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Abstract. The dynamic system presented in this paper is derived
from a deterministic game procedure based on a pack of playing cards
and two players. We describe the game, give a generalization with its
mathematical model, and show some properties of the related dynamic
system. A bidimensional geometrical representation is also proposed
which exhibits morphological properties, for example, self-similarity.

1. Introduction

HeartQuake is my translation of the name of a traditional Italian game of
cards, “strappacuore” (pronounced strap’pa’kow:re), which is played by two
opponents with the forty cards of the “neapolitan” pack. HeartQuake is a
deterministic game: once a shuffling is distributed to the players, the out-
come of the game is decided. Moreover, its rules are so naive that it can
be played by children. Though the playing of the game is simple, it is quite
difficult for an external watcher to foresee the outcome of the game at any
moment because of the ease with which the fates of the game rapidly change
players. This is probably the main reason for the name and the fortune of
this game, and surely is the reason for my decision to start investigating it.
Such an investigation is the “heart” of this paper, which follows a descrip-
tion of the original game and a generalization with a formal modelling, some
observations on a bidimensional representation of the game, and a conclusion.

2. A simple game of cards

The traditional game HeartQuake is based on the 40 playing cards in the
so-called neapolitan pack. Two players are involved, let’s call them Neal and
Jack. After a shuffling, 20 cards are given to Neal, 20 to Jack. All cards are
unknown to both. A table is available to put cards on. Players are asked
to turn the card on top of their pack. Cards belong to two classes: “good”
cards (i.e., the four aces, the four twos, and the four threes), and “bad” cards
(i.e., the rest).
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Neal starts the game by turning the card on top of his pack. The turned
card is placed on an initially empty stack face upward. Then it is Jack’s
turn. This situation goes on while both players turn bad cards and results
in a balanced reduction of both players’ hoard, increasing the stack on the
table. The player who first exhausts their pack and cannot turn loses the
game.

As soon as a player, say Neal, turns a good card, say a g, the game enters
a second situation in which only Jack reduces his pack: in fact, Jack needs
to turn up to g of his cards in search of a good one, if he succeeds the roles
swap and it is Neal who needs to exit this dangerous condition. If Jack fails
to turn up a good card within g attempts all cards stacked on the table go
on the bottom of Neal’s pack. Whoever wins the cards, the first situation
starts again—they have to turn. If a player exhausts their pack in search of
a good card, the game is over and the opponent wins.

3. Generalization and formal definitions

We generalize the game considering a multiset (or pack) of 2 X n cards, P =
{c1,¢2,...,con}. With Cy, Cy, ..., Cy, such that U C; = P and C,, # 0.

Definition 1. The list of m + 1 classes
H: C(],Cl,...,cm
is called a HeartQuake game.

A card in Cj is called a bad card, or a zero. A card in Cy, g # 0 is called a
good card, or wherever its value is meaningful, a g.

Definition 2. Given a HeartQuake game, v; is the number of cards in its
C; class, 1 =0,...,m.

As a consequence, the number of different configurations for the pack can be
expressed as

p(vo,‘..jym)=< 2n.,ym):%

b
Vo, V1, - - ool

that is, as the number of permutations with repetitions.

Let ¢ be any card of a HeartQuake pack. Where this makes sense, we will
use ¢ to say that c is a covered card, and € to say the contrary.

Let Sy, Sy, and S; be three stacks:

Sy is the stack of covered cards owned by Neal,
Sy is the stack of covered cards owned by Jack, and

S; is the stack of uncovered cards on the table.
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Let S represent any of these stacks; then S means that S is a stack of
uncovered cards, while S means the opposite. An empty stack is indicated

as ().
Definition 3. Given a HeartQuake game, the ordered triple
(Sn,S1,5:)
is called a play configuration. X is the set of all possible play configurations.
Definition 4. Given a HeartQuake game H, the set
M = {(Sn,Ss,5:) € X |v(Sny) = v(Sy) =n}
is called the set of the matches (or points) for H.
Note that if (Sy, Sy, Si) € M then S, = ().

Definition 5. Given any HeartQuake game H, set Q) is the following set of
2m + 3 symbols:
Q = {dx, 95 aw: @> - - -, 4 475 B}-
Now let’s define the “«” sign, that is, an infixed “overloaded” operator,

or in other words, an operator having different meanings in different contexts.

Definition 6. Given any card c and any two stacks S, and S,, the “—” sign
is used to indicate the following five instructions.

c+ Sy (pick up): a “pop” from stack Si; a player picks up their top card,
c; if the stack is empty, a special “empty” card Ul is emitted.

