Complex Systems 9 (1995) 73-90

Distinct Excluded Blocks and Grammatical
Complexity of Dynamical Systems

Huimin Xie
Department of Mathematics,
Suzhou University, Suzhou 215006, China

Abstract. The concept of distinct excluded block (DEB) is defined
for languages generated in studies of dynamical systems. The rela-
tionship of languages L and L”, which is the set of all DEBs of L, is
analyzed in the context of Chomsky’s hierarchy. Some further results
of unimodal maps on interval are obtained.

1. Introduction

The concept of a distinct excluded block (DEB) first appeared in [21] and is
used there as well as other means to characterize the complexity of languages
(or sets of strings) generated by cellular automata (CA). The concept also
appears in other places, such as [1, 2], under the different names of “forbidden
blocks” and “irreducible forbidden blocks.” From results in [21, 1, 2] and oth-
ers, it seems that using this concept in the study of grammatical complexity
in dynamical systems may become a new and prosperous approach.

For a given language, that is, a set of strings, there are two ways to
logically analyze its structure. One way is to study the blocks that appear
in it, the other way is to study the blocks that do not appear. In this paper
we show that for languages of a certain class D the second approach is very
useful. The main tool used is the concept of DEBs.

The purpose of this paper is to establish a theoretical framework to answer
the following questions.

1. Where does the concept of a DEB come from?

2. How is this concept characterized and used to find these blocks for a
given language?
3. If the set of all DEBs for a language L is denoted by L”, then what is

the connection between L and L”?7

4. If Chomsky’s hierarchy is used when studying the complexity of lan-
guages, then what is the relationship of the levels of L and L” in that
hierarchy?

74 Huimin Xie

We discuss these questions in sections 2—4.

In section 5 we discuss these questions for unimodal maps on interval and
obtain further results. Examples are given to show that this new method is
useful in the study of dynamical systems.

2. Languages of class D and distinct excluded blocks

Now we will use some terminology (or notions) from computation theory,
that is, formal languages and automata, which can be found in [10].

Let S be an alphabet (i.e., a finite set of symbols), and let S* be the set
of all finite strings over S. Any subset of S* is called a (formal) language
over S.

A useful operation 7 on strings will be used as follows: if z is a nonempty
string, then 7 is the string formed from z by deleting its last letter.

Since it is obvious that not every formal language can be used to describe
dynamical systems, the first question we consider is: what are the features
of those languages that appear in studies of dynamical systems? The answer
is summarized in Definition 1, where the letter “D” is used to remind us of
dynamical systems.

Definition 1. A Language L C S* is called of class D, if it satisfies the
conditions:

D1 astring z € L if and only if every substring of z belongs to L;
D2 if z € L, then there exists a symbol a € S such that za € L.

Remark 1. From D1 we can see that €, the empty string, must be a string
of every language of class D.

It seems that the conditions D1 and D2 are ubiquitous in studies of dy-
namical systems. Similar conditions are mentioned in [15, 14]. In [15] we
read that “In the applications to dynamical theory the sequences admitted
are not formed freely from the generating symbols, but are subject to cer-
tain limitations.” Four conditions of admissibility were listed there for the
problem presented. In [14] the names “factorial language” and “prolongable
language” are used with respect to the conditions D1 and D2 in Definition
1.

If we denote the complement of L in S* by

I'=5"-1L
then an equivalent description of condition D1 is
D1’ if z € I/, then zzy € L' for any z,y € S*.
This can also be written as
L' = 8*I'S*,
This is the essential content of Lemma 1.1 in [14].
The main concept of this paper is stated in Definition 2.

Distinct Excluded Blocks and Grammatical Complexity 75

Definition 2. A string x is a DEB of language L, if z € L' but every proper
substring of x belongs to L.

Let L” be the set of all DEBs of language L. Following [21], a language
L is called a finite (infinite) complement language if L” is finite (infinite).

Showing the existence of a DEB is simple, for example, the shortest string
of L' is a DEB if I’ # . But the DEBs found may be useless in the study
of L. For languages of class D, however, the situation is quite different as
Proposition 1 shows.

