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Abstract. T he concept of dist inct excluded block (DEB) is defined
for languages generated in st udies of dyn am ical sys te ms . T he rela­
tionship of languages L and L" , which is t he set of all DEB s of L , is
analyzed in the context of Cho msky' s hierar chy. Some fur ther result s
of unimod al maps on interval are ob tained.

1. Introduction

The concept of a distinct excluded block (DEB) first appeared in [21] and is
used there as well as other means to characterize t he complexity of languages
(or sets of st rings) generate d by cellular automata (CA). T he concept also
appe ars in ot her places, such as [1, 2], under the different names of "forbidden
blocks" and "irreducible forbidden blocks." From results in [21, 1, 2] and oth­
ers , it seems that using this concept in the st udy of grammatical complexity
in dynami cal sys tems may become a new and pro spero us approac h.

For a given language, that is, a set of st rings, th ere are two ways to
logically analyze its st ruct ure . One way is to study the blocks that appear
in it , t he ot her way is to study the blocks that do not appear . In this paper
we show that for languages of a certain class D the second approach is very
useful. T he main tool used is the concept of DEBs.

The purpose of this paper is to establish a theoret ical fram ework to answer
the following questions.

1. Where does the concept of a DEB come from?

2. How is this concept characterized and used to find these blocks for a
given lan guage?

3. If t he set of all DEBs for a lan guage L is denoted by L", then what is
the connect ion between L an d L"?

4. If Chomsky's hierarchy is used when studying the complexity of lan­
guages, then what is the relat ionship of t he levels of L an d L" in that
hierar chy?
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We discuss these quest ions in sect ions 2- 4.
In sect ion 5 we discuss these quest ions for unimod al maps on interval and

obtain fur ther results. Examples are given to show that this new method is
useful in the study of dynam ical sys tems.

2 . Languages of class D a nd d istinct excluded b locks

Now we will use some term inology (or noti ons) from computation theory,
that is, formal languages and auto mata, which can be found in [10].

Let S be an alphabet (i.e., a finite set of symbols) , and let S* be the set
of all finit e strings over S. Any subse t of S* is called a (formal) lan guage
over S .

A useful operation 7r on st rings will be used as follows: if x is a nonemp ty
st ring, then X7r is the string formed from x by deleti ng its last let ter.

Since it is obvious that not every formal language can be used to describe
dynamical syste ms , t he first question we consider is: what are the features
of those lan guages that appear in studies of dynam ical systems? T he answer
is summarized in Definit ion 1, where the let ter "D" is used to remind us of
dynamical systems.

Definition 1. A Language L c S* is called of class D , if it sa t isfies the
condit ions :

Dl a string z E L if and only if every subs tring of z belongs to L ;

D2 if z E L , t hen there exists a symbol a E S such that z a E L.

Remark 1. From Dl we can see that E , t he empty str ing, must be a st ring
of every lan guage of class D.

It seems that the conditions Dl and D2 are ubiquito us in studies of dy­
namical systems . Similar condit ions are mentioned in [15, 14]. In [15] we
read that "In the applica t ions to dynamical theory the sequences admitted
are not form ed freely from the generating symbols, but are subject to cer­
tain limi tat ions." Four conditions of admissibility were list ed there for the
problem presented . In [14] the names "factorial lan guage" and "prolongable
lan guage" are used with resp ect to t he condit ions Dl and D2 in Definiti on
1.

If we denote the complement of L in S* by

L' = S* L

t hen an equivalent descripti on of condit ion Dl is

D l ' if z E L' , then xzy E L' for any x , y E S*.

T his can also be written as

L' = S*L'S*.

T his is the essent ial content of Lemma 1.1 in [14].
T he main concept of this paper is state d in Definition 2.
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Definition 2. A string x is a DEB of language L , if x E L' but every proper
subst ring of x belongs to L.

Let L" be the set of all DEBs of language L . Following [21], a language
L is called a finit e (infinite ) complement language if L" is finit e (infinite ) .

Showing the existence of a DEB is simple, for example, the shortest st ring
of L' is a DEB if L' =I- 0. But the DEBs found may be useless in the study
of L . For languages of class D, however , the sit ua tion is quite different as
Proposition 1 shows.

Proposition 1. If a language L satisfies condit ion D1 , then

L' = S*L"S*,

that is, for every x E L' there exists a substring y of x such that y is a DEB
of L .