¢+« ¢ (turn): covered card ¢ is turned and becomes uncovered card €.

S1 « ¢ (put down): a “push” of ¢ onto stack S;.

51— S (overturn): stack of uncovered cards S; is turned over and becomes
a stack of opposite ordered, covered cards.

Sy < Sy (tail after): Sy is tailed after Sy; then S, is emptied.

Of course, context determines which opcode has to be performed.

Such opcodes are clearly Turing machine-computable. We use the in-
structions in Table 1 to compute the output values ¢ € @ and & € X for
any input value z € X and ¢ € ). By means of this effective procedure it is
therefore possible to define the two functions § and w.

Definition 7. Let ¢ € Q and x € X. Let ¢ and & be the output values of
procedure hq with input values g and x. Then the functions

6:QxX—-Q and w:QxX—-X
are defined so that
8(¢,z) =¢ and w(g,z)=1.

Note that functions § and w are computable by construction.
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Table 1: Instruction table for procedure hq.

procedure hq: input value ¢€ Q,q=®or ¢g= q:,k €{0,1,...,m},
p=Norp=J;
input value let z = (Sy,S;,5:) € X;
output variables ¢ € Q and z € X;

inner variable —p= { y :}‘g: ﬁ

begin
if g= ® then ¢=®, ¢ =L, stop
c— S
if¢c¢=U then ¢=®, z=1U, stop
cC—¢
Si—¢
if c € Cp then
if k =0 then
t} = qua = (SN151151)1 stop
if k=1 then
i=4,
S5
B -5
S5
& = (Sn,S7,5)
stop
else ‘}=fl:—l, i"—‘(SNqSvat)v stop
if ¢ ¢ Cp then
é=q:p1 Zi:=(SN,SJ,S¢), stop
end

We are now able to introduce the formal model for HeartQuake.

Definition 8. Given a HeartQuake game H, automaton H is defined as the
4-tuple

(Xa Q76a UJ)

in which X is both the set of inputs and that of the outputs, @ is the set of
states, § : @ x X — @ is the next-state function, and w : Q x X — X is the
output function for H.

Table 2 shows the transitions for H. Note that finiteness of H depends
on finiteness of Q.
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Table 2: Transition table of the HeartQuake automata. The Is rep-
resent values picked up from the stack of the current player, U is the
symbol coming from an empty stack, and “-” is an impossible combi-

nation.
I
Q 0 1 m U
‘Igv q;} g ... q¢ @
qy ay ay gy @
ay 9 ql} g @
q2} v - v @
‘112v ‘11}/ ‘IIJ qar @
a3 a5 an v @
av |av. @ . @ @
¢ | v - dy @
an qx'i @ ... ¢ @
a |7 ey ... q% @
) s % 2w 2w 4B

Definition 9. A HeartQuake automaton H = (X, Q, 6,w) is given. For any
z € M, given a fixed initial state, say q?v, the series

(6i(7))ien 2nd  (wi(2));en

are uniquely defined and determined as follows

So(z) =q% we(z) =z
oi(z) = é(qy,z) wi(z) =wl(gy,z)
6a(z) = 68(6(q%,z),wlgy,z))  wa(z) = w(b(gy,2),wlqy, )
= 8(61(z),w1(z)) = w(b1(z), w1(z))
br41(2) - 8(6k(z), wi(z)) wWi1(z) = w(bx(z), wr(z))

Definition 10. Let H be a HeartQuake automaton and x € M one of its
matches; then the recursive procedure

{ bri1(z) = 6(0k(w), wi(z))

wi1(2) = w(bk(z), wi(2))
is called a HeartQuake system.

The recursive procedure in Definition 10 is the mathematical model of
a dynamical system. In particular, the series (wi(z));cny may be seen by
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an external watcher as a triple of meters oscillating in time in one of two
modes: “regular” and “critical.” Regular mode corresponds to a series of
bad cards: one meter goes up while the others go down in a steady, linear
way. Critical mode corresponds to a mixture of good and bad cards: the
meters may stop, go up and down, or reach a higher value instantaneously.
Due to these sudden earthquakes, predicting the outcome of the match at
any moment is often not an easy job. At a certain instant of the run, one
of the meters may be quite close to its 0 value, but a few turns later that
same meter may unexpectedly recover and dominate the other. So though
simple in its definition, the HeartQuake dynamical system is a candidate
for depicting complex behavior. Section 4 discusses an investigation of this
behavior.

