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The H ea r tQuake Dynamic System
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Abstract. The dynamic system presented in this pap er is derived
from a deterministic game procedure based on a pack of playing cards
and two players. We describe the game, give a generalizat ion with its
mathematical model, and show some properties of the related dynamic
system. A bidimensional geometrical representation is also proposed
which exhibits morphological propert ies, for example, self-similarity.

1. Introduction

Hear tQuake is my translation of the name of a tradi ti onal Italian game of
cards, "strappacuore" (pronounced strap' pa'kow:re), which is played by two
oppo nents wit h the fort y cards of the "neapolit an" pack. HeartQuake is a
deterministic gam e: once a shuffling is distributed to the players, t he out 
come of the game is decided . Moreover , it s ru les are so naive that it can
be played by children . Though the playin g of the game is simple, it is quit e
difficult for an extern al watcher to foresee the outcome of the game at any
moment because of the ease with which the fates of the gam e rapidly change
players. This is probably the main reason for the nam e and the fortune of
this game, and surely is t he reason for my decision to st art invest igating it .
Such an investi gation is the "heart" of this paper, which follows a descr ip
t ion of t he original game and a gener alization wit h a form al modelling , some
observations on a bidimensional represent at ion of the game, and a conclusion .

2. A simple game of cards

The tr aditional game HeartQuake is based on the 40 playing cards in the
so-called neapolitan pack. Two players are involved , let 's call them N eal and
Ja ck. Aft er a shuffling , 20 cards are given to Nea l, 20 to J ack. All cards are
unknown to both. A t abl e is available to put cards on. P layers are asked
to turn the card on top of their pack. Cards be long to two classes: "good"
cards (i.e. , the four aces, the four twos, and the four threes) , and "bad" car ds
(i.e., the rest ).
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Neal starts the game by t urning the card on top of his pack. The t urned
card is placed on an initi ally empty stack face upward. T hen it is Jack's
t urn . This sit uation goes on while both players turn bad cards and results
in a balanced red uction of both players ' hoard, increasing the stack on the
table. The player who first exhausts their pack and cannot t urn loses the
game.

As soon as a player , say Neal, turns a good card, say a g, the game enters
a second sit uation in which only Jack redu ces his pack: in fact, Jack needs
to turn up to 9 of his cards in search of a good one, if he succeeds the roles
swap and it is Neal who needs to exit this dangerous condition. If Jack fails
to turn up a good card within 9 attempts all cards stacked on t he table go
on the bottom of Neal's pack. W hoever wins the cards , the first sit uation
starts again-they have to turn . If a player exhausts their pack in search of
a good card , t he game is over and the opponent wins .

3. Generalizat ion and formal definitions

We generalize the game consider ing a mul ti set (or pack) of 2 x n cards, P =
{C1, C2,· ··, C2n}' Wit h Co,C1,"" c.; such that U~oCi = P and o.; i- 0.

Definition 1. The list of m + 1 classes

is called a HeartQuake game.

A card in Co is called a bad card, or a zero . A card in Cg , 9 i- 0 is called a
good card, or wherever its value is meaningful, a g.

Definition 2. Given a HeartQ ualce game, Vi is the num ber of cards in its
C, class, i = 0, .. . ,m .

As a consequence, t he numb er of different configurations for the pack can be
expressed as

that is, as the number of permut ations wit h repeti tions.
Let c be any card of a HeartQu ake pack. W here t his makes sense, we will

use s;; to say that c is a covered card, and c to say the cont rary.
Let SN, S], and S; be three stacks:

SN is the stack of covered cards owned by Neal,

Sj is the stack of covered cards owned by Jack, and

S, is the stack of un covered cards on the table.
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Let S represent any of these stacks ; t hen S. mean s that S is a stack of
un covered cards , while 5 mean s t he opposite. An empty st ack is indicated
as O.
Definition 3. Given a HeartQuake game, the ordered trip le

(S N' Sj , St)

is called a play configuration . X is the set of all possible play con figurations .

Definition 4. Given a HeartQuake game H , the set

M = {(SN' Sj , St) EX IV(SN) = v(Sj) = n }

is called the set of the matches (or po ints) for H .

Note that if (S N, Sj , St) EM then S; = O.
Definition 5. Given any HeartQuake game H , set Q is the following set of
2m + 3 sym bols:

Q { o 0 1 1 Tn Tn "' }= qN' qj , qN' qj , . . . , qN' qj , "" .

Now let 's define the " f-" sign , that is, an infix ed "overloaded" op era tor ,
or in other words , an operator having different meanings in different contexts.

