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Abs tract . Deciding on an appropriate population size for a given ge­
net ic algor it hm (GA) applicat ion can oft en be crit ical to the success
of the algorit hm . Too small, and t he GA can fall vict im to sampling
erro r , affect ing the efficacy of it s search . Too large, and t he GA wastes
computational resour ces. Although advice exists for sizing GA popu­
la tions, much of this adv ice involves theoret ical aspects that are not
access ible to the novice. T his paper sugges ts an algori thm for adap­
t ively resizing GA populat ions. The algorit hm is suggested based on
recent theoret ical developments that relate population size to schema
fitness variance. T he algorithm is developed theoret ically, simulated
wit h expecte d value equat ions , and test ed on a pro blem where popula­
t ion sizing can mislead the GA. The pos it ive results pr esented suggest
that adapt ively sizing GA populations may be a practi cal extension
to the typ ical GA . Such an extension frees the user from a crit ical
param eter decision , an d expands the usefulness of GA search. More­
over , t his extension creates a new, interest ing class of genetic search
syste ms, where adaptive cha nges in population size reflect problem
complexity.

1. Introduction

A novice gene t ic algorithm (GA ) user t hat sets out to ap p ly a GA to an
optim ization problem faces a se ries of d ecisions . F ir s t , it is discover ed that
the problem must b e enco de d int o a GA amenab le representa t ion. Next , the
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user must choose select ion , recombination , and mu tation operators. Finally,
the user must choose a set of GA paramete rs, typically includin g a crossover
probab ility (Pc), mu ta tion probab ility (Pm) ; and population size (N).

For the purpose of this discussion , one can make the assumption that , for
a given set of parameters, a GA with a given set of opera tor s is sufficient ly
rob ust to cope with a var iety of problem encodings. This, of course, ignores
the possible dilemma of deception in certain encodings, the relative merits
of various encoding alphabets, and the different effects of var ious operators.
However , GAs are generally robust , and this assumption allows us to focus
on tuna ble aspec ts of a given GA , rather than the wide variations of GA
implementations.

Given t hese assumptions, the key decisions of the user are param eter
sett ings . For set t ing Pc and Pm, some heur ist ic guidance exists . Crossover
probabi lit ies between 0.6 and 0.9 are recommended . Mutation rates should
be between l / N and 1/ £ (where £ is the encoding length). In pr actice, GAs
are typically robust enough to cope wit h some variat ion in the set t ings of
these two parameters. Exp erience shows that , within the bounds of these
heuristi cs, variations in these par amet ers result in relatively small cha nges in
GA performance. However , varia tions in population size can have substant ial
effects on GA performan ce on many problems. Too small a popul ation ,
and the GA can fall prey to sampling err or . Too large a population , and
computat iona l effort is wasted on extra fitness evalua tions .

Some advice exists for sizing popula tions. In early pap ers on this topic,
Goldberg develops formulae and indica tive plots for populat ion sizing [1, 2].
T hese results are based on some limiti ng assumptions about the necessary
levels of schemata sampling in the GA. A more recent pap er [3] presents
a formula for sizing populat ions that is direct ly based on schemata fitness
variance . This formula directly indicates the necessary schema sampling for
given schema st at ist ics.

T he formulae in [3] are useful, bu t they do present a difficulty for the
novice. Without an un derstanding of the GA t heoret ic concepts of schemata
and their sta tist ics, the developments are inaccessible. T herefore, from the
viewpo int of a novice user , the GA may not seem robust at all. T hey may
comment , "I want to use the GA , but I don 't want to have to underst an d
it ." T hus, what appears to be a robust algorithm to an experienced GA user
may not be robust to the world at large.

One might comment that all optimization schemes suffer from this dif­
ficul ty. To use them adequately for a broad range of problems, there must
be some understanding of the interactions of the param eters, and thus, some
underst anding of the algorithm . However , par amet ers used in tradit ional
search algorit hms are often easy for a novice user to access and understand.
T hese param eters are typically a desired accuracy for the search process or
its end result , and a constraint on the computationa l resour ces (time and
memory) t hat the user is willing to expend . In other words, the user need
only answer : "How good do I want my answer to be, how long do I want to
spend, and how much memory do I have in which to work?" T he GA suffers
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from the difficulty of having parameters (like population size) that are much
mor e difficult to relate to user needs.

This pap er is the first outc ome of a pro ject to develop a GA whose pa­
ramete rs are mor e user accessible. The pro ject 's curre nt efforts are concen­
trat ed on th e population sizing decision. T his seems a logical first step , since
popu lation sizing is a decision the user mu st make in any GA, and it is a
decision on which the novice has lit t le access ible advice. The desired end
result of th e project is the development of a GA where the user need only
specify a desired accur acy par am eter , a computat ional t ime cons traint , and
a memory constraint . This new GA system will adaptively resize the popu­
lati on in an effort to meet user requirements. T he remainder of thi s pap er
will pr esent a suggested technique for dynami cally resizing popu lations given
these param eters. The technique is first develop ed theoreti cally, simula ted in
expec tat ion , and then tes te d on a problem where population sizing is critical
to GA performance.

2. A lgorithm development

To design an algorithm for ada pt ively resizing populations, one must form
a basis for resizing and design a pro cedure that exploits that basis. T he
following sect ions undertake that task.

