 400 500
Generation

Figure 13: Plots showing the maximum individual in the current gen-
eration for various population sizes on the modified partially deceptive
problem. Plots represent an average of ten runs. Population size 50
is shown with a solid line, 100 with a dashed line, 200 with a dotted
line, 500 with a dashed-dotted line, and 1000 with a large-dotted line.

1600 T T T T T

1400

1200

1000

ize

800

Population S

D
o
o

400

200

0 50 100 150 200 250 300
Generation

Figure 14: Population size versus generation-for the adaptive popula-
tion sizing GA applied to the modified partially deceptive function.

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 69

0.6f 1
0.5 .::' 4
0.4 L | . . .
0 50 100 150 200 250 300
Generation

Figure 15: Fitness versus generation for the adaptive population siz-
ing GA applied to the modified partially deceptive function. Best
individual found up to the current generation is shown with a solid
line, maximum individual in the current population is shown with
a dashed line, and the current population average is shown with a
dotted line.

range, and found the true optima. Note that the population size first in-
creases, lowering variances and spreading a population over the search space.
Then, as the population size decreases, and selection is applied to the indi-
viduals deleted, recombination assembles the correct solution. This can be
seen in the jump from the false optima to the true optima when overall pop-
ulation size decreases. Near the end of the run, the population size remains
steady at a value lower than its maximum. This happens because selection
has lowered the diversity of the population, thus lowering the variance of
population members and the adequate population size needed to match the
target loss.

6. Final comments

The theoretical developments, simulations, and experiments presented in this
paper indicate that the suggested technique for adaptive population size ad-
justment is viable. Further experimentation will be necessary to fully confirm
the effectiveness of the algorithm. The fundamental framework of the algo-
rithm is firmly founded. That is, schemata variances affect the accuracy of
selection, and population sizes effect variances. Therefore, population size
adjustment should be based on variances. The suggested procedure uses

70 Robert E. Smith and Ellen Smuda

Table 6: Parameters used in the representative run of the adaptive
population sizing GA.

Initial Population Size 100
Maximum Population Size | 5000
Crossover Rate 0.6
Mutation Rate 0.001
Target Loss L; 0.0001
Sigmoid Slope [10
Maximum Growth Rate ~y 1.0

mating pairs to estimate schemata fitness variances, in much the same way
that the traditional GA uses individuals to estimate schemata average fit-
ness values. This keeps with the notion of implicit parallelism in the GA,
and allows for explicit parallelism as well.

There are aspects of the suggested algorithm that could be altered while
staying within the same conceptual framework. In particular, it may be useful
to explore alternatives to the the sigmoidal mapping used to determine the
growth rate Gyg34 and the division of L by n(Hj,) + n(Hs,) to control
population over-expansion. In effect, these features are a control strategy
over population growth. Other stochastic control strategies may also be
effective. Exploration of a variety of such methods may be an important
area for future research. However, the direct or indirect use of estimated
variance and loss as a basis seems appropriate for any adaptive population
sizing scheme.

Parts of the suggested algorithm have much in common with fitness shar-
ing [15]. Fitness sharing spreads the population over high-fitness niches in
the search space. The population resizing algorithm spreads the population
across niches of variance. Like sharing, the population resizing algorithm
uses a count of similar strings to control reproduction. A word must be
said about the expense of counting the number of competitive schema in
the suggested algorithm. Like the comparisons required in fitness sharing,
this is an O(N?) operation. However, in considering this expense, one must
compare it to the O(N) operation of calculating string fitness values. In
many GA applications, the expense of calculating fitness values far exceeds
the cost of O(N?) masked, binary comparisons. Therefore, this expense may
be negligible. Also, it may be possible to estimate the schema counts. As
suggested in [16] samples can be used to evaluate approximate counts in fit-
ness sharing. A similar technique may be useful in the population resizing
scheme. It may also be possible to abstract a method of estimation from
recent work on sharing-like behavior in GA immune system simulations [17].
Another method for estimating counts may be to periodically gather strings
into families that share common schema. The resulting family sizes could
be used as estimated counts. Since the results of a mating usually preserve

Adaptively Resizing Populations: Algorithm, Analysis, & First Results 71

common schema between parents, adding children strings to a family would
simply result in an increment of the estimated count. As mutations occurs,
so would new families. Periodic creation of hybrid families could help to
insure accurate count estimates.