4. Some properties of HeartQuake

What we have defined as a HeartQuake game in Definition 1 is the parameter
of a dynamic system. A mathematical object playing the same role as the
k in, for example, Sp41 = kSp(1 — S,,) that is, the logistic procedure. The
only difference is that this time the parameter is not a number but a list of
sets—in both cases, a choice of H or k is the choice of a member in a family
of functions of one variable. Likewise the role of a match £ € M (an initial
play configuration) is the same as that of a number Sy (an initial point).
Both systems are decided given a parameter and an initial configuration, in
the sense that one can observe their state at any time. So an investigation
of the properties of HeartQuake is conducted considering different values for
H and z.

This dynamical system admits “by construction” a fixed point in (@, U).

Claim 1. For any game H and point z: the only fixed point for H is (®,U).

Proof. (ab absurdo) Suppose that there is another fixed point for H; let
(A, ) be such a point. Then 3z € X and 3k € N such that §x(z) = A and
wr(z) = N, and (A, Q) # (P,U). Then there are two distinct cases: A = @
and A # @.

1. A = @. In this case 3l < k ' §(z) # @ and 6;41(z) = @, which results
in the two following cases (x means “any value”).

1.1 §(z) = gy. Then

wit1(z) = wlgy, 2)

which is only satisfied by ((), S7,S:). But in this case w41 (z) = U,
which is a contradiction.

ElzeXa'{ bua(z) = @ = b(g, 2) (1)

1.2 §(z) = ¢5. With a similar reasoning we reach the same conclusion.

2. A # ®. This results in the following two cases.
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2.1 A = é,(z) = ¢i. Then, by definition of fixed point,

beea(2) = 8(ak, 9) =
{ () = (g, 2) = €. &

This is a contradiction, because €2 = U contradicts the first equa-
tion, while  # LI contradicts the second one.

2.2 A = bp(z) = ¢4 With a similar reasoning we reach the same
conclusion. m

For any match attracted by the fixed point we define its length in Defini-
tion 11.

Definition 11. Given a HeartQuake automaton H and a point x € M, if
the set

{k € N| (8x(2), wi(w)) = (2, 1)}

is not empty, then the length of the game in z is defined as the minimum of
that set.

So we have found the first remarkable dynamic behavior of HeartQuake:
attraction towards its sole fixed point (®,L). Such behavior can be observed
in matches of any game because it is always possible to make up a biased
pack such that the game ends.

Are there dynamic behaviors other than this? For example, are there
matches which bring the players into “runaway” conditions or endless cycling
through a loop? In other words, we ask whether the function

Fy: M — {N,°7}
defined so that

‘N’ if z is won by Neal

Vo € M 3 Bylm) = { 3 if z is won by Jack

is a total function or not.

Looking for the answer to this question we take into consideration a sub-
family of games, that is, those with vy = 1 (i.e., games with one zero card).
It is possible to show that in this case all matches reach the fixed point, re-
gardless of the number of state transitions needed and so it is always possible
for Fy to issue an output value.

Claim 2. VH = (1,Cy,...,Cy) : Vo € M3k € N 3 (6p(z),wr(z)) =
(®,U).

Proof. A HeartQuake automaton Hi y, v,,..0. 18 given. Let k be an integer
such that > v; = 2k+1, and r is an integer such that 0 < r» < k. Moreover,
Vw € N. Let y* mean “w occurrences of whatsoever good cards,” and z mean
a certain good card. Then the following two game scenarios exist.
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1. First case: given any r < k,

step Sy S; S state
1) yroyk—T yr—lzyk—’r+1 () q?\f
o I 1) Oyk—r yk—'r—l-l yz'r—lz qj:v
Case 1: z=1
2 + 2) yk—'r yk—’l‘+1y2’l‘—1zo () q‘[}
Jack wins.
Case 2: z> 1
o + 2) yk—r yk—-r+1 er—le q]zv—l
Jack wins.
for any such r and k, (®,U) is reached.
2. Second case: given any r < k,
step SN 8i 5 state
D |yt oyroyt () ay
2r+1) | 2yt Oyt a
2 oL 2) yk—r Oyk—r yZTZ Q§
Case 1: z=1
2 + 3) yk—r yk—r erZO q?\f
y**720 v () ax
Neal wins.
Case 2: z>1
o + 3) yk—'r yk—r yZTZO q‘z]—l
2k +3) () () y*rz09°2 | g
2k + 4) 0 () y*z0y—2 )
Neal wins.

for any such r and k, (®,U) is reached. m

That is, a game with one bad card is intrinsically unbalanced and it is
decided by that card regardless of both the cardinality of the pack and the
number of its classes. The player with the bad card loses.