Definition 6. Given any card c and any two stacks S I and S2, the "f-" sign
is used to indicate the following five instru ction s.

c f- SI (pick up) : a "pop" from stack S I; a player picks up their top card,
c; if the stack is em pty, a special "empty" card U is emit ted.

C f- f (turn) : covered card f is turned and becomes uncovered card c.
SI f- c (put down) : a "push" of c ont o stack SI '

S I f- SI (overturn): st ack of uncovered cards SI is turned over and becomes
a stack of opposite ordered, covered cards.

S I f- S2 (tail after) : S2 is tailed after S I; then S2 is emp tied.

Of cour se, context det ermines which op code has to be performed .
Such op cod es are clearly Turing machine-computable. We use the in

st ruc t ions in Tab le 1 to compute the ou tput values q E Q and x E X for
any input value x E X and q E Q. By means of this effective pr ocedur e it is
t herefore possible to define the two funct ions 8 and w .

Definit ion 7. Let q E Q and x E X . Let q and x be the output values of
pro cedure hq with input values q and x . Then the functions

8 : Q x X ---> Q and w : Q x X ---> X

are defined so that

6(q,x) = q and w(q, x) = x.

Note that functions 8 and ware computable by const ruct ion.
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Table 1: Instruction table for procedure hq.
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procedure hq: input value q E Q,q = 4> or q = q;, k E {O,1, .. . ,111}.
p= N or p = J;

in p u t value let x = (S-N'S-J ,S,) E X;
out p u t variables qE Q and :i: E X ;

. • b l { N ifp = Jinner varra e ....,p = J if p = N

begin

if q = 4> then q= 4>, :i: = U, stop

£ ...... Sp

if £ = U then q= 4>, :i: = U, stop

S, ...... c
if c E Co then

if k = 0 t hen

q= q~P ' :i:= (SN,SJ ,S,), stop

if k = 1 then
q= q~P

S, S,

S, S~p

S~p S,

:i: = (SN,SJ,S,)

stop
else q= q;-l , :i: = (SN, SJ, S,), s t op

if c ¢ Co then

q= q~P ' :i: = (SN,SJ,S,), stop

end

We are now able to introduce the formal model for HeartQuake.

Definition 8. Given a HeartQuake game H, automaton H is defined as the
4-t uple

(X , Q,b,w)

in wliicl: X is botli the set ofinputs and that of the outputs, Q is the set of
states, b : Q x X -4 Q is th e next-state function, and w : Q x X -+ X is th e
output function for H.

Table 2 shows the transitions for H . Note that finiten ess of H depends
on finiteness of Q.
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Table 2: Transit ion table of the HeartQuake automata. The Is rep 
resent values picked up from the stack of the current player, U is the
symbol coming from an empty stack, and "-" is an impossible comb i
nation.

I
Q 0 1 .. . m U

q~ q~ q} . .. qj <P
q~ q~ q1 ... q'N <P
q1 q~ q} . .. qj <P
q} q~ q1 ... q'N <P
q~ q1 q} . .. qj <P
q] q} q1 .. . q'N <P

q~
i -j q} qi' <PqN .. .

qi i -I q1 q'N <PqJ .. .

q'N q'N-
j

q} .. . qi' <P
q'J' m-I q1 q'N <PqJ ...
<P - - - - <P
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Definition 9. A HeartQuake automaton ?t = (X , Q, 15,w) is given. For any
x E M, given a fixed initial state, say q~ , the series

(15i (X));EN and (w;( X));EN

are uniquely defined and determin ed as follows
15o(x) = q~ wo(x)
15 j(x) = 15(q~,x) Wj(x)
152( x) = 15(15(q~, x),w(q~ , x)) W2( X)

= 15(OJ (x), Wj (x))

= x
= w(q~ , x)
= w(o(q~,x), w(q~ , :c ) )

=w(Oj(x),Wj(x) )

D efinition 10. Let H be a HeartQua ke automaton and x E M one of its
matches; then the recursive procedure

is called a Hear tQuake syst em.

The recursive procedure in Definition 10 is the mathemati cal model of
a dynamical system. In particular, the series (w;(x));EN may be seen by
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an external watcher as a triple of meters oscillating in time in one of two
modes: "regular" and "critical." Regular mode corresponds to a series of
bad cards: one meter goes up while the others go down in a steady, linear
way. Critical mode corresponds to a mixture of good and bad cards: the
meters may stop, go up and down, or reach a higher value instantaneously.
Due to these sudden earthquakes, predicting the outcome of. the match at
any moment is often not an easy job. At a certain instant of the run, one
of the meters may be quite close to its 0 value, but a few turns later that
same meter may unexpectedly recover and dominate the other. So though
simple in its definition, the HeartQuake dynamical system is a candidate
for depicting complex behavior. Section 4 discusses an investigation of thi s
behavior.