Systems like the one suggested in this paper have significant potential.
If GAs can control their search by automatically adjusting population sizes,
they can effectively expand and contract to accommodate variations in prob-
lem complexity, and variations in available computational resources. A class
of adaptive algorithms of this sort could extend the applicability of the GA,
and extend its usability beyond the GA expert, to the novice user.

7. Acknowledgments

The author gratefully acknowledges support for this work provided by NASA
under grant number NAG 9-625. The author also acknowledges support pro-
vided by the National Science Foundation under grant number ECS-9212066.

References

[1] D. E. Goldberg, “Optimal Initial Population Size for Binary—coded Genetic
Algorithms,” TCGA Report No. 85001, University of Alabama, The Clear-
inghouse for Genetic Algorithms, Tuscaloosa, 1985.

[2] D. E. Goldberg, “Sizing Populations for Serial and Parallel Genetic Algo-
rithms,” Proceedings of the Third International Conference on Genetic Algo-
rithms, pages 70-79, 1989.

[3] D. E. Goldberg, K. Deb, and J. H. Clark, “Accounting for Noise in the Sizing
of Populations,” in L. D. Whitley, editor, Foundations of Genetic Algorithms
2, pages 127-140 (San Mateo, Morgan Kaufmann, 1992).

[4] D. E. Goldberg and M. Rudnick, “Genetic Algorithms and the Variance of
Fitness,” Complex Systems, 5 (1991) 265-278.

[5] M. Valenzuela-Rendon, “Two Analysis Tools to Describe the Operation of
Classifier Systems,” TCGA Report No. 89005, The University of Alabama,
The Clearinghouse for Genetic Algorithms, Tuscaloosa, 1989.

[6] D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic Algorithms, Noise, and
the Sizing of Populations,” IlliGAL Technical Report No. 91010, University
of Illinois at Urbana-Champaign, 1991.

(7] J. H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cam-
bridge, 1992).

[8] D. E. Goldberg, “Genetic Algorithms and Walsh Functions: Part I: A Gentle
Introduction,” Complex Systems, 3 (1989) 129-152.

[9] D. E. Goldberg and K. Deb, “A Comparative Analysis of Selection Schemes
Used in Genetic Algorithms,” in G. J. E. Rawlins, editor, Foundations of
Genetic Algorithms, pages 69-93 (Morgan Kaufmann, San Mateo, 1991).

72

[10]

(1]

(12]

(13]

(14]

[16]

(17]

Robert E. Smith and Ellen Smuda

S. B. Thrun, “The Role of Exploration in Learning Control,” in Handbook of
Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages 527-560
(Van Nostrand Reinhold, New York, 1992).

D. E. Goldberg, “Simple Genetic Algorithms and the Minimal, Deceptive
Problem,” in L. Davis, editor, Genetic Algorithms and Simulated Annealing,
pages 74-88 (Morgan Kaufmann, Los Altos, 1987).

R. E. Smith and D. E. Goldberg, “Diploidy and Dominance in Artificial Ge-
netic Search,” Complez Systems, 6 (1992) 251-285.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning (Addison-Wesley, Reading, 1989).

S. Forrest and M. Mitchell, “Relative Building-block Fitness and the Building-
block Hypothesis,” in D. Whitley, editor, Foundations of Genetic Algorithms
2, pages 109-126 (Morgan-Kaufmann, San Mateo, 1993).

K. Deb, “Genetic Algorithms in Multimodal Function Optimization,” TCGA
Report No. 89002, The University of Alabama, The Clearinghouse for Genetic
Algorithms, Tuscaloosa, 1989.

C. K. Oei, D. E. Goldberg, and S. Chang, “Tournament Selection, Niching,
and the Preservation of Diversity,” IlliGal Tech. Rep. 91001, University of
Illinois, Urbana, 1991.

R. E. Smith, S. Forrest, and A. S. Perelson, “Searching for Diverse, Coop-
erative Populations with Genetic Algorithms,” Evolutionary Computation, 1
(1993) 127-149.