Note that Claim 2 shows both the existence of an unlimited series of
games for which all matches end, and the existence of games whose length is
unlimited.

The tool used for demonstrating this is a table tracing the orbits of the
two series in Definition 10; we call such a tool a “trace table.”

A number of other results about HeartQuake have been reached consid-
ering the games with m = 1 (i.e., games with only zeroes and ones). Such
games can be arranged into a matrix of games like the following one, in which
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Hia Hiz ... Hi2k41
M Hazo e (1) Ha 242
L= Hsa Hss ... — H32k+1
Le) 3) 5
11

’

(H4—i,i)i=1,2,3

(Hokt1,1, Hoky2,2, Hoks1,3, - - -) :
(Hok—i4)i=1,..26—1

Figure 1: Matrix M; may be scanned in three ways: (1) row by row,
(2) column by column, and (3) diagonal by diagonal. Each scanning
has a different dynamical interpretation.

only elements with an even number as the sum of their indices are present.
We call “M; games” those in M;:

H1,1 Hl,g H1,5 S o
HZ 2 H2,4 HZ 6

Ml - H3 i ’ H3,3 H3,5 . ) : (3)

»

Such a matrix may of course be scanned in many ways: row by row,
column by column, and through the diagonals. These paths correspond to a
number of experiments that may be carried out (see Figure 1. For example,
scanning (3) row by row, left to right means considering the influence of the
arrival of more and more aces in a fixed population of zero cards. Proceeding
column by column, up to down, means considering the effect of the arrival
of more and more zero cards in a fixed population of aces. Considering the
secondary diagonals, left to right, means investigating the influence of that
ratio in packs with a fixed size. These experiments have been carried out,
and the seemingly most fruitful, row by row, is discussed in section 4.1.

4.1 Scanning M; row by row

Let us consider the rows in M;. Claim 2 implies that games H; op41,k € N,
that is, games in its first row, are fully determined. It can be formally proven
that this holds also for its second row, that is, for Hs 542, & € N. This seems
less intuitive than with vy = 1 because with two zero cards there is always
a number of balanced matches in which the players have one zero card each.
For these two families it is possible to draw pictures like those in Figure 2,
which are diagrams with the lengths of all their matches for some values of k.
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Figure 2: Diagram of lengths of games Higp41 and Haopqz, for
k = 0,...,22. The y-axis represents lengths, that is, the number
of transitions from initial state g% to the first occurrence of ®. Ab-
scissas represent all possible matches in the family, arranged so that a
game corresponding to a certain k is placed in interval [k, k + 1[, with

its matches lexicographically ordered.

lengths

Diagram of Lengths for H(3,2k+1), k=1,,.,,22

250 T T T T T T T T T
¥ o148
200 g"% ]
# '
150 % 1
22
2
100
&3
Yt s
50 e:ii
...... T TP P T PSP
50 ; i i ,
0 5 10 15 20 % 30 3 4 45 50

matches

Figure 3: Diagram of lengths of games Hj, = Hgop41, k = 0,...,22.
Again, all matches in Hj lie in interval [4,7 + 1[, lexicographically
ordered. Along line y = —10, all matches that don’t end within a
certain threshold value are plotted. Such matches may last more, or
may have entered a cycle.

Considering the third row in matrix (3), Hsart+1,k € N, and trying to
draw a diagram of lengths, we find that for some values of k the length of the
game seems to be out of reach for any number of iterations. This is shown in
Figure 3, wherein games which appear to be longer than a threshold value are
plotted with y = —10. It seems that the degree of uncertainty related with
the intrinsically unbalanced case of a pack with three zero cards drives the
system into a novel kind of behavior. In order to investigate the phenomenon,
first we sieve the “suspicious” points with a diagram of length; one such point
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Table 3: Trace table for ((1101), (0110), ()), that is, a match in Hss.
Note that this point enters (at the third iteration) a period-6 cycle.

step SN S; S; | state
1) 1101 0110 () %
2) 101 0110 1 q
3) 101 110 10 %
3) (10110 110 () a%
4) 0110 110 1 a
5) 0110 10 11 ax

6) 110 10 110 | 45
6) 110 10110 () 4
7) 110 0110 1 ax
8) 10 0110 11 qy
9) 10 110 110 | 4%
9) | 10110 110 () a5

is for example ((1101), (0110), ()), a match for game Hsz 5. We can easily show
that this point falls into a cycle by means of trace table showing the first
nine orbits of that point as in Table 3.