Proposition 1. If a language L satisfies condition D1, then
L/ — S*L”S*,

that is, for every z € L' there exists a substring y of = such that y is a DEB
of L.

Proof. As every string of L' must contain a DEB as its substring, we have
L' c s L"s".

This is true for any L. On the other hand, from the property D1’ we also
have

L' 5 8*L"s*,
which completes the proof. m

Remark 2. From Proposition 1 it is clear that L is uniquely determined by
L". Although we can have DEBs and L” for any language L, in a general
sense they cannot characterize L completely.

The next question is: which set (of strings) can be the set of DEBs of a
formal language?

Proposition 2. There exists a language L of class D for a given set U € S*
such that L” = U if and only if the set U satisfies the following conditions.

1. No string in U is a proper substring of another string in U.

2. If #S = n, and x1,...,z, are n strings in U with n different last
symbols, and z,, 1s the longest string among them, then at least one
string among @7, ..., x,_17 is not a suffix of z,, .

Proof. Since the “only if” part is obviously true, we just give the proof of the
“if” part. Using the subset U of S*, we construct a set L by

L=S*"-5US".

We will show that this L is a language of class D and L = U.

76 Huimin Xie

First assume the contrary, that the condition D1 is not satisfied by L,
then there is a string € L and z = uvw with v ¢ L. But then v € L' and
v = abc with b € U by the condition L' = S*US*. Writing = (ua)b(cw)
shows that x € L/, which contradicts = € L.

Now assume that L does not satisfy D2, that is, there exists a string
x € L, but za ¢ L for any a € S. Using Proposition 1, we obtain a suffix
of za that is a DEB of L for every a € L. These DEBs will provide the
strings @1,...,2, (#S = n) required in the second condition and leads to
contradiction.

The proof of L” = U is easy and omitted. m

After we introduce the following operators on languages (e.g., [10]):

MIN(L) = {z € L| no proper prefix of z is in L};
MIN'(L) = {z € L| no proper suffix of z is in L};
R(L) = {z |z®, z is written backward, belongs to L};

it is easy to establish that
MIN'(L)=RoMIN o R(L),
and can have Proposition 3.

Proposition 3. If L is a language of class D, then

L" = MIN o MIN'(S* — L)
= MIN' o MIN(S* — L)
= MIN'(S* — L) MIN(S* — L).

Since these results are technical we only sketch the procedure of finding a
DEB from a given string = of L'. First, using Remark 1, we know that = # ¢,
the empty string. Then we delete the last symbol of x and denote the string
thus formed by zm. If xw € L’ we repeat this operation, otherwise we do the
same thing from the first symbol of this string. Finally a substring y of z is
obtained such that deleting either the first symbol or the last symbol of y will
generate a string belonging to L, and y € L'. Using D1 again, every proper
substring of y belongs to L. This proves that y is a DEB. The operations
above can be expressed as MIN and MIN'.

3. L and L" in Chomsky’s hierarchy

In this section we analyze levels of languages L and L" in the context of
Chomsky’s hierarchy [10].

There are four levels in this hierarchy: regular languages, context-free lan-
guages, context-sensitive languages, and recursively enumerable languages.
For simplicity we use the abbreviations RGL, CFL, CSL, and REL in this
paper. We also need the languages beyond them: nonrecursively enumerable

=~
~

Distinct Excluded Blocks and Grammatical Complexity

languages and recursive languages. Their abbreviations are nonREL and RL.
If the corresponding sets of these languages are denoted by £(-), then we have

L(RGL) C £(CFL) C £(CSL) C £(RL) C £(REL),

and all these inclusions are proper.
For the rest of this paper all languages considered are of class D.

Proposition 4. A language L is a RGL if and only if its L” is a RGL also.

Proof. Since the set £(RGL) is closed under complementation, MIN, con-
catenation, and R (i.e., reversal), it is a consequence of Proposition 1 and
3.m

Since any finite language is a RGL, we can obtain Corollary 1.

Corollary 1. A finite complement language is a RGL.
Remark 3. This fact is proved in [21] by other methods.

Using new results in [19, 13] it is easy to obtain the same conclusion as
Proposition 4 for CSL.
There is no difficulty to prove Propositions 5 and 6.