2.1 Population sizing theory

The technique pr esent ed here is based on recent suggestions on population
sizing from [3]. Thus, a brief summary of these developments is provided.

Theory sugges ts that GAs search by imp licit ly evaluating the mean fit­
ness of vari ous schemata based on a series of population samples, and then
recombining highly fit schemata. Since the schemata average fitn ess values
are based on samples, they typi cally have a nonzero variance . Consider the
compet ing schemata:

H1 = * * * * 1 1 0 * * 0

and

H 2 = * * * * 0 1 0 * * 0

Assuming a det erminist ic fitn ess functi on , variance of average fitn ess val­
ues of these schema ta exist du e to the various combinations of bit s that can
be placed in the "don' t-care" (*) positions. This variance has been called
collateral noise [4]. Let f(H1 ) and f(H2 ) represent the average fitn ess values
for schemata H 1 and H 2 , respectively, t aken over all possible st rings in each
schema. Also let (}i and ()~ represent the variances taken over all corres pond­
ing schemata members.

The GA does not make its select ion decisions based on f(H1 ) and f(H2 ) .

Instead , it makes these decision s based on a sample of a given size for each
schema. We call th ese observed fitness values f o(H1 ) and fo(H2 ) . Observed
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fitn ess values are a function of n(H1 ) and n(Hz), the number of copies of
schemata H1 and Hz in the population , respect ively. Given moderate sample
sizes, the central limit theorem! tells us that fo values will be distributed
normally, with mean f(H) and vari an ce a Z/ n (H ).

Due to the sampling process and th e related var iance , it is possible for the
GA to err in its selectio n decisions on schema H1 versus Hz. In other words ,
if one assumes f(H1 ) > f(Hz), there is a probabi lity that fo(H1 ) < fo(Hz).
If such mean fitn ess values are observed the GA will incorrect ly select Hz over
H1 . Given the f(H ) and a Z values, one can calculate the pr obab ility of such
an error based on the convolut ion of the two normals. T his convolut ion is
it self normal wit h mean f(H1 ) - f(Hz) and variance (ai!n(Hd )+(aVn(Hz)).
T hus , the probability that fo(H1 ) < fo(Hz) is 0: , where

Z( ) (j(H1 ) - f(Hz W
z 0: = (ai!n(H1 ) ) + (aVn(Hz)) '

and z (o:) is the ordinate of the un it , one-sided , normal deviat e. Not e t hat
z (o:) is, in effect, a signal-to-noise ratio , where the signal in quest ion is a se­
lective advantage, and the noise is the collateral noise for the given schemata
compe t ition .

For a given z , 0: can be found in standard tables, or approximate d. For
values of Izi > 2 (two standard deviations from th e mean) , th e gaussian tail
approximation can be used:

For values of Izl ~ 2, one can use the sigmoidal approxima tion suggeste d in
[5] :

1
0: = ----;-----,-

Given this calculation , one can mat ch a desired maximum level of error in
select ion to a desired population size. This is accomplished by setting n(H1 )

and n(Hz) such that the error probab ility lower than the desired level. In
effect , raising either of the n(H) values "sharpens" (lowers the variance of)
the associated normal distribution , thus redu cing the convolution of the two
distributions .

In [3] it is sugges ted that if the largest value of 20 (H )a Z/ If(H1) - f(Hz) 1
is know n for competit ive schemata of ord er o(H) , one can conservat ively size

1 Technically, t he central limit t heorem only app lies to a ra ndom sample. Therefore,
the assumption that th e mean of observed , average fitn ess values are the same as average
fitness values over all st rings is only valid in th e ini tial, random popu lat ion , and perhaps
in other populat ions early in th e GA run. However, GA theory makes th e assumpt ion
th at select ion is sufficient ly slow to allow for good schemata sampling. This comm on
assumpt ion is made in this work as well.
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the population by assuming the n(H) values are the expected values for a
random populat ion of size N . This gives the sizing form ula

Particular versions of this formula for various problem configurat ions and
levels of deception are considered in [3]. These developments are not consid­
ered here, but may have imp lications for later developments of the suggeste d
adapt ive resizing algorithm. Important heuri stics are also sugges ted in [3].

The formula pr esent ed above is a thorough compila t ion of the concep ts
of schemata variance and its relat ionship to populat ion sizing . However , it
does pr esent some difficult ies from th e viewpoint of rob ustness for the novice.
The values and range s of f(H) are not known beforehand for any schemata,
although these values are implicit ly estimated in the GA process. Moreover ,
the values of (Jz are neither known nor est ima ted in t he usual GA pro cess.

In addit ion , the formula does not cons ider the relative importan ce of
schemata compet it ions . If two competing schemata have fitn ess values that
are nearly equal, the overla p in the distributions will be great, thus sugges t ing
a large populat ion. However , if the fitn ess values of these schemata are nearly
equal, their importan ce to the overa ll search may be minimal, thus pr ecluding
the need for a large population on their account . To compensate for thi s
effect , one could consider the absolute expec te d select ion loss du e to an err or
in select ion L(H1 , Hz) , as opposed to the pro bability of such an erro r :

T he technique suggeste d here will attempt to dynami cally size a po pu la­
ti on base d on mat ching the selectio n loss L to a desired target for this loss
L, provided by the user. To do so, one must est imate schemata vari an ce, a
t opic taken up in sect ion 2.2.