Proof. As every string of L' must contain a DEB as its substring , we have

L' c S*L"S* .

T his is t rue for any L. On the ot her hand , from the property D1' we also
have

L' ::) S*L"S*,

which completes the proof. _

Remark 2. From P rop osit ion 1 it is clear t ha t L is un iquely determined by
L", Although we can have DEBs and L" for any language L , in a general
sense they cannot character ize L complete ly.

T he next question is: which set (of st rings ) can be the set of DE Bs of a
form al language?

Proposition 2. There exists a language L of class D for a given set U E S*
such that L" = U if and only if the set U sa tisfies the following condit ions .

1. No st ring in U is a proper substring of another string in U.

2. If # S = n , and Xl, . . . , X n are n strings in U wit h n different last
symbols, and X n is the longest st ring among them , then at least one
st ring among X l tc , . . . , Xn- l Jr is not a suffix of X n Jr.

Proof. Since the "only if" part is obviously true, we just give the proof of the
"if" part . Using the subset U of S* , we construct a set L by

L = S* - S*US*.

We will show that this L is a language of class D and L" = U.
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First assume the cont rary, tha t the condit ion D1 is not sa t isfied by L ,
then there is a string x E Land x = uvw with v rfc L. But then v E L' and
v = abc with b E U by the condit ion L' = 5*U5 *. Writ ing x = (ua)b(cw)
shows tha t x E L' , which cont radicts x E L.

Now assume tha t L does not sat isfy D2, that is, there exists a st ring
x E L , but xa rfc L for any a E 5 . Using Proposit ion 1, we obtain a suffix
of xa that is a DEB of L for every a E L. These DEBs will provide the
st rings Xl> . .. , X n (#5 = n) requir ed in the second condition and leads to
cont radict ion.

The proof of L" = U is easy and omitted . _
After we int rod uce the following operators on languages (e.g., [10]):

M I N (L ) = {x E L I no proper prefix of x is in L };

M IN' (L) = {x E L I no proper suffix of x is in L} ;

R (L ) = {x Ix R
, x is written backward, belongs to L} ;

it is easy to establish that

MIN' (L ) = R 0 M IN 0 R (L ),

and can have Proposition 3.

Proposit ion 3. If L is a language of class D, then

L" = M I N 0 M IN'(5 * - L)

= M IN' 0 M I N (5 * - L )

= M IN'(5* - L ) n M I N (5* - L).

Since these results are technical we only sketch th e pro cedure of finding a
DEB from a given st ring x of L' , First , using Remark 1, we know th at x #- 10,

the empty st ring . Then we delete the last symbol of x and denot e the string
t hus formed by X 7f . If X 7f E L' we repeat this operation , otherwise we do the
same thing from the first symbol of t his st ring. Finally a subst ring y of x is
obtained such that delet ing either the first symbol or the last symbol of y will
generate a st ring belonging to L , and y E Ll Using D1 again, every proper
subst ring of y belongs to L . This proves that y is a DEB . The operat ions
above can be expressed as M IN and M IN' .

3. Land L" in Chomsky's hierarchy

In this section we analyze levels of languages L and L" in th e cont ext of
Chomsky 's hierarchy [10].

T here are four levels in this hierar chy: regular languages, context-free lan­
guages, context-sensitive languages, and recursively enumera ble languages.
For simplicity we use the abbreviations RGL , CFL , CSL, and REL in this
paper. We also need the languages beyond them: nonr ecursively enumerable
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languages and recursive languages. Their abbreviations are nonREL and RL .
If the corres ponding sets of th ese languages are denoted by £ (.) , th en we have

£ (RGL) c £ (CFL) c £ (CSL) c £ (RL) c £ (REL),

and all these inclusions are proper.
For the rest of this pap er all languages considered are of class D.

Proposition 4 . A language L is a RGL if and only if its L" is a RGL also.

Proof. Since the set £ (RGL) is closed under complementation, MIN, con­
catenation, and R (i.e. , reversal) , it is a consequence of Proposition 1 and
3. _

Since any finite language is a RGL, we can obtain Corollary 1.

Corollary 1. A finite complement language is a RGL.

Remark 3. This fact is proved in [21] by other method s.

Using new result s in [19, 13] it is easy to obtain th e same conclusion as
Proposit ion 4 for CSL.

There is no difficulty to prove Propositions 5 and 6.

Proposition 5. A language L is a CSL if and only if its L" is a CSL also.