Proposition 5. A language L is a CSL if and only if its L” is a CSL also.

Proposition 6. A language L is a recursive language if and only if its L” is
a recursive language also.

Proposition 7. If both L and L” are not recursive languages, then there
are only three possibilities:

1. Lis a REL, L" is a nonREL;
2. L is anonREL, L" is a REL;
3. both L and L” are nonREL.

Proof. Assume the contrary, that both L and L” are REL. Using Proposition
1, we have L' = S*L"S* and that L’ is also a REL. From Theorem 8.3 in [10]
both L and L' are recursive. Now using Proposition 3 L” is recursive too.
This leads to a contradiction and completes the proof. m

We propose a conjecture for CFL.

Conjecture 1. A language L is a CFL if and only if its L” is a CFL also.

We do not know if this conjecture is true or false, but at least it is possible

that both L and L" are CFL, but not RGL.

78 Huimin Xie

Example 1. Let a language K be given by
K = {10"10™7|n > 0,p > 0}.
Then a language L is defined as
L = {z |z is a substring of y for some y € K}.
It is easy to show that this L is of class D.
Using the fact that the language
{0"10™ |n > 0}

is a CFL, it is easy to prove that L is a CFL also. On the other hand, from
the relation

LN10%10*1 = {10"10"1 |n > 0}

with its right-hand side being not a RGL, we know that L is not a RGL.
Now we calculate for L the set

L" = {110} U {10"10™ | m > n} U {0"10™1|m < n} U {010"10[n > 0}.
Since
L"N0*10°1 = {0"10™1 |m < n}

is not a RGL, we know that L” is a CFL, but not a RGL.

Other examples related to Propositions 5 through 7 can be found in [11,
12]. As a matter of fact, the basic idea of Example 1 is taken from [11]. The
results of this section can be summarized as shown in Figure 1.

L L
nonREL | Y
REL T
RL | e
CSL ! e
CFL T e P
RGL T

Figure 1: Levels of L and L” in Chomsky’s hierarchy

Distinct Excluded Blocks and Grammatical Complexity 79

4. A natural equivalence relation

If a language L C S* is given, where S is an alphabet, then a natural equiv-
alence relation Ry is introduced by L into S*: for z,y € S*, xRpy holds if
and only if for any z € S* 2z € L exactly when yz € L.

Here are some basic results from [10].

1. The relation Ry is right-invariant, that is, if zRyy holds, then for any
z € S* xzzRpyz holds also.

2. The language L is a RGL if and only if the index of Ry, that is, the
number of equivalence classes of S* with respect to Ry, is finite.

3. If L is a RGL, then the finite index of Ry is the number of states in
the minimal deterministic finite automata (minDFA) accepting L.

These last two facts are usually referred to as the Myhill-Nerode theorem.
Following [21], we may call the index N of Ry, the regular language complexity
of L.

In this section we show that the index N of Ry can be calculated from
L". 1f this N is finite, it is easy to obtain the minDFA. Some examples are
given to explain this method.

Proposition 8. If L is given and L” is its set of DEBs, and if a set is defined
as

V = {v|v is a proper prefix of y for some y € L"},
then for every x € L there exists a v € V' such that

.TIRL’U.

Proof. For a given string = there exists a suffix v of z such that v € V. We
require also that this v is the longest string which has these properties. There
are two possibilities to be considered.

1. v = &. We should prove that

Z‘RLE

is true. Let z be a string. If z(=€z) ¢ L, then from D1’ we have zz ¢ L. On
the other hand, if zz € L but z € L, then using Proposition 1 there exists a
decomposition

T = X%y, 2= 2129

such that zo # €,2; # €, and x5z, € L”. But this z5 is the suffix of z and
belongs to the set V', a contradiction.
2. v # . Now we will show that

zRpv

80 Huimin Xie

is true. Let z be a string and discuss zz and vz. Since vz is a suffix of zz,
it is obvious that vz € L = xzz € L. If xz ¢ L but z € L, then we have the
same decomposition as in the first case. Since both v and x5 are suffixes of
x, and v is longer than z,, then x, is a suffix of v. Now it is obvious that
Tz L=>vz2gL. m

Proposition 9. The set L' is an equivalence class of Ry,.