2.2 Estimating variance and selection loss

The standard GA est ima tes schema mean fitn ess values through repeated ,
probabi listic select ion and recombination of st rings, based on the fitness value
of each single st ring . The fitn ess of a single string that belongs to a schema is
the smallest sample possib le for evaluating a mean ingfu l average fitness value
for that schema . Clearly, this minimal sample cannot be relied upon to deliver
an adequate average fitn ess. However , t he GA uses a population of st rings to
implicitly deliver the schema average fitn ess for a larger sample, while never
explicit ly evaluating the average of the sample. Also, under many selecti on
schemes , t he GA makes select ion decisions over compet ing schemata in small
increment s (small changes in population pr oportions) , thus distribut ing the
evaluat ion of schemata averages fitn ess values over t ime . This spat ially and
temporally distributed evaluation is key to a GA 's implicit parallelism [7], as
well as its easy explicit use on parallel compute rs. The distributed approach
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Table 1: A mated pair of sample strings and their fitness values.

string fitness
51 o 1 0 1 001 1 1 0 1 0 100
52 1 0 0 1 o 1 1 0 0 1 0 1 50

also maintains the GA 's naturally inspired character . In developing a method
for est imat ing var iance , it would be desirabl e to main tain a similar ap proach .

Clearly, one cannot evaluate an est imate of schema variance based on a
single memb er of t hat schema. To evaluate a variance, one must consider at
least two points. Consider t he fitness var iance of a pair of strings , in partic­
ular, the variance of mates. What schema t a var iances does one learn about
by observing the variance in fitness between two str ings? In a dete rm inis­
t ic problem, any var iance is caused by the bit s where th e two st rings differ.
Thus, the variance in fitness of two st rings gives an est imate of the fitness
variance of the schemata that t he st rings have in common. For example,
consider the strings and fitness values in Table 1. T he st rings 51 and 52
share schema

H 1,2 = * * 01 0 * 1 * * * **

and indica te that an est imate of it s average fitn ess is f(H1,2 ) = U (51 ) +
f (52))/2 = 75. The indi ca ted variance is given by

O"i 2 = U(51 ) - f (H1,2))2+ U (52) - f (H1,2) )2 = U (5d - f (52W = 625.
, 2 4

Alt hough this is a very crude est imate of schema fitness vari an ce, it is no
more crude than the est imate of schema average fitness imp licit in the usual
GA.

Note at this point that almost all children of a pair of st rings will share
t he same common schemata as their parents. Only children who mutate in
the defined bit s of the shared schema will fail to share this schema wit h t heir
parents . T his fact will prove useful in the algorit hm in sect ion 2.3.

To size populations based on the development s in [3] compe ting schemata
must be considered as a basis for calculating a . To do so, we consider a
competition of pairs of schemata. Recall that each pair can be used to ga in
variance information on their common schemata. When two such pairs are
compared, information is obtained about fitn ess differences that result from
any bits that are common wit hin each pair , and are in common bit positions
in the compe t ing pairs . These are the competit ive schemata indic at ed by a
compet it ion of pairs . For instan ce, consider the strings 51 and 52 in Table 1,
compet ing as a mating pair against the st rings in Tab le 2, arranged as anot her
mating pair. Strings 53 and 54 share schema

H 3,4 = 1 * *00 * 1 * * * **
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Table 2: Another mated pair of sample strings and their fitness values .

st ring fitness
33 1 1 1 00 0 1 1 1 1 1 0 152
34 1 0 0 00110 000 1 68

and indicate tha t ! (H3 ,4 ) = 110 and 0"~, 4 = 1764. The schemata H1,2 and
H3,4 share defined positions 4, 5, and 7. Thus, the competit ion of string pair
3 1 and 32 against st ring pair 33 and 34 gives inform ation about the following
two competit ive schema ta

H~ ,2 = * * *10 * 1 * * * **

H~ ,4 = * * *00 * 1 * * * **

both of which are in par ti tion [8]

J1,2 ,3,4 = * * *f f * f * * * ** .

T hus, from t his information, one can begin to obtain an estimate of a,
and thus L , for the schema ta indicated by this competit ion of pairs. To
complete this calculat ion, one must determine the numb er of copies in the
curre nt population for each of the two competing schemata under considera­
tion, n(H~ 2) and n (H~ 4). Discussion of method s for obtaining these counts
and their computat ional expense will be deferred to the conclusion of this
pap er. For now, assume that such a count can be obtained at reasonab le
computational expense.

Given these factors, a competit ion of two pairs can be used to calculate
an estimated select ion loss:

where a(H 1,2 ' H3 ,4 ) is calculated using either the sigmoida l or gaussian tail
approxima t ions, and an est ima ted z value, given by

The following sect ion will show how th is est ima ted selection loss can be
used to adaptively resize popu lat ions.

2.3 An adaptive p op ula t ion sizing a lgorithm

Consider the following steps to adaptively resize populat ions. Assume that
the user has supplied a desired target value for acceptable selection loss Lt .
Star t with a small, randomly ini tialized population, and repeat the following
steps until populat ion size and distr ibu tion stabilizes.
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1. Ra ndomly put popu lat ion members toget her in mating pairs.