Proposition 6. A language L is a recurs ive language if and only if its L" is
a recursive langu age also.

Proposition 7. If both L and L" are not recursive languages, th en there
are only three possibiliti es:

1. L is a RE L, L" is a nonREL;

2. L is a nonREL, L" is a RE L;

3. both L and L" are nonREL.

Proof. Assume th e contrary, th at both L and L" are REL. Using Propositi on
1, we have L' = S*L"S* and tha t L' is also a REL . From T heorem 8.3 in [10]
both L and L' are recursive. Now using Prop osition 3 L" is recursive too.
This leads to a cont radiction and comp letes th e proof. _

We pr opose a conjecture for CFL.

Conjecture 1. A language L is a CFL if and only if its L" is a CFL also.

We do not know if this conjecture is true or false, but a t least it is possible
that both L and L" are CFL, but not RGL .
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Example 1. Let a language K be given by

Then a language L is defined as

L = {x Ix is a substring of y for some y E K }.

It is easy to show that this L is of class D.

Using the fact that the language
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is a CFL, it is easy to prove that L is a CFL also. On the other hand , from
the relation

with its right-hand side being not a RGL , we know that L is not a RGL.
Now we calculate for L the set

Since

L" n 0*10*1 = {OnlOm1 [m < n}

is not a RGL, we know th at L" is a CFL, but not a RGL.
Other examples related to Prop ositi ons 5 thro ugh 7 can be found in [11,

12]. As a mat ter of fact , the basic idea of Examp le 1 is taken from [11]. The
results of this sect ion can be summarized as shown in Figure 1.

L L"

nonREL ~

REL

RL

CSL

CFL

RGL

- 7-

Figure 1: Levels of L an d L" in Chomsky 's hierarchy
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4. A natural eq uivalence relation

If a language L c S* is given, where S is an alphabet , then a nat ural equiv­
alence relation R L is intro duced by L into S*: for x ,Y E S*, x R Ly holds if
and only if for any z E S* , x z E L exact ly when yz E L.

Here are some basic results from [10].

1. The relation R L is right-invar iant , that is, if x RLy holds, then for any
z E S*, xzR Lyz holds also.

2. The language L is a RGL if and only if the index of R L, that is, the
number of equivalence classes of S* with respect to R L , is finite.

3. If L is a RGL , th en the finite index of RL is the number of states in
the minimal det erministic finit e automata (minDFA) accepting L .

These last two fact s are usually referr ed to as t he Myhill-Nerode theorem.
Following [21], we may call the index N of RL the regular language complexity
of L .

In this sect ion we show th at th e index N of RL can be calculated from
L" , If this N is finite, it is easy to obtain the minDFA. Some examples are
given to explain this method .

Proposition 8 . If L is given and L" is it s set of DEBs, and if a set is defined
as

v = {v Iv is a proper prefix of y for some y E L"},

then for every x E L there exists a v E V such that

Proof. For a given st ring x there exists a suffix v of x such that v E 11. We
require also that this v is the longest st ring which has t hese proper ties. There
are two possibilities to be considered .

1. v = c. We should prove that

is true. Let z be a string. If z (= s z) It L , then from Dl' we have xz It L. On
the other hand , if xz It L but 2 E L , then using Proposit ion 1 there exists a
decomposition

such that X2 # c ,21 # e, and X2 Z1 E L", But this X 2 is the suffix of x and
belongs to t he set V , a cont radict ion.

2. v ole. Now we will show tha t
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is true. Let z be a st ring and discuss x z and vz . Since vz is a suffix of x z ,
it is obvious th at vz Ff- L =? xz Ff- L. If x z Ff-. L but z E L , then we have the
same decomp osit ion as in the first case. Since both v and X 2 are suffixes of
x , and v is longer th an X2 , then X2 is a suffix of v. Now it is obvious that
X2 Z Ff- L =? vz Ff- L. •

Proposition 9. The set L' is an equivalence class of R L .

This is a trivial consequence of property D1' in section 1. It means that

x ,Y E L' ==} x RL y ,

and

x E L' and xRLy ==} Y E L'.

Remar k 4. From Propositions 8 and 9 we see that in order to calculate the
ind ex L of RL , it only needs to work in th e set V . For any pair u , v E V th e
following rule is useful:

uRLv if and only if for any z E S*,uz contains a DEB as its suffix =?

vz E L' and vice versa .

Example 2. If S = {a, I} and L"={0100 ,00l0 ,001100} , calculate the minDFA
accepting L.