This is a trivial consequence of property D1’ in section 1. It means that
x,y € L' = xRpy,
and
x €Ll and xRy =y e L.

Remark 4. From Propositions 8 and 9 we see that in order to calculate the
index L of Ry, it only needs to work in the set V. For any pair u,v € V the
following rule is useful:

uRpv if and only if for any z € S*, uz contains a DEB as its suffix =
vz € L' and vice versa.

Example 2. If S = {0,1} and L"={0100,0010,001100}, calculate the minDFA
accepting L.

First obtain the set V' in Proposition 8:
V = {&,0,00,001,0011, 00110, 01,010}.
Using the rule in Remark 4, we have

001R;00110
01R0011
010R;00110.

From these results and Propositions 8 and 9 we know that the index N of
Ry is 6 and the six equivalence classes are

[¢], [0], [00], [001], [0011], and L/,

where [z] is the class containing .

Now it is routine to construct the minDFA for L as shown in Figure 2(a)
(see also [21]).

In Figure 2 the final states are shown as filled circles. The unique nonfinal
state is labeled by L. As a matter of fact, this language L is the set of
configurations after one time step of elementary CA of rule 222 (see [21] for
these concepts).

Distinct Excluded Blocks and Grammatical Complexity 81

(a) start 0 0 1

Figure 2: (a) minDFA for Example 3. (b) minDFA for Example 4.

Example 3. This is taken from [21] as the language of elementary CA of
rule 18 after one time step. The set of DEBs is given by a regular expression

(e.g., [10]):
L =11(0"10"1)*1.

Although the set V' is infinite now, we can still use the rule in Remark 4 to
determine the following equivalence classes:

[e], [1], [11], [110], [1101], and L',
The minDFA is illustrated in Figure 2(b).

5. Languages of unimodal maps

In this section we discuss a subclass of languages of class D—the languages
generated in studies of unimodal maps. The terminology used here can be
found in [4, §].

Here a unimodal map f is a continuous map from the interval [0,1] to
itself, and satisfies the following conditions:

L f(0)=f(1)=0;

2. f reaches its maximum value at some interior point ¢ of interval [0,1];
and

3. f is strictly monotonic on both subintervals [0, ¢) and (¢, 1].

82 Huimin Xie

Using coarse-grained description, every orbit of f can be represented by
an infinite string over an alphabet {0,1, ¢}, where symbols 0 and 1 are used
(instead of L and R as in [4, 8]) to denote the left and right sides of point c.

Let KS be the kneading sequence of f, that is, the coarse-grained de-
scription of the orbit of f starting from the point f(c). It is well known that
the dynamical behavior of f is determined by KS. Introducing ordering re-
lations between strings and shift operator ¢ as in [4, 8], we know that KS is
shift maximal. Now define the language of unimodal map f by

L=L(KS)={z €{0,1} |z is a finite substring of y
for some admissible string y}.

Here an admissible string y is an infinite string satisfying the condition
o'(y) < KS Vi>0.

It can be shown that this language reflects all symbolic dynamical behavior

. fA convenient criterion for a string belonging to L = L(KS) is Proposition

10.

Proposition 10. A string ¢ € L = L(KS) if and only if every suffix of z,
say v, satisfies the condition

v< KS.

Its proof is easy and omitted here (e.g., [22, 20]).
A notation of string Z is used, where Z is formed from a nonempty string
z by changing its last symbol. For instance,

1=0,0=1,1011 = 1010.

When we say a string = over S = {0,1} is even (or odd), it means that =
contains an even or odd number of the symbol 1.

Proposition 11. A string « is a DEB of L = L(KS) if and only if

1. Z is an even prefix of K'S and

2. no proper suffix of Z is an even prefix of K.S.

Proof. We first prove the “only if” part. If 2 € L”, then from the definition
of DEB every proper suffix of = belongs to L. Using Proposition 10 we see
that

x> KS.

Combining this inequality with z7w < K.S leads to the conclusion that both
Z and z7m belong to L. Since x > &, then & is even.

Distinct Excluded Blocks and Grammatical Complexity 83

If £ has a proper suffix, say v, which is an even prefix of K.S, then v
is a suffix of DEB z. Since v is odd and v > 9, we know that v € L/, a
contradiction to the definition of DEB.