2. Det ermine the shared schemata in each mating pair.

3. Put together compet it ions of mating pairs.

4. Determine the competit ive schemata for each mating pair compet ition.

5. Obtain a count of each comp et it ive schema.

6. Calcula te L for each mat ing pair comp etit ion.

7. Use Lj L; as a basis for assigning more (or fewer) popul ation members.

8. Const ruct new population members by crossover and mutat ion of se­
lected mating pairs.

As previously noted , almost all of the children of a given mating pair will
have the common schema from that pair. Thus, one can expect tha t the
schema surv ival relationship s of the typical GA will extend to the common
schemata in the suggested algorithm.

It is desired th at the suggested pro cess converge to a population where ex­
pected selection losses match the target value Lt. Consider the following use
of Lj L; values. Each L j L, value is mapped to an expected one step growth
rate for the associated mating pair competit ion , via a sigmoid funct ion :

2,
G = (l - , )+ .

1+ exp (- }3 (t - 1))

where , is a desired , maximum, expected percent age increase (or decrease)
per genera t ion, and }3 is a par ameter. This growt h factor can be mapped to
anyone of a variety of select ion schemes [9] .

Of course, this represents the introduction of two new parameters, which
may defeat the original purpose of this work: to increase ease of GA use.
However , if rob ust heuri stics can be determined for these parameters, ease
of use will not be affected . In the simulat ions presented in section 3, }3 = 1
and , = 0.9 yielded an effect ive population size.

The G factor is associated with all four st rings in the mating pair com­
petition. One should ask how this factor should be divided between the two
compet ing mat ing pairs. L gives no information on which schemata's num­
bers should be increased in the given comp et it ive partit ion. For lack of a
better st ra tegy, one can inject a degree of select ion by dividing the change
in number of the schemata under consideration based on relat ive fitness. For
instance, if G1,2,3 ,4 reflects a compet it ion of mat ing pair 51,52 against 53 , 54 ,

then
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and

where G1,2 and G3 ,4 ar e respect ive growt h factors for the two mat ing pairs.
Given a one step growth rat e for each mat ing pair , new copies can be

assigned . The i fL t values for each mating pair compe tition will effect popu­
lation growth through this select ive process. Wh en i f L; is greater than one
(for a given mat ing pair competition) , population size will increase (wit h re­
spect to that compet it ion). When i fL; is less than one, population size will
decrease. When i fL; values are equal to one, population growth will cease .
When populat ion growth ceases, or populat ion size becomes relat ively sta­
ble, the regular GA can begin to select purely based on fitness. T his divides
the GA select ive process into two distinct ph ases . First is a select ion based
on variance, wit h variable popu lat ion size. Next is selection based on fit­
ness, with a fixed population size. This is a clear division of exploration and
exploitation phases. Later revisions of the algorithm will require a gradua l
t ransition between these phases. Viewed in this light , the sugges ted algo­
rithm bears some resemblance to the explorat ion-exploitation st rateg ies for
reinfor cement learning problems suggested in [10J.

When population size adjustment ceases in the suggested scheme, the
proporti ons of various schemata will not be evenly distributed in any given
partition. However , the fitn ess biasing used to divide growt h factors should
help to insure that high fitn ess schemata in any given partition will be likely
to have a higher numb er of copies.

3 . Computational simulation

The suggested algorithm's behavior can be simulated by considering a sin­
gle par ti tion of compe titive schemata. Before doing so, it is useful to il­
lustr ate t he sampling erro r effects that can occur due to finite popul ation
size. This can be accomplished in simu lat ion by considering eight compe t ing
schemata in an order three partition . Consider f (H ) and (J values for the
eight schemata in Tab le 3. The values in Tab le 3 were selected to show a
variety of combinat ions of fitness and var ian ce for simulating the popul ation
resizing scheme.

It erating proportion equa tions [11] will show the expec ted performan ce
of fitness proportionate selection on these schemata:

for all i and j in the compe t it ive par t ition. However , this expected value
model does not consider variance effects. As an abst raction of act ua l fitness
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Table 3: Mean fitness values and variances for eight schemata.

schema f (H ) (J

1 1.00 6.4
2 0.90 13.2
3 0.80 3.2
4 0.70 10.0
5 0.65 16.4
6 0.95 2.0
7 0.80 20.0
8 0.72 0.4

proportionate select ion under sampling noise, consider iteration of a noisy
proportion equa t ion:

j " p t
p t+1 = i i
, 2: j Pf fj

where the t' values are given by the f values wit h zero-mean gaussian noise
added . T he variance of this noise is given by the (J values listed in Tabl e 3,
divided by appropriate counts of the corresponding schema. To simulate a
count of each schema, assume a populat ion size N, and let n( Hi) = PiN.
The propor tion values will also be rounded to reflect the simulated finite
populat ion size.