First obtain th e set V in Proposit ion 8:

V = {E,0,00,001 ,0011 ,00110,01 ,010}.

Using the rule in Remark 4, we have

001R L00110
01RL00l1

010RL00110.

From t hese results and Propositions 8 and 9 we know that the index N of
RL is 6 and the six equivalence classes are

[E ], [0], [00], [001], [0011], and L' ,

where [xl is the class containing x.
Now it is routine to construct the minDFA for L as shown in Figure 2(a)

(see also [21]).
In Figure 2 the final st ates are shown as filled circles. T he unique nonfinal

st ate is labeled by L' . As a matter of fact , this language L is the set of
configurations after one time ste p of elementary CA of rule 222 (see [21] for
these concepts) .
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11

1

1 0

(a) start 1 1

0
1 0

L'
0

(b) start 1 1 0

o
L'

Figure 2: (a) minDFA for Example 3. (b) minD FA for Example 4.

Example 3 . T his is taken from [21] as the lan guage of elementary CA of
ru le 18 after one time st ep . The set of DEBs is given by a regular express ion
(e.g., [10]):

LV = 11(Ot10t1)*1.

Although the set V is infinite now, we can sti ll use the ru le in Remark 4 to
det ermine the following equivalence classes :

[c], [1], [11], [110], [1101], and u.
T he minD FA is illust rated in Figure 2(b).

5 . Languages of unimodal m aps

In t his sect ion we discuss a subclass of languages of class D- the languages
generated in st udies of unimodal maps. T he terminology used here can be
found in [4, 8].

Here a unimodal map f is a cont inuo us map from the interval [0,1] to
it self, and sat isfies the following conditions :

1. f (O) = f(l ) = 0;

2. f reaches it s maximum value at some interior point c of int erval [0,1];
and

3. f is st rictly monotonic on bo th subint erva ls [0, c) and (c, l].
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Using coarse-grained descript ion , every orbit of f can be repr esented by
an infinite string over an alphabet {O, 1, c}, where symbols °and 1 are used
(inst ead of L and R as in [4, 8]) to denote the left and right sides of point c.

Let K S be the knead ing sequence of I , that is, the coarse-grained de­
scription of the orbit of f starting from the point f (c). It is well known that
the dynamical behavior of f is determined by K S. Introducing ordering re­
lations between strings and shift operator (J as in [4,8]' we know that K S is
shift maximal. Now define the language of unimodal map f by

L = L (KS ) = {x E {O, I} Ix is a finite substring of y
for some admissible st ring y}.

Here an admissible st ring y is an infini te st ring sa t isfying the condition

It can be shown that this language reflects all symbolic dynam ical behavior
of f .

A convenient crite rion for a string belonging to L = L (K S) is P roposition
10.

Proposition 10. A st ring x E L = L (K S) if and only if every suffix of x ,
say v , sat isfies the condit ion

v:S KS.

It s proof is easy and omitted here (e.g., [22,20]).
A notation of st ring x is used, where x is form ed from a nonempty string

x by cha nging its last symbol. For inst an ce,

i = 0,0 = 1, in! I = 1010.

Wh en we say a string x over S = {O , I } is even (or odd), it means that x
cont ains an even or odd number of the symbol 1.

Proposition 11. A string x is a DEB of L = L (K S ) if and only if

1. x is an even pr efix of K S and

2. no prop er suffix of x is an even prefix of K S .

Proof. We first prove the "only if" part . If x E L" , then from the definit ion
of DEB every prope r suffix of x belongs to L . Using Proposition 10 we see
that

x > K S .

Combining this inequality wit h X 1T :S K S leads to the conclusion that both
x and X 1T belong to L . Since x > x, then x is even.
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If i: has a proper suffix, say V, which is an even pr efix of K S , then v
is a suffix of DEB x . Since v is odd and v > V, we know that vE L', a
cont ra dict ion to the definition of DEB.

Now we prove the "if" par t. Since x is odd and x > i:, we have x > K S
and x E L', In order t o prove that x is a DEB of L , it is enough to consider
every proper pr efix and pro per suffix of x .

From the fact that i: is a pr efix of K S , it s every pr oper pr efix belongs t o
L. As to suffixes, assuming the cont rary th at x has a proper suffix V E L' ,
then we have

V1T E Land v > K S .