Now we prove the “if” part. Since z is odd and x > &, we have z > K S
and z € I/. In order to prove that z is a DEB of L, it is enough to consider
every proper prefix and proper suffix of x.

From the fact that Z is a prefix of K5, its every proper prefix belongs to
L. As to suffixes, assuming the contrary that z has a proper suffix v € L/,
then we have

vr € Landv > KS.

This leads to the statement that v is an even prefix of K.S, which is a con-
tradiction. m

Many works have shown that if K.S is periodic, or eventually periodic,
then the language L(KS) is regular (e.g., [6, 9] and references therein).

It is proved in [22, 20] that the converse is also true. This is shown in
Theorem 1.

Theorem 1. The language L(KS) is a RGL if and only if K S is periodic

or eventually periodic.

We now consider the levels of L and L” in Chomsky’s hierarchy to continue
the discussion from section 3.

Proposition 12. If L = L(KS) and L" is a CFL, then L” is also a RGL.

Proof. Let L" = L(G), where G is a context-free grammar (CFG) (e.g., [10,
18)):

G: (V,S,P,SU),

V is an alphabet of variables (nonterminals), S is an alphabet of terminals,
P is a set of grammar rules, and sy is an initial symbol. Without loss of
generality, we can assume that the grammar is reduced, that is, for each
variable x # s, (i) so generates a string containing ; and (ii) « generates a
string (€ L(G)) (e.g., [18]).

Now we need a theorem from [18]: L(G) is a RGL if and only if it is not
self-embedding.

The definition of self-embedding is: a CFG is self-embedding if and only
if A = pAq for some A € V and p,q € (V US)* such that p # ¢ and
q # €. A CFL L is self-embedding if and only if all CFG generating L are
self-embedding.

If the grammar G in L” = L(G) is not self-embedding then our proof is
completed. Assume the contrary, that this G is self-embedding. Then there
is a variable A such that

A= pAq,

84 Huimin Xie

and since G is reduced, and € € L" we have
p#e,q#e, and p,g € S*.
Again using the fact that G is reduced, we obtain
Sp = wAzT
and these strings w and z have the same properties as p, g. Now we can write
so = wp"Aq"z € L" Vn > 0.
Using Proposition 1.1 we have
KS = wp™.

Finally, using Theorem 1 completes our proof. ®
A weaker conjecture than Conjecture 1 is as follows.

Conjecture 2. If L = L(K S) is a CFL, then it is a RGL also.

Proposition 13. If L = L(KS), its L” is a REL, then both L and L" are

recursive languages.

Proof. From [10] we know there exists a Turing machine (TM) M as an
enumerator or generator of L”. What we have to do is to construct another
TM M’ for L” such that its strings can be generated in order of increasing
size. This will complete our proof.

This TM can be designed as follows (see Figure 3). For each DEB z
generated from M, the processor A can calculate all DEBs whose length is
less than = and print out all new DEBs (if there are any) in the order of
increasing size. This is possible by Proposition 11. At the same time the’
length of z is recorded and used to remember that all DEBs of length up
to this number have been output already. It is obvious that the TM M’,
combined from M and A, is the required one. Using Proposition 6 completes
our proof. m

Corollary 2. If L = L(KS) is a nonREL, then its L” is also a nonREL.

M/

Figure 3: Turing machine for L” being recursive. The box labeled
with A is a processor.

Distinct Excluded Blocks and Grammatical Complexity 85

L L
nonREL A
REL ? 0
RL ! S
CSL T ———*
CFL T ? 0
RGL T

Figure 4: Levels of L and L” for unimodal maps.
Here is another conjecture.
Conjecture 3. If L = £(KS) is a REL, then it is also a recursive language.

It is known that for languages of class D generated from CA this conjecture
is false (e.g., [11]). These results can be summarized as shown in Figure 4.

Now we discuss what is meant when we say that a KS is given. From the
viewpoint of the theory of computability (e.g., [16]), we have Definition 3.

Definition 3. A KS =ay...a,...is computable if the function

a:N—S=1{0,1}

n—a(n) = a,
is recursive.