Figur e 1 shows typ ical result s of iterating the noisy proportion equations
wit h N = 1024. The highest fitness schema quickly takes over the popu­
lation . This result occurs consistent ly with this population size. However ,
wit h N = 64, the result s are quit e different . Figur e 2 shows a typ ical run . As
shown in this example, the population often fails to converge to the highest
fitness schema. T he propensity of the proportion equat ions to miss the high­
est fitness schema increases wit h decreasing population size. Figure 3 shows
a convergence histogram for 25 runs for N = 64. This histogram shows the
proport ion of each schema at the end of 100 generations , average d over the
25 runs. In all 25 runs, some schema overt akes nearly the ent ire popula­
tion (well over 98%). The histogram indicates the schema that overtakes t he
population is ofte n not the most fit schema. F igures 4 and 5 show similar
histograms for N = 128 and N = 32, resp ecti vely. Clearly, sampling err or
can cause select ion error , and associated failure to converge to the highest
fitn ess schemata in a partiti on . Since select ion err or is a funct ion of popu la­
tio n size, the population resizing algorit hm should reduce select ion error to
a point where correc t convergence occurs.

The f and (J values listed above are used in an expecte d value model
to simulate the action of the suggested popula tion resizing algorithm. Note
tha t this simulation considers the probabi lity of any two schemata i and j
coming into compet it ion as PiPj .
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80 100

F igur e 1: Simulated evolu t ion of schem a prop or ti ons under select ion
wit h no isy fit ness valu es (N = 1024). Symbols are as follows: - o=H1 ,

- x=H2 , - +=H3 , -*=H4 , o-x=Hs, o-+=H6 , O- *=H7, and - =Hs.
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F igur e 2: Simulated evolution of schema proportions under selection
with noisy fitness va lues (N = 64). Symbols are as state d in F igure 1.
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F igur e 3: Histogram indicating the converged schemata distribution
with each percent age average d over 25 simulat ions und er select ion
with noisy fitness values (N = 64) .
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Figur e 4: Histogram indicating the converged schemata dist ribution
wit h each percentage averaged over 25 simula t ions under select ion
with noisy fit ness values (N = 128).
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Figure 5: Histogram indicating the converged schemata dist ribution
with each percentage averaged over 25 simula t ions under select ion
with noisy fit ness valu es (N = 32).
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Figur e 6: Evo lution of numbers of schemata in simulation of the pop­
ulation resizing scheme. Symbols ar e as stated in F igure 1.
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F igure 7: Evo lut ion of pop ulation prop ortions st art ing from the re­
sult ing popu lation size and proportions from t he pop ulation resizing
scheme, under selection wit h noisy fitness values. Symbols are as
st ated in Fi gure 1.
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F igure 8: Histogram of converged schemata distribution wit h each
percentage averaged over 25 simula t ions st a rt ing from t he result ing
pop ula tion size and prop or tions from t he populati on resizing scheme,
under select ion wit h noisy fitness values .
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Given a star ting popu lat ion size of N = 64, with equal initi al numbers
of each schema in the compet itive par ti tion , Figure 6 shows th e results of
simulat ing the populat ion resizing scheme. The final pop ulat ion size from
this simulation is 2048.

Given the result ing proportions and popula tion size at cycle 500 in Fig­
ure 6, one can iterate the noisy proportion equations to simulate select ion
after popu la tion resizing. Figure 7 shows the results of these iterations. Not e
that th e simulation quickly converges to th e highest fitn ess schemata. Fig­
ure 8 shows a histogram of th e convergence of 25 similar ru ns. In all of th ese
runs, the most fit schema overt akes the popula tion. Small proportions of
other schemata shown in the histogram are only due to the persistence of
these schemata at near zero proport ions at the end of some of th e runs.

4. Implementat ion

The results pr esented in section 3 are only those of simulat ions . They cer­
tainly do not reflect th e complexit ies of a live GA run with the suggested
population sizing scheme. In particular , the schema fitness and var iance val­
ues used in the simulation are assumed to be explicit ly given, as opposed to
estimated from the stochastic process inherent to a real GA . However , such
expected value simulations have been useful in past GA stud ies [11, 12]. The
simulations only consider the compe tit ive schemata in a single partit ion. In
a real GA, th ere will be an interplay of many par titions of schemata, some
of which indicate that the populat ion should be larger , some of which indi­
cate that t he population should be smaller . The results of the simula tions
used here indica te that the suggested scheme may be an effect ive meth od for
automatically resizing populations. This sect ion presents the next phase of
testing the method : its implementa tion in a real GA .

The interplay of mult iple schemata competit ions in the real GA led to
somewhat different dynamics than th ose of the simulat ions. In particular , t he
variat ions in popu lation size were broader th an desired . Often the pop ulation
would expand to a much larger value than was necessary for a given test
problem (see below). This expansion seems to be due to the conservative
nature of the loss measure. Recall th at expansion is based on th e est imated
expected loss,

The system must obtain the given level of target loss for ever·y schemata
competit ion, which is difficult in the real GA, and introduces broad , sustained
oscillations in the populat ion size. To reduce these oscillations, the crite ria
is relaxed:

In effect, this weights the imp ortance on any one select ion loss less severely
for larger popul ation sizes. This seems logical in connect ion with th e real
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GA , since it is less critical for the GA to select correc t ly every time in a
given competition if th at competition occurs several t imes in the population .