4. Some properties of HeartQuake

What we have defined as a HeartQuake game in Definition 1 is the parameter
of a dynamic system. A mathematical object playing the same role as the
k in, for example, Sn+l = kSn(1 - Sn) that is, the logistic procedure. The
only difference is that this time the parameter is not a number but a list of
sets-in both cases, a choice of H or k is the choice of a member in a fami ly
of functions of one variable. Likewise the role of a match x E M (an initial
play configuration) is the same as that of a number So (an initial point) .
Both systems are decided given a parameter and an initial configuration, in
the sense that one can observe their state at any time. So an investigation
of the properties of HeartQuake is conducted considering different values for
Hand x.

This dynamical system admits "by construction" a fixed point in (<1>, U).

Claim 1. For any game H and point x: tbe only fixed point for His (<1>, U).

Proof. (ab absurd0) Suppose that there is another fixed point for H; let
(~,n) be such a point. Then 3x E X and 3k E N such that Ok(X) = ~ and
Wk(X) = n, and (~,n) =j:. (<1>,U). Then there are two distinct cases: ~ = <1>
and ~ =j:. <1>.

1. ~ = <1> . In this case 3l < k 3' Ot(x) =j:. <1> and Ot+l(x) = <1>, which results
in the two following cases (* means "any value").

1.1 Ot(x) = qiv. Then

3z E X 3' { Ot+l(x) = <1> =*o(qiv,z) (1)
Wt+l(x ) = w(qN' z)

which is only satisfied by (O,S1,St) . But in this caseWt+l(x) = U,
which is a contradiction.

1.2 Ot(x) = qj. With a similar reasoning we reach the same conclusion.

2. ~ =j:. <1>. This results in the following two cases.
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2.1 t,. = Dk(X) = qiv. T hen , by definit ion of fixed point,

{
Dk+l(X) = D (q~, Q) = qiv
Wk+l(X ) = w(qN ,Q) = Q.
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(2)

This is a contradiction, because Q = U contradicts the first equa
tion, while Q =I U cont radicts the second one .

2 .2 t,. = Dk(X) = qj. With a similar reasoning we reach the same
conclusion. _

For any match attracted by the fixed point we define its length in Defini
tion 11.

Definition 11. Given a HeartQ uake automaton 11. and a point x E M, if
th e set

is no t empty, then the length of the game in x is defined as the minim um of
that set .

So we have found the first remarkable dynamic behavior of HeartQuake:
at traction towards its sole fixed point (<T> , u). Such behavior can be observed
in matches of any game because it is always poss ible to make up a biased
pack such that the game ends.

Are there dynamic behaviors other than this? For example, are there
matches which bring the players into "runaway" conditions or endless cycling
through a loop? In other words , we ask whether the funct ion

FH : M ----> { 'N', ' J '}

defined so t hat

{
'N' if x is won by Neal

"Ix EM : FH(x) = ' J ' if x is won by Jack

is a total function or not .
Looking for the answer to this question we take into consideration a sub

family of games , that is, those with I/o = 1 (i.e. , games with one zero card).
It is possible to show that in this case all m atches reach the fixed point, re
gardless of the number of state t ransit ions needed and so it is always poss ible
for FH to issue an output value.

Claim 2. VH = (1, Gl , . . . , Gm ) "Ix E M 3k E N 3' (Dk (X ),Wk(X ))
(<T> , U) .

Proof. A HeartQuake auto maton 11.1 , v l , V2 , .. . , Vm is given . Let k be an integer
such tha t I:~l t/ ; = 2k +1, and r is an int eger such that 0 < r :s; k , Moreover,
Vw EN. Let yWmean "w occurrences of whatsoever good cards ," and z mean
a cer tain good car d. Then the following two game scenarios exist .
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1. First case : given any r :::; k,
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step SN SJ St state

1) yrOyk-r y r-1 z yk - r+1 0 qCJv

2".+ 1) Oyk-r yk - r+1 y2r-1 z qiv
Case 1: Z= 1

2".+ 2) y k- r y k-r+1y2r-1 z O 0 q~
Jack wins.

Case 2: z> 1
2r-+ 2) y k- r yk -r+1 y 2"- l Z0 z-lqN

Jack wins.

for any such". and k, (<1> , U) is reached .

2. Second case: given any T :::; k,

step SN S.J s, stat e

1) yr zyk- r yrOyk - r 0 qCJv

2".+ 1) z yk -r Oyk-r y2" YqN
2T + 2) yk-r Oyk-r y 2rz qJ

Case 1: z = 1
2".+ 3) yk -r yk-r y2r zO qCJv

y k+rzO y k- ,' 0 qCJv
N eal wins.