Using the same idea as in the proof of Proposition 13, it is easy to obtain
Proposition 14.

Proposition 14. The language L = L£(KS) is recursive if and only if its
K S is computable.

Proposition 15 clarifies the relation between K.S and finite complement lan-
guages.

Proposition 15. The language L = £(KS) is finite complement if and only
if KS is periodic or 10%.

86 Huimin Xie

Proof. The “only if” part is simple. If KS is 10*°, then L = S* and L' = 0,
that is, its unimodal map is surjective. If K.S = 2, it is easy to show that
any DEB is of length less than or equal to |z| if z is even (or 2|z| if z is odd),
so L" is finite.
We now consider the “if” part. Since it is easy to establish that

KS=10"iff L" =0,

KS=0%iff L" = {1},

KS =1%iff L" = {10},
we can assume that K.S = 10™1... for some n > 0. Since L” is finite, we
denote the longest DEB by x. From Proposition 11, the string Z is an even

prefix of K'S.
We will show that

KS =g
and finish our proof. We need a lemma for this step, its proof will be given
later.
Lemma 1. If 2« is an even prefix of KS and « # ¢, then « has a nonempty

even suffix, which is a prefix of K.S also.

Now decompose K S as
KS = #byby---by---,

where each b; is the shortest even substring of K.S, that is, either 0 or 10P1
provided 0 < p < n.

We prove inductively that for any integer m, the string b;bs - - - by, is always
a prefix of K'S. If this is true, then we have

o(KS)=KS
and
KS = &>,

Proceeding inductively on m, for m = 1 using the Lemma 1 leads to
by # 0 (as K'S begins from 1). If b; = 1071, then using Lemma 1 means that
p = n as required. Assume now that our statement is already true for m
and consider the case of m + 1. Using Lemma 1 on o = by - -+ by,,41 We see
that there exists an integer k such that by - - - byy1 is an even prefix of K'S.
From the inductive hypothesis the string b, - - - by, is also a prefix of KS. We
write KS as

RS =bysolyfsss,

where the string 3 is of the same length as the string byyq -« - bypy1. Since KS
is maximal shift we see that

B < beyr b

Distinct Excluded Blocks and Grammatical Complexity 87

On the other hand, we also have
by~ br g1 by < byec i3,
and since every b; is even, we have

bk+1 e bm+1 S ,6

Combining these inequalities leads to
b1 b1 =B
and completes our proof. m

Remark 5. The conclusion of Proposition 15 can be obtained indirectly
from Theorem 1 and from results in [20, 23].

Proof of Lemma 1. From the condition of the lemma we have z& > K.S and
2& € L. Since the string @& cannot be a DEB itself, and Zam € L, there
exists a proper suffix of & which is a DEB. Now it is enough to use the
Proposition 11. m

6. Examples
6.1 Three cases of regular languages

There are three cases of RGL in languages of unimodal maps.
1. KS =10 and L" = 0;
2. K S is periodic and L” is finite;

3. KS is eventually periodic, but not of the cases above, then L” is a
special semi-linear infinite set.

Some finite L” are:

KS = (101)®, L" = {100};
KS =10¢,L" = {100}; and
KS = (100)®, L" = {1000, 10011, 100101}.

These include all period 3 KS that can occur in unimodal maps.

A more complex example is K.S = 10110(10111)*, which corresponds
to a crisis phenomenon of a period 5 window in the Feigenbaum diagram
(e.g., [8]). Its L" is a so-called semi-linear set:

L" = {100} U {10110(10111)"0},,50 U {10110(10111)"11},50
U{10110(10111)"1010},,30.

88 Huimin Xie

6.2 An example of a context-sensitive language

There are uncountably many languages beyond RGL in unimodal maps, a
general discussion is being prepared. Here we only give the easiest example—
the Feigenbaum attractor in unimodal maps.