In implementing the algorithm simula ted in previous sect ions, we must
more seriously consider the transition from population sizing to act ual selec­
t ion . In the simulat ions , the transit ion was made abruptly, after the popu­
lation size had obviously stabilized . While evaluating stability is easy in an
expecte d value simula tion, it is difficult in an actual GA, where the complex
interplay of various schemata make the convergence of populat ion size less
obvious. Although the population size may converge in expectation, it will
still vary around the mean in the real GA . This effect makes the decision to
switch to pure select ion difficult . Rat her than attempting to use some statis­
tical measur e to make this decision (and possibly introducing more tunab le
parameters), the implementation present ed here folds select ion and popula­
tion resizing into one cont inuous opera t ion.

In the implement ation presented here, growt h or decay is accomplished
by a procedure that is similar to stochast ic remaind er select ion [13]. First ,
the growth rate is mult iplied by two. If the growth rate for a mat ing pair is
2 · G1,2 , the pair is given the integer part of 2 · G1,2 children determin ist ically,
and an ext ra copy with probabili ty equal to the fractional par t of 2 . G1,2 ' If
the growth rate for a par ticular comp etit ion G1,2,3,4 is greater than or equal to
one , the growth rate is divided between the two mating pairs based on relat ive
fitness, as was suggested earlier. If ! (H1,2) = ! (H3,4) and G1,2,3,4 < 1, the
growth rate is also divided as was indicated in previous sect ions . However , if
the growth ra te G1,2,3 ,4 is less than one, all o] the losses are assigned to the
less .fit mating pair. In ot her words, if !(H1,2) > !(H3,4) and G1,2,3,4 < 1, the
growth ra te is divided as follows:

G1,2 = 1,

G3,4 = G1,2,3,4 .

The motivat ion for this method is based on the population sizing theory
discussed pr eviously. A growt h rate of less than one ind icates that the vari­
ance level of the schemata competition at hand is such that select ion can be
performed with some confidence in th e results. If th e algorit hm is start ed
with a small popu la tion size, t his condit ion will not occur frequent ly un til
late in t he run, when the popu lat ion size is corrected downwar d . Thus, the
algorit hm should have two dist inct phases, with popu lation expansion and
lit tle select ion early on, and popu lation contrac t ion with select ion later.

In an actual implementa tion of the algorit hm, another important decision
is how to set th e mutat ion rat e. Since the mutation rate is usually t ied to
population size in a GA , there is no clear way to set a fixed value for the
mut at ion rat e in a GA where population size varies. In this implementation,
the mutat ion rate is held at l i N , where N is popu lat ion size, throughout the
run.

Since the algorithm suggested is based on competitions of four st rings at
a time, it is helpful for the pop ulat ion size to remain a multiple of four. In
the implementation presented here, t his is accomplished as follows. If the
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new population size is not a mult iple of four , a random decision is made
as to whether to add or subtract individuals. This prevents a bias towards
population expansion or redu ction. If subtrac t ion is selected , the last few
individuals are deleted from the population. If addition is select ed , individu­
als are randomly created. In either case , the resulting populat ion size is the
nearest multiple of four .

In addition to the previously discussed details, we must also consider that
small values of L, ar e likely to dictat e population sizes that are larger than are
practical. Thus, user-dictated memory and computational t ime limita tions
must be added to the algorithm. In t he implementation given here, indi­
viduals are randomly deleted when a maximum population size is exceeded.
There may be better stra tegies for such deletion , including deletion based on
fitness. Such st ra tegies are an avenue for future study. Anot her import ant
extension of this implementation is a user-specified limitation based on com­
putat ional t ime. Imp lementing such a limitation will require estimates of GA
convergence t ime for a given popu lation size, and correspond ing adjustments
of the maximum populat ion size. P revious studies of convergence times for
GA select ion schemes may be helpful in this exte nsion [9].

5 . Testing

This section formulat es a test pr oblem for the resizing technique, and demon­
stra tes the technique's effects on this pr oblem. It will be useful to employ
a tes t problem where it can be demonstra ted that the resul ts of a fixed­
population size GA vary with t he select ion of the populat ion size. To do
this, it is necessary to insure that mutation alone is not sufficient to (eventu­
ally) locate the problem 's opt ima. If mutat ion is sufficient , then the eventual
convergence of the GA to the optima is assured . Popul ation size may affect
t ransient response of the GA, bu t this would not be sufficient for the desired
illustrat ion of the population sizing scheme's effects . Because of this, it is
necessary to have at least a part ial degree of deception in the problem [13],
so that order one building blocks alone cannot lead to the optima .

Consider the following problem :

fit () { mlx+ bl if x< F2
ness = f x = m2 x + b2 otherwise

where x is the int erpret ation of the GA bit string as an integer, scaled to a
real numb er between zero and one, and m l = -0.533, bl = 0.5, m 2 = 16,
b2 = - 15, and F2 = 15/ 16. A plot of this funct ion is shown in Figure 9.
The decept ion in this funct ion can be shown by considering the four order
one schemata competit ions represented by the four most-significant bits in
x, listed in Table 4. The funct ion is part ially decept ive, since the first two
schemat a comp et it ions have select ive pressure towar ds the false optima (x =
0), while the last two have selective pressure towards the true optima (x = 1).
Moreover, th e order four compet itive par t ition in the most -significan t bits is
not deceptive, as is shown in Tab le 4. If disruption of t he schema 1111
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Table 4: Approxim ate order one schema average fitness values for t he
part ially decep ti ve fun cti on.

schema H approxima te average fitn ess f (H)
0*** .. . *** 0.3672
1*** .. . *** 0.1679
*0** .. . *** 0.2987
*1** ... *** 0.2359
**0* .. . *** 0.2668
**1* . . . *** 0.2683
***0 . .. *** 0.2501
***1 . . . *** 0.2683
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F igure 9: A par tially deceptive fun ction th at the GA can solve.