As a consequence, the HeartQuake family of dynamical systems has at
least two remarkable dynamic behaviors: attraction towards its fixed point
and attraction into cycles. Cycles appear in the third row of (3) and seem
to be related with the uncertainty in the process of predicting the outcome
of a match of a given game.

Having shown the existence of cycles, we can now define their period.

Definition 12. Given a HeartQuake automaton H and a point v € M: if
Jk € N such that the set

Pi(z) = {l € N| (6k41(2), weri(z)) = (8(2), wr(2))}

is not empty, then it can be shown that these sets do not depend on k and
so collapse to one subset of N; then the period of the game in z is defined as
the minimum of that set and indicated as |H(z)].

Let’s consider sub-family Hsax41,k € N. As suggested by Figure 3, it
seems that in this case suspicious points are regularly distributed. It can be
proven that all such points are cycles. Figure 4 shows their distribution and
the length of their period. The regularity found in Figure 4 brings us to the
two results in Claims 3 and 4.

Claim 3. Vk € N,H3’5+10k = (X,Q,é,w) :dz e X o ngy5+10k(fII)| =
8k +6.
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Figure 4: The cycles of games H3 2541,k € IN and their period.

k times

T ¥
Proof. Let k € N. Consider the following match (1* means 11 ... 1):

((1013k+3012k—2), (1k+3014k)’ 0),

that is, a match of game Hssq10. It is easy to show that this configuration
enters a cycle whose period is 8k + 6:

step SN S; S state

1) 1013k+3012k—2 1k+3014k () Q?V

2) 013k+3012k—2 1k'+3014k 1 q}

3) 013k+3012k-—2 1k+2014k 11 qIIV

4) 13k+3012k—2 1k+2014k 110 q.[}

4) 13k+3012k—2 1k+2014k+20 () q_[}

2k + 8) 12k+1012k—2 014k+20 12k+4 q‘lj

2k + 9) 12k+1012k—212k+40 14k+20 () q(l)\l

2k + 9) 12k+1014k+20 14k+20 () q?V

6k + 11) 014k+20 12k+10 14k+2 QJl\f

6k +12) ein! 12510 14820 | gf

6k + 12) 1454+20 [2Hg¥+2g () 4

10k + 14) 12k+10 014k+20 14k+2 q}
10k+ 15) 12k+1014k+20 14k+20 () q?V 7]

Claim 3 shows that, for any integer k, it is always possible to find a cycle
whose period is greater than k, that is, there exist cycles whose period is as

big as one likes.
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Claim 4. Vk € N, Hs 51106 = (X, Q, 6, w) : (o, z1, . .
{07 1, ey k— 1} . |H3:5+10k(.’£i)| = 8](3 + 6.

S Th_1) € MRS Vi €

Proof. Let k € N. Consider game Hjz 51105 again. Then Vi € N,i < k,
consider the following initial play configurations:

@ = ((1i+1013k+3+i012k—2—2i)7 (1k+3+2i014k—2i)’ ()). (4)

All such points enter a cycle whose period is 8k + 6:

step Sn S; S Q

1) 1i+1013k+3+’£012k—2—2i 1k+3+2i014k—2i _ q
2 + 3) 013k+3+l:012k—2—21j v1k+2~|—i(')14lk~2i 12i+2 &
2 4 4) 12:+f’>+1.012:—2—21v 1k+2+2(])cl4k—_2112;+20 _ q,(}
1 +3+z012 —2—21 1 +2+1014 +20 _ qg
2k + 47 + 8) 12k+1AOl2k—2—.2i 014k+20 12k+4+2i q}
2k+ 4Z+9) 12k+1012k—2—2212k+4+210 14k+20 _ q?v
2k +4i+9) s 1 [ek+2g g%
6k + 4i + 11) 014+20 1264+ 14k+2 | gl
6k +47, + 12) 14Ic+20 12k+10 14k+20 qg
6k+47, o 12) 14k+20 12k+1014k+20 . q‘(}
10k + 47 + ]_4) 12k+1q 014k+20  14k+2 q‘ll
10k + 47 + 15) 12k+1) 14420 4k+20 | g0
10k + 4i + 15) b U S ¢ 146420 g%

Note how, at row 2k 447+ 9, 7 disappears from the stacks and all points
enter the same cycle, exactly that of Claim 3. =

Claim 4 shows that for any integer k there exists a HeartQuake game in
which at least k matches enter a cycle whose period is greater than k.