Case 2: z> 1
2".+ 3) y k-r y k-r y 2rzO z-lqJ

2k + 3) 0 0 y 2" zOy2k- 2r y
qJ

2k + 4) 0 0 y 2" ZOy2k-2 ,' <1>

N eal wins.

for any such ". and k , (<I> , U) is reached . •

That is, a gam e wit h one bad card is intrinsically unb alanced and it is
decided by tha t card regardless of both the cardina lity of t he pack and the
number of it s classes. The player with the bad card loses.

Not e that Claim 2 shows both the existe nce of an unlimited series of
games for which all mat ches end , and t he existence of games whose length is
unlimited .

T he to ol used for demonst ra ting this is a t able tracing the orbi ts of the
two series in Definition 10; we call such a too l a "trace t abl e."

A number of other results about Heart Quake have been reached consid
ering t he gam es with m = 1 (i.e., games with only zeroes and ones). Such
games can be arranged into a matrix of games like the following one, in which
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Figure 1: Matrix M 1 may be scanned in three ways: (1) row by row,
(2) column by column, and (3) diagonal by diagonal. Each scanning
has a different dynamical interpretat ion.
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only elements with an even number as the sum of the ir indices are present.
We call "M 1 games" those in M 1 :

(3)

Such a matrix may of course be scanned in many ways: row by row,
column by column, and through th e diagonals. These path s corres pond to a
number of expe riments that may be carr ied out (see Figur e 1. For example,
scanning (3) row by row, left to right means considering the influence of the
arr ival of more and mor e aces in a fixed popul ation of zero cards . Proceeding
column by column, up to down , means considering the effect of th e arr ival
of mor e and more zero cards in a fixed population of aces . Considering the
seconda ry diagon als , left to right , means investigating the influence of th at
ratio in packs with a fixed size. These experiments have been carried out ,
and the seemingly most fruitful, row by row, is discussed in section 4.1.

4.1 Scanning M1 row by row

Let us consider the rows in ]\111 . Claim 2 impli es that games 'H.1,2k+ 1, k EN,
that is, games in its first row, are fully determined. It can be formally proven
that this holds also for its second row, that is, for 'H.2,2k+ 2 , kE N . T his seems
less intuitive than with I/o = 1 because wit h two zero cards there is always
a number of balance d matches in which the players have one zero card each .
For th ese two families it is possible to draw pictures like those in Figure 2,
which are diagrams with the lengt hs of all the ir matches for some values of k.
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F igure 2: Diagram of lengt hs of games 'H1,Zk+l and 'H z ,Zk+Z , for
k = 0, .. . , 22. The y-axis represents length s , t hat is , t he nu mb er
of transit ions from init ial state q~ to the first occur rence of <P. Ab
scissas repr esent all possible matches in t he fam ily, arranged so that a
game corresponding to a certain k is placed in interval [k, k + 1[, wit h
its matches lexicographically orde red .

lengths Diasralllof l engths for H{3,2k+l), k=L .. .,22
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I' it •
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II
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~~diUldUII I100

50

._ . .. . . . .. ... ... ... . .... . . .. . . . . .. . . .

-50
0 10 15 20 25 30 35 40 . 5 50

Matches

F igure 3: Diagram of lengths of games Hi: = 'H 3,Zk+l , k = 0, . . . ,22 .
Again , all matches in u, lie in int erval [.1 ,j + 1[, lexicographically
ordered. Along line y = -10, all matches that don't end within a
certain threshold value are plotted. Such matches may last more, or
may have entered a cycle .

Cons idering the third row in matrix (3), 1{3,Zk+ 1> kEN, and trying to
draw a diagram of lengths, we find that for some values of k the length of the
gam e seems to be out of reach for any number of iterations. This is shown in
Figure 3, wherein games which appear t o be longer than a threshold value are
plotted with y = -10. It seems that the degre e of uncertainty related with
the intrinsically unbalanced case of a pack with three zero cards drives the
system into a novel kind of behavi or. In order to investig at e the phenomenon,
first we sieve the "suspicious" points with a diagram of lengt h; one such point
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Table 3: Trace tab le for ((1101), (0110), ()) , that is, a match in 1t3,5.