This leads to the statement that v is an even pr efix of K S , which is a con­
tradiction. _

Many works have shown tha t if K S is periodic, or event ually periodic,
then the language L(KS) is regular (e.g., [6,9] and references th erein).

It is proved in [22, 20] that the converse is also true. This is shown in
Theorem 1.

Theorem 1. The language L (K S) is a RGL if and only if K S is periodic
or eventually periodic.

We now consider the levels of L and L" in Chomsky's hierarchy t o cont inue
the discussion from sect ion 3.

Proposition 12. If L = L(KS) and L" is a CFL, then L" is also a RGL.

Proof Let L" = L(G) , where G is a context-free grammar (CFG) (e.g. , [10,
18]):

G = (V,S,P,so),

V is an alpha bet of vari abl es (nonte rminals), S is an alphabet of terminals,
P is a set of gra mmar rul es, and So is an ini ti al symbo l. Without loss of
generality , we can assume that the gra mmar is redu ced , that is, for each
variable x i=- So, (i) So generates a st ring containing x ; and (ii) x generates a
st ring (E L(G)) (e.g. , [18]).

Now we need a theorem from [18]: L(G) is a RG L if and only if it is not
self-embedding .

The definition of self-embe dding is: a CFG is self-embedding if and only
if A =* pAq for some A E V and p,q E (V U S)* such that p i=- E: and
q i=- E:. A CFL L is self-embe dding if and only if all CFG generating L are
self-embedding .

If th e grammar G in L" = L(G) is not self-embedding then our proof is
complete d . Assume the cont rary, that this G is self-embedding . Then there
is a variable A such that

A ==* pAq ,
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and since G is reduced , and 10 ri L" we have

p =I e.c =I 10, and p ,q E S* .

Again using the fact that G is reduced , we obtain

So ==* w Ax

Huimin Xie

and these strings wand x have the same properties as p , q. ow we can write

So ==* wpnAqnx E L" \In 2: o.

Using Proposit ion 11 we have

KS = wp oo .

Finally, using Theorem 1 completes our proof. _
A weaker conjecture tha n Conjecture 1 is as follows.

Conject ure 2. If L = L (K S ) is a CFL, then it is a RGL also.

Prop osit ion 13 . If L = L (K S) , it s L" is a REL, then both L and L" ar e
recur .rive languages.

Proof. From [10] we know there exists a Turing machine (TM) M as an
enumera tor or generator of L" . W hat we have to do is to cons truct another
TM M ' for L" such that its st rings can be generated in order of increasing
size. This will complete our proof.

T his TM can be designed as follows (see Figure 3). For each DEB x
generated from lVI , the processor A can calculate all DEBs whose length is
less than x and pr int out all new DEBs (if there are any) in the ord er of
increasing size. This is possible by Proposit ion 11. At the same t ime the
lengt h of x is recorded and used to remember that all DEBs of length up
to this numb er have been output already. It is obvious that the TM 111[' ,
combined from NI and A , is the requi red one. Using P roposition 6 completes
our proof. _

Corollary 2 . If L = L (K S ) is a nonREL, then its L" is also a nonREL.

M '

M A

Figure 3: Turing machine for L" being recursive. The box labeled
with A is a processor.



Distinct Excluded Blocks and Grammatical Complexity 85

L L"

nonREL f-
? 0REL

RL I

CSL I

CFL I ? 0

RGL t

Figur e 4: Levels of L and L" for un imod al maps.

Here is another conjecture .

Conjecture 3 . If L = £ (K S) is a REL, then it is also a recursive language.

It is known that for languages of class D generated from CA t his conjecture
is false (e.g., [11]). T hese results can be summarized as shown in Figur e 4.

ow we discuss what is meant when we say tha t a K S is given . From the
viewpoint of the theory of computability (e.g., [16]), we have Definit ion 3.

D efini t ion 3. A KS = al . . . an ' " is computable if the function

a : N -----7 S = {0,1 }

nf---7a(n) = an

is recursive.

Using the same idea as in the proof of P ropos it ion 13, it is easy to obtain
P roposition 14.

Propos it ion 14. The language L
K S i computable.

£ (K S) is recursive if and only if it s

P roposition 15 clarifies the relation between K S and finite complement lan­
guag es.

P roposit ion 15 . T he language L = £ (K S ) is finite complement if and only
if K S is periodic or 1000

.
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Proof. The "only if" par t is simple. If J{ S is 1000
, t hen L = S * an d L' = 0,

that is, its un imodal map is surject ive. If J{ S = xoo , it is easy to show that
any DEB is of lengt h less tha n or equal to Ixl if x is even (or 21x l if x is odd) ,
so L" is finite.