Note that matches in (4) are such that Neal has two zeroes in his pack.
It can be shown that there exists a dual series of k£ matches in which Neal
has only one zero. Experimentally it seems that no other matches fall into
cycles; if this is true, then also this game is fully decided—one only has to
inspect the match rather than running the game procedure on it in order to
predict its outcome.

What happens for game Hy 042,k € IN, that is, for games in the fourth
row of (3)7 A graph of lengths shows that in this case cycles also appear (see
Figure 5). But this time their distribution seems to be completely random
and so is unpredictable. The degree of uncertainty of a game with at least
four zeroes is such that prediction of its long term behavior or eventual
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lengths Diagram of Lengths for H(4,2k+2), k=1,..,,10
250 T T T T T
F ;
A3
200 “.,'f
&
&,
%
10 w, e &
o s
2 2 a2
100 R
K 3

¥ 4
»

g
4
P
e
[
T
s

e

natches

Figure 5: Length of games Hy opq2,k =0,...,12.

outcome is no longer possible. In other words, HeartQuake is another simple,
deterministic system which, under certain conditions, behaves unpredictably
or randomly.

4.2 Other paths

A number of other sub-families of H,,,, have been considered, that is, a
number of other paths into matrix (3) have been explored. All these paths
exhibit cycles whose number and period seem completely random. In no
other case except scanning row by row have we found the equilibrium point
between decidability and chaos that can be observed at the third row of M.
For example, considering games in

(HZk—i,i)k=1’2m_ =12 ..., 2k—1

we move the attention from games in the rows of matrix (3) to those in the
secondary diagonals. Note that this time the kth element of the series is not
an infinite series itself, but is made up of 2k — 1 games. An interpretation
for this family is: consider increasing populations of cards, for every fixed
population we change the ratio of good over bad cards and see what happens.
For n = 1 and 2 all matches end, for k& = 3 there is only one point which
enters a cycle, and for k£ > 3 the number of cycles and their period seem to
be completely unpredictable. Figure 6 shows an excerpt from the “one-page
dictionary” for cycles in this family.

5. Images of HeartQuake

Given a HeartQuake automaton H = (X,Q,6,w) and a point z € M, the
recursive procedure in Definition 10 is fully decided. In some sense, all the
information of a match resides in its initial play configuration. Every such
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Figure 6: A “one-page dictionary” for cycles in games
(Hi—jj)ieoa o260 3 = 1,...,4 — 1. The ¢ axis represents the num-
ber of cards in the packs, the 7 axis is the number of aces in the pack,
and gray levels express periods—the whiter the gray level, the longer
the cycle. No regularity appears to be detectable.

point is made of two meaningful fields, that is, the two stacks Sy and Sj.
These two data structures may be simply regarded as strings of digits in a
base-m + 1 numeral system. As a consequence, a mapping can be set up
between the stacks in a match and two integer numbers b(Sy) and b(Sy).
Such numbers can be in turn interpreted as a row and a column index into
a matrix of pixels—an image. It is therefore possible to set up an injective
mapping between initial play configurations and pixels of a matrix of p x p
pixels, p being

p =max{y € N|y = b(Sy), (Sn,Ss,5) € M}.

Pixel (z,y) will be turned on if there exists a match (Sy,Sy,()) so that
y =b(Sy) and z = b(S;). Moreover, it is possible to map some information
regarding a match with the natural attribute of pixels, that is, color. For
example, the length of a game won by Jack may be represented with different
tones of green, red may be used for Neal, and gray levels may represent cycles.
Figure 7 shows the image corresponding to game Hy .

5.1 Images of games with two classes of cards

First we focus our attention on M;j-games, that is, games with m = 1 or
consisting of zeroes and ones. Consider a matrix of graphs arranged in a way
similar to matrix (3), for example:

G(0,2) G(0,4) ...
G(1,1) G(1,3) G(1,5)
G(2,0) G(2,2) G(2,4) ...
G, = G(3,1) G(3,3) G35 ... |- O
G(4,0) G(4,2) G(4,4)
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(100,010)

Figure 7: An image with all matches in Hy 9. Match (z,y) is mapped
onto [z,z 4+ 1[x[y — 1,y[ in order to indicate the outcome. The
light gray pixel (2,4) pointed to by the arrow corresponds to match
((100), (010), ()), which falls into a period-6 cycle.