Introducing a morphism h by

h={1-—10,0 — 11}.
From [3] we have K S of the Feigenbaum attractor by

KS = T}H&hn(l)
It was proved in [3] that this L = L£(KS) is an extended table zero sided
Lindenmayer (ETOL) language in Lindenmayer systems (e.g., [17]), also a
CSL, but not a CFL. In [5] the same problem was discussed, but the language
defined there is formed by taking all substrings of K S, thus reflecting only
dynamical behaviors on the attractor itself.
It is easy to obtain L” for this language:

L” = {h”(lOO)}nZO) {h”(lOllO)}nZO

If we apply the method of section 4 to this L”, an infinite automaton like
Figure 4 in [7] will be obtained. Although the number of states in this
automaton is infinite, it has a simple recursive structure and is useful in the
study of symbolic dynamics.

Acknowledgement

This research was jointly supported by the National Basic Research Project
“Nonlinear Science” and Natural Science Foundation of Jiangsu Province.

References

[1] R. L. Adler, “Geodesic Flows, Interval Maﬁs, and Symbolic Dynamics,” in
Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces, edited by T.
Bedford, M. Keane, and C. Series (Oxford University Press, Oxford, 1991).

[2] G. D’Alessandro and A. Politi, “Hierarchical Approach to Complexity with
Applications to Dynamical Systems,” Physical Review Letters, 64 (1990)
1609-1612.

[3] X. Chen, Q.-H. Lu, and H.-M. Xie, “Grammatical Complexity of Feigenbaum
Attractor,” Preprint, its abstract is in Advances in Mathematics (China), 22
(1993) 185-186.

[4] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical
Systems, (Birkhauser, Boston, 1980).

Distinct Excluded Blocks and Grammatical Complexity 89

(5]

[6]

[7]

[8]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. P. Crutchfield and K. Young, “Computation at the Onset of Chaos,” in
Computation, Entropy, and the Physics of Information, SFI Studies in the
Sciences of Complexity, vol. VIII, edited by W. H. Zurek (Addison-Wesley,
Reading, MA, 1990).

E. J. Friedman, “Structure and Uncomputability in One-dimensional Maps,”
Complex Systems, 5 (1991) 335-349.

P. Grassberger, “On Symbolic Dynamics of One-humped Maps of the Inter-
val,” Zeitschrift fiir Naturforschung, 43a (1988) 671-680.

B.-L. Hao, Elementary Symbolic Dynamics and Chaos in Dissipative Systems,
(World Scientific, Singapore, 1989).

B.-L. Hao, “Symbolic Dynamics and Characterization of Complexity,” Phys-
ica D, 51 (1991) 161-176.

J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages and
Computation, (Addison-Wesley, Reading, MA, 1979).

L. P. Hurd, “Recursive Cellular Automata Invariant Sets,” Complex Systems,
4 (1990) 119-129.

L. P. Hurd, “Nonrecursive Cellular Automata Invariant Sets,” Complez Sys-
tems, 4 (1990) 131-138.

N. Immerman, “Nondeterministic Space is Closed under Complementation,”
SIAM Journal of Computing, 17 (1988) 935-938.

A. de Luca and S. Varricchio, “Some Combinatorial Properties of Factorial
Languages,” in Sequences, edited by R. M. Capocelli (Springer-Verlag, New
York, 1990).

M. Morse and G. A. Hedlund, “Symbolic dynamics,” American Journal of
Mathematics, 60 (1938) 815-866.

M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics
(Springer-Verlag, Berlin, 1989).

G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems (Aca-
demic Press, New York, 1980).

A. Salomaa, Formal Languages (Academic Press, Boston, 1973).

R. Szelepcsényi, “The Method of Forcing for Nondeterministic Automata,”
Bulletin of the European Association of Theoretical Computation Science, 33
(1987) 96-100.

Y. Wang and H.-M. Xie, “Grammatical Complexity of Unimodal Maps with
Eventually Periodic Kneading Sequences,” Nonlinearity, 7 (1994) 1419-1436.

S. Wolfram, “Computational Theory of Cellular Automata,” Communications
in Mathematical Physics, 96 (1984) 15-57.

90 Huimin Xie

[22] H.-M. Xie, “On Formal Languages of One-dimensional Dynamical Systems,”
Nonlinearity, 6 (1993) 997-1007.

[23] H.-M. Xie, “The Finite Automata of Eventually Periodic Unimodal Maps on
the Interval,” Journal of Suzhou University, 9 (1993) 112-118.