We now consider the "if" par t . Since it is easy to establish that

J{S = 1000 iff L " = 0,
J{S = 000 iff' L" = {I},
J{S = 100 iff' L" = {10},

we can assume that J{ S = lOn 1 .. . for some n > O. Since L" is finite, we
denote th e longest DEB by x . From Proposit ion 11, the string x is an even
prefix of J{S.

We will show t hat

J{S = XOO

and finish our proof. We need a lemma for thi s step , its proof will be given
later.

Lemma 1. If Xct is an even prefix of J{Sand ct # s , then ct has a non empty
even suffix, which is a prefix of J{S also.

Now decompose J{S as

J{ S = xbI b2 · • · bm ··· ,

where each b, is the shortes t even substring of J{S, that is, either 0 or lOP1
provided 0 ::; p < n .

We prove ind uct ively that for any integer m , the st ring bIb2 • . . bm is always
a pr efix of J{S . If this is true, then we have

a1x1(J{S) = J{S

and

Proceeding inducti vely on m , for m = 1 using the Lemma 1 leads to
bI # 0 (as J{S begins from 1). If bI = 10P1, then using Lemma 1 means tha t
p = n as requir ed. Assume now that our statement is already true for m
and consider the case of m + 1. Using Lemma 1 on ct = bI . . . bm+l we see
that there exists an integer k such that bk+l bm+l is an even prefix of J{ S .
From the indu ctive hyp othesis the st ring bI bk is also a prefix of J{S . We
write J{S as

where the st ring (3 is of the same length as the st ring bk+I •• . bm +I . Since J{S
is maxim al shift we see that
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On the ot her han d , we also have

and since every b, is even , we have

Combining these inequali ties leads to

and completes our proof. _
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Remark 5 . T he conclusion of P ropos it ion 15 can be obtain ed indirectly
from Theorem 1 an d from results in [20, 23J.

Proof of Lemma 1. From th e condition of the lemma we have x& > KS and
x& E L' . Since th e st ring x& cannot be a DEB itself, and XO:7r E L , there
exists a pr op er suffix of x& which is a DEB. Now it is enough to use the
Proposition 11. _

6 . Examples

6 .1 Three cases of regular languages

There are three cases of RGL in languages of unimod al map s.

1. KS = 1000 and L" = 0;

2. K S is periodic and L" is finite;

3. K S is eventually periodic, but not of the cases above, then L" is a
spec ial semi-linear infinite set .

Some finite L" are :

KS = (101)00 , L" = {100};

K S = 10c, L" = {100}; and

KS = (100)00 , L" = {1000, 10011, 100l01}.

These include all period 3 K S that can occur in unimo dal maps.
A. more complex example is K S = 10110 (10111)00 , which corre sponds

to a crisis phenomenon of a period 5 window in the Feigenb aum diagram
(e.g., [8]). It s L" is a so-called semi-linear set :

L" = {100} U { 10110(10111tO}n~o U {10110 ( 10111t11}n~o

U { 1 0 1 10( 10 1 1 1)n 1 0 1 0 }n~o ,
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6.2 An example of a context-sensit ive la nguage

T here are uncount ably man y languages beyond RGL in unimodal map s, a
general discussion is being prepar ed. Here we only give the eas iest example­
the Feigenbaum at tractor in uni modal maps.

Introducing a morphism h by

h = {1 ----> 10,0 ----> ll}.

From [3] we have K S of the Feigenbaum att ractor by

KS = lim hn (l ).
'11---+00

It was proved in [3] that this L = .c(K S) is an extended table zero sided
Lindenmayer (ET OL) language in Lindenmayer sys te ms (e.g., [17]), also a
CSL , but not a CF L. In [5] t he same prob lem was discussed , but the language
defined there is formed by taking all substrings of K S, thus reflect ing on ly
dynamical behaviors on the at t racto r itself.

It is easy to obtain L" for this lan guage:

L" = {hn(100)} n>o U { hn(10110 )} n>o.- -

If we apply t he met hod of section 4 to this L" , an infinit e aut omaton like
F igur e 4 in [7] will be obtained . Although the numb er of states in this
automaton is infinit e, it has a simple recursive st ruc t ure and is useful in the
study of symbolic dyn amics.
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