Figure 8 depicts 15 images of G; which suggest a number of observations.
Let 7 and ¢ be any two integers such that r 4 ¢ is even.

Observation 1. For any r > 0 and ¢ > 0: G(r,c) can be partitioned into
four equal blocks.

This is clearly visible, for example, in the two last rows of Figure 8.

Observation 2. For any r and c: the pattern represented in G(r,c) is one
of those contained in G(r, ¢+ 2), that is, every graph is fully contained in its
right neighbor. (This is shown as an example in Figures 8 and 9.)

Observation 3. The four patterns in G(r,c) are the same as those in the
following images: G(r — 2,¢), G(r — 1,¢ — 1), and G(r,c — 2). Patterns are
arranged according to the following scheme:
G(r—1,c—1) G(r,e—2)
G(r—2,¢) G(r—1,c-1)"

that is, a 2x 2 matrix in which the diagonal contains the one repeated pattern.
Another way to represent Observation 3 is
G(r,c) =G(r—2,¢) +2G(r — 1L,c — 1) + G(r,c — 2). (6)

The validity of this property seems to be strenghtened by the fact that if
you consider the number of matches in a HeartQuake game with two classes,
p(r,c) = & then

rle! 2

p(T‘,C) =p(r—2,c)+p(c,r—2)+2Xp('r—l,?"—-l),
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Figure 8: Images of 15 HeartQuake games plotted with the same size.

Light gray pixels fall into cycles.
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] || I-I

Figure 9: Patterns of games Hs 3, Ha s, and Ha 7.

that is, the number of matches of the four games equals that of G(r, ¢). This
is true only for the patterns depicted, outcomes are different in general.
Note that (6) represents a relationship between games made of r + ¢
cards and games with 2 cards less. Iterating the process, we “decompose”
any G(r,c) into a number of atomic patterns, or patterns that cannot be
further decomposed. Such patterns are all arranged in a frame made of the
first two rows and the first two columns of matrix (5). Moreover, given any
r and ¢ greater than 2, the decomposition of G(r,c) is a linear combination
of games G(0,1), G(1,7), G(4,0), and G(4,1) with ¢ < ¢, and 7 < r. For
example, G(8,6) can be “factored” into the following atomic patterns:

G(8,6) = G(0,6) + 28 x G(0,4) 4 210 x G(0,2) + 210 x G(2,0)
+420 x G(1,1) + 112 x G(1,3) + 8 x G(1,5) + 70 x G(4,0)
+196 x G(3,1) + 15 x G(6,0) + 50 x G(5,1) + G(8,0) + 6 x G(7,1)

Figure 10 shows the distribution of the basic bricks of G(8,6) within matrix
(5), while Figure 11 shows its decomposition tree.

G(0,2)*° G(0,4)* G(0,6)"
N G(1,1)#° G(1,3)'*? G(1,5)8 7
2,0 . . 1
G(3’1)196 T
G(4,0)™ T
G(5,1)%0 T
G(6,0)' T
G L T

G(8,0)! — — e % «  G(36)

Figure 10: The basic blocks of image G(8,6). G* means k occurrences
of pattern G. A - means “pattern not involved.”
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Figure 11: Decomposition tree for image G(8,6).

Observation 4. Vr,c: G(r,c) is specular to G(c,r), that is, G and its trans-
pose depict equal patterns up to a resizing and a rototranslation.

This is clearly visible comparing couples of games in Figure 8. Figure 12
shows three such couples.

Observation 5. Some images depict a certain degree of self-similarity.

As an example see Figure 13, which depicts G(8, 6).

5.2 Images of games with more than two classes of cards

In this section we take into consideration games in M, with k£ > 1, that is,
games in the k-dimensional extension of matrix (3), or games consisting of k
classes of cards.

A number of observations made for games with two classes of cards can
be extended to those with more classes. For example, images depicting M-
games seem to consist of nine blocks. Such blocks represent patterns of other
games according to the following rule of decomposition:

G(i,j,k) =2G(Gi — 1,5,k — 1)+ 2G(i,j — 1,k — 1) +2G(i — 1,5 — 1,k)
+G(i,5 — 2,k) + G(i — 2,5, k) + G(3, 5, k — 2). (7)

As an example, Figure 14 shows image G(6,4,2) indicating its first-level
blocks. Moreover, note G(6,3,1) and the third block in the first row of



110 Vincenzo De Florio

S BN :
i %.*;, i YL .
: R TR ML
] » TR Y kL
Haz2(1) , 97 X 97 Hsoye(r) , 127 x 127

2

s T TR

Hay2) 5 128 X 128 | Hygoyro(1) , 128 X 128 | Heoysr) , 128 x 128

Figure 12: A pack of fourteen cards is considered. FEach image is
labelled with its game and its original dimension. Ignoring dimen-
sion and rotation, images G(7,7) and G(j,1) seem to depict the same
pattern.