. . . *** is low, it would be expected that the G A would select this schema
over others in its par ti tion, and the process would converge to the correct
optima .

However, it is easy to imagine the GA being misled by the funct ion plot­
ted in Figure 9. If high order bits are set to zeros (through disruption of
the high-ord er schema or select ion erro r) , the remaind er of the st ring will
improve overall performance by moving away from the true optima at x = 1.
However , the linkage in the high order building blocks is tight, and the GA
is not usually misled by this fun ction, even with relatively small population
sizes, as Figures 10 and 11 illustr ate. These figures show GA results for
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Tab le 5: Approximate order four schema average fit ness values for the
partially deceptive fun ct ion .

schema H ap proximate average fitness f( H)
0000 . . . *** 0.4843
0001 . . . *** 0.4509
00 10 . . . *** 0.4174
00 11 . .. *** 0.3840
0 100 ... *** 0.3506
0101 . . .*** 0.3171
01 10 . . .*** 0.2837
0111 . .. *** 0.2502
1000 . . . *** 0.2168
1001 ... *** 0.1833
1010 . . . *** 0.1499
1011 . .. *** 0.1164
1100 . .. *** 0.0830
1101 . .. *** 0.0496
1110 . . . *** 0.0161
1111 . . . *** 0.5241
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F igure 10: Average results for te n simple GA ru ns wit h populat ion
size 50 on the partially deceptive pr oblem. T he best fit ness individu al
located thus far is shown wit h a solid line, maximum fitness in the
current generat ion is shown with a dashed line, and average fitness in
the current generation is shown wit h a dot ted line.
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F igure 11: Average resul t s for ten simple GA runs wit h population size
100 on th e partially decep tive problem . T he best fit ness individual
located thus far is shown with a solid line, maxi mu m fitness in the
curr ent generat ion is shown with a dashed line, and average fitness in
the current generat ion is shown with a dotted line.

populations of size 50 and 100 (respect ively) , with bit st rings of length 21,
crossover rate Pc = 0.6, mutation rate Pm = 0.001, and tournament selec­
t ion with to urnaments of size two [9J. The result s shown are averaged over
ten independent runs. For a popul ation size of 50, th e GA converges to the
t rue optima nine out of t en t imes. For the population size of 100, the GA
consistently converges to the true optima. Qualit atively similar results were
obtained with ot her par ameter settings .

Given a par tially deceptive problem th at the GA can solve (with ap­
propr iately linked building blocks), we decrease the select ive signal-to-noise
ra tio, using the previously demonstrated problem, concate na ted with a 21­
bit , bitwise linear problem. In ot her words, consider int erpret ing the first 21
bits of the st ring as x in the previous problem, an d each of the remaining
bits as a separa te variable Xi . The suggested fitness funct ion is

0.9 21
fitn ess = 0.1· f( x ) + _ . L Xi.

21 i=l

In effect , th e previously discussed partially decept ive function is added to the
simplest of all problems for the GA. However, the results are not what might
be expected . Figures 12 and 13 illust rate the effects of GAs wit h various
population sizes on this problem. Figure 12 shows th e best individu al found
up to the current generation and Figure 13 shows the maximum individual
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Figure 12: Plots showing the best individual found up to the cur­
rent generation for various populat ion sizes on the modified partially
deceptive problem. Plots represent an average of ten runs. Popula­
tion size 50 is shown with a solid line, 100 with a dashed line, 200
with a dotted line, 500 with a dashed-dotted line, and 1000 with a
large-dotted line.

in the current population . Other par am eters are the same as in the prev i­
ous example. Each line on these plots represents an average of ten GA runs.
Note that the functi on f (x ) represents the final 10% of fitness in these exper­
iments, and th at if the GA is misled to x = 0, the maximum fitn ess is 0.95.
Wi th small population sizes, this happens often . As the population size is
increased , the GA more frequently finds the correc t solution . Qualitat ively
similar results were obtain ed for different par amete r settings .

T he failures in these runs are caused by the low signal-t o-noise ratios for
the crit ical , higher order bit s of param eter x . In effect, for small popula tions
the GA init ially concent rates it s select ive decisions on the most impor tan t
bit s. T hese bits are t he 21 Xi . T he higher order bit s of x ar e carr ied along
in these select ive decisions, often wit h incorrect values. These bits are what
have been called hitchhikers in the GA theore tic literatur e [14]. In effect ,
hi tchhikers ar e the result of insufficient population size.