Figure 13: Image G(8,6).

G(5,3,2), that is, G(5,2,1). They both seem to draw a “gingerbreadman”
like pattern [3] (see Figures 15 and 16, respectively).

In games with a class consisting of exactly two cards a collapse phe-
nomemon occurs. One of the blocks of the decomposition is the pattern of
a game with one class less than in the original, that is, if the original game
was in My, that block belongs to Mj_;. This phenomenon is clearly observ-
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Figure 14: Image G(6,4, 2). Note the self-similarity. First-level blocks
of the decomposition are G(6,4) (1.), G(5,4,1) (2.), G(6,3,1) (3.),
G(4,4,2) (4.), G(5,3,2) (5.), and G(6,2,2) (6.).

able in Figure 14. The block labelled as G(6,4) belongs to M, and further
decomposing it following (6) we encounter blocks in My. An even stranger
phenomenon occurs in games like G(6,3,1) and G(5,2,1), that is, games
with v, =1 (see Figure 15). If we apply (7) to G(6,3,1) we get

G(G, 3, 1) = 2G(5, 3) + 2G(6, 2) +2G(5, 2, l)
collapse to M;
+G(6,1, 1) + G(4, 3, l) + G(G, 3, —1) .
N e

impossible!

In other words, the decomposition rules still apply, and impossible “imagi-
nary” blocks like G(6,3, —1) simply disappear.

Can we generalize the decomposition rule to M}, games for any k? Ex-
perimental results suggest that, for any integer £ > 1, a k-class, p-card game
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Figure 15: Images G(6,3,1) and G(5,2,1). Note the similarity and
the empty (“imaginary”) block on the right top of both images.

Figure 16: A “gingerbreadman” like pattern [3] found in image
G(6,4,2).

can be decomposed into a matrix of & x k blocks. This decomposition can
be made as follows: k single blocks of p — 2 cards each are disposed through
the main diagonal and %‘—12 double blocks of p — 2 cards each are sym-
metrically disposed with respect to the main diagonal. More precisely: given
I, ={0,1,...,k—1} aset of indices, we can denote with {7} the generic sin-
gleton and with {7, 7} the generic subset of two elements of I,. Experimental
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results show that the general decomposition rule is

G(VO; Viyens )Vk—l) = Z G(Va<i7 Vi — 2a Vi<b<k)
{i}Cli
+2 Y GVacis¥i — Lvicoj, Vi — Lvjceck).  (8)
{6.}CI1,i<g

Relation (8) is consistent with previously described relations (6) and (7).
Likewise, it again represents a relationship between games made of r+c¢ cards
and games with 2 cards less. We can iterate the process producing patterns
that are “atomic” for Mj. Such patterns inherit the same distribution of
those in Mj: they lie in the first two superficial strata of the hypercube.
Moreover, given any game in My, its basic patterns are localizable with the
same method shown in Figure 10.

6. Conclusions and future directions

We have just described a dynamic system whose simple formulation hides
a complex behavior which often makes it very hard to predict the outcome
of a run ahead of time. A number of results have been described including
the existence of one fixed point and of cycles. The existence of runs whose
dynamic behavior is detectable only after a number of iteration steps as
big as one likes has also been shown. A straightforward mapping of run
procedures into bidimensional graphics has been introduced. A number of
morphological properties have been observed, including self-similarity and a
sort of factorizability. Future directions may include the following.

e Further generalizations, for example, considering a ring of r players,
with a control token flowing clockwise among the players. The player
that has the token picks up a card from their pack: if it is a bad card,
they simply pass the token to the next player. If it is a good card, then
that player and the next one fight for the hoard on the table with the
rules of standard HeartQuake. This may result in multidimensional
images.

e Further investigations through other paths in My, k > 1 in search of
unknown phenomena and behavior. Such studies should necessarily
take advantage of sharp algorithms and of parallel computing.

e Applications in other fields, including data encryption and computer
music.

e Analysis of the meaning of the properties observed in HeartQuake’s
images.

e Investigation concerning relationships with cellular automata.
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