Given a prob lem where populat ion sizing can be seen as critical to overall
perform an ce, the effect s of adaptive populat ion sizing can be examined, wit h
a foundati on for interpreti ng effects . F igur es 14 and 15 show the results of
a represent at ive ru n of the adaptive population sizing code. This run used
the par ameters shown in Tab le 6. Result s of similar, independent runs were
qu alitat ively similar. The GA consistent ly sized the population in a similar
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F igure 13: P lot s showing t he maximum individual in t he cur rent gen­
erati on for various pop ulation sizes on t he modified partially decep tive
prob lem . P lot s rep resent an average of te n ru ns . P opulation size 50
is shown wit h a solid line, 100 wit h a dashed line, 200 wit h a dott ed
line, 500 wit h a dashed-dot ted line, and 1000 wit h a large-dot ted line.
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F igure 14: Po pulat ion size versus generation-for the adapt ive pop ula­
tion sizing GA app lied to t he mod ified partially deceptive funct ion.
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Figure 15: Fitness versus generat ion for the adapt ive populat ion siz­
ing GA applied to the modified partially deceptive function. Best
individual found up to the current generat ion is shown with a solid
line, maximum individual in the current population is shown with
a dashed line, and the current population average is shown with a
dotted line.

range , and found the tr ue opti ma. Not e that the popul ati on size first in­
creases, lowering variances and spreading a population over the search space .
Then , as the population size decreases, and select ion is applied to the indi­
viduals deleted , recomb inat ion assembles the correct solution . This can be
seen in t he jump from the false optima to the t rue optima when overall po p­
ulat ion size decreases. ear the end of the run , the population size remains
steady at a value lower than its maximum . T his hap pens because select ion
has lowered t he diversity of the popu lati on , thus lowering t he variance of
populat ion members and th e adequate population size needed to match the
target loss.

6. Final com m ents

T he theoret ical developments, simulat ions , and experiments pr esented in this
pap er indicate that the suggested technique for adaptive population size ad­
justment is viable. Further expe rimenta tion will be necessar y to fully confirm
the effect iveness of the algorit hm . The fundamental framework of the algo­
rithm is firm ly founded . That is, schemata vari an ces affect the accuracy of
selection , and populat ion sizes effect var iances . Therefore, population size
adjustment should be based on variances. T he suggested procedur e uses
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Table 6: Parameters used in the representative run of the adaptive
population sizing GA.

Initi al Populat ion Size
Maximum Population Size
Crossover Rate
Mutatio n Rat e
Targe t Loss L;
Sigmoid Slope (3
Maximum Growth Rate I

100
5000
0.6

0.001
0.0001

10
1.0

mating pair s to est imate schemata fitn ess variances , in much the same way
that t he traditional GA uses individuals to est imate schemata average fit­
ness values . This keeps with the notion of implicit parallelism in the GA,
and allows for explicit parallelism as well .

There are aspects of the sugges ted algorithm that could be alte red while
staying within the sa me conceptual framework. In particular , it may be useful
to explore alte rnat ives to t he the sigmoidal mapping used to determine the
growth rat e G1,2,3 ,4 and the division of L by n(H~ ,2 ) + n(H~ ,4 ) to control
popul ation over-expan sion . In effect , these features are a cont rol st rategy
over populati on growth . Other stochastic control st rategies may also be
effect ive. Explorat ion of a variety of such methods may be an important
area for future resear ch. However , the direct or indirect use of est ima te d
var iance and loss as a bas is seems ap propriate for any adaptive popu lati on
sizing scheme.

Parts of the suggested algor ithm have much in common with fitness shar­
ing [15]. Fitness sharing spreads the populat ion over high-fitness niches in
the search space . The population resizing algorit hm spreads the po pu lati on
across niches of variance . Like sharing, the populat ion resizing algorit hm
uses a count of similar st rings to control reproduction . A word mu st be
said about the expense of count ing t he number of compet it ive schema in
the suggested algorit hm . Like the comparisons required in fitn ess sharing,
this is an O(N 2 ) operation . However , in considering this expense, one must
compare it to the O(N ) operat ion of calculating st ring fitness values . In
many GA applica t ions , the expense of calculat ing fitness values far exceeds
the cost of O(N 2 ) mas ked , bin ar y comparisons . Therefore, this expe nse may
be negligib le. Also, it may be poss ible to est imate the schema counts. As
sugges ted in [16] samp les can be used to evaluate approximate counts in fit­
ness sharing . A similar t echnique may be useful in the population resizing
scheme . It may also be possible to abstract a method of est imat ion from
recent work on sharing-like behav ior in GA immune system simulat ions [17].
Another method for est imat ing counts may be to periodically gather strings
into f amilies that share common schema. T he resulting fami ly sizes could
be used as est imated counts. Since the results of a mat ing usually pr eserve
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common schema betwe en par en ts , adding children st rings to a family would
simply result in an increment of t he est imated count . As mutations occurs ,
so would new families. Periodic creation of hybrid famili es could help to
insure acc urate count est imate s.

Systems like the one sugg ested in this paper have significant potential.
If GA s can control t heir search by automatically adjusting populat ion sizes,
t hey can effectively expand and contract to accommodate varia t ions in prob­
lem complexity, and variations in available computational resources. A class
of adap tive algorit hms of this sort could extend t he applica bility of t he GA ,
and ex tend its usab ility beyond the GA expert , t o the novice user.
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