Note that this point enters (at the third iteration) a period-6 cycle.

step SN Sj s, state

1) 1101 0110 0 qfJv
2) 101 0110 1 q:,
3) 101 110 10 qfJv
3) 10110 110 0 qfJv

4) 0110 110 1 q:,
5) 0110 10 11 qiv
6) 110 10 110 q~

6) 110 10110 0 q~

7) 110 0110 1 qiv
8) 10 0110 11 q:,
9) 10 110 110 qfJv
9) 10110 110 0 qfJv

101

is for exam ple ((1101), (0110) , ()), a match for game 1t3,5' We can easily show
that this point falls into a cycle by mean s of trace tab le showing the first
nine orbits of t hat point as in Table 3.

As a consequence, the HeartQuake family of dynami cal systems has at
least two remarkable dynamic behaviors: at t ract ion towards its fixed point
and attraction into cycles. Cycles appear in the third row of (3) and seem
to be related with the un cert ain ty in the pro cess of pr edi cting the outco me
of a match of a given game .

Having shown the existe nce of cycles, we can now define their period.

Definition 12. Given a HeartQuake automaton 'H. and a point x E M : if
:3k E N such that the set

is not empty, then it can be shown that these sets do not depend on k and
so collapse to one subset ofN; then the period of the game in x is defined as
the minimum of that set and indicated as 11i(x)l .

Let 's cons ider sub-family 1i 3,2k+l , kE N. As suggested by Figure 3, it
seems that in this case susp icious points are regular ly dist ributed. It can be
proven that all such points are cycles. Figure 4 shows their distribution and
the length of their period. The regularity found in Figure 4 brings us to the
two resul t s in Claims 3 and 4.

Claim 3. Vk E N ,1i3,5+l0k = (X,Q,5,w) :3x E X 3' 11i3,5+l0k ( X ) I
8k +6.
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Figure 4: The cycles of games 'H3,Zk+1 , kE N and their period.

k t imes
,-A--..

Proof Let k EN. Consider the following match (1k mean s 11 . .. 1):

t hat is , a match of game 'H.3 ,5+ 10k . It is easy to show that this configur at ion
enters a cycle whose period is 8k + 6:

step 5N 5J s, state

1) 1013k+301zk- Z 1k+3014k 0 qCJ,
2) 013k+301zk-z 1k+3014k 1 q}
3) 013k+301Zk- Z 1k+z014k 11 q}",
4) 13k+301zk- z 1k+2014k 110 q~
4) 13k+301Zk-Z 1k+z0 14k+20 0 q~

2k + 8) 1Zk+l01Zk-Z 014k+zO 1Zk+4 q}
2k + 9) 1Zk+l 01zk- z1zk+40 14k+20 0 qCJ,
2k+ 9) 1Zk+l01 4k+ZO 14k+zO 0 qCJ,

6k + 11) 014k+zO 1Zk+1 0 14k+Z q}",
6k + 12) 14k+20 1Zk+1 0 14k+zO

q~
6k + 12) 14k+zO 1Zk+1014k+zO 0 q~

10k + 14) 1Zk+10 014k+zO 14k+Z q}
10k + 15) 1Zk+1014k+zO 14k+20 0 qCJ, •

Claim 3 shows that , for any integer k , it is always po ssib le to find a cycle
whose period is greater than k, that is, t here exis t cycles whose period is as
big as one likes.
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Claim 4 . Vk E N, 'H3,5+l0k = (X,Q,8,w) : :3(XO, Xl "" , X k- l ) E M k 3' Vi E
{o, 1, ... , k - I} : 1'H3,5+l0k ( Xi ) ! = Sk + 6.

Proof. Let kEN. Consider game 'H3,5+l0k again . Then Vi E N , i < k ,

consider the following initial play configurations :

Xi = ((l i+l Q1 3k+ 3+ i Q1 2k- 2- 2i ) , (lk+3+2iOI4k- 2i) , m·
All such points ente r a cycle whose period is Sk + 6:

(4)

step SN Sj s, Q
1) 1i+l Q13k+3+iQ1 2k- 2- 2i 1k+3+ 2iOI4 k- 2i - q~

2i + 3) Q1 3k+3+iQ1 2k-2-2i 1k+ 2+i OI 4k- 2i 12i + 2
q~

2i + 4) 13k+3+i Q12k-2-2i 1k+2+iOI4k-2i I 2i+20 - q~
13k+3+iOI2k- 2- 2i 1k+2+i Q14k+20 - q~

2k + 4i + S) 1 2k+l Q12k-2- 2i 014k+20 12k+4+2i q}
2k + 4i + 9) 12k+l01 2k-2- 2i I2k+4+2iO 14k+ 20 - q~
2k+4i + 9) 1 2k+l Q14k+2 0 14k+2 0 - q~

:

6 k + 4i + 11) Q14k+20 12k+ 10 14k+2 q1
6k + 4i + 12) 14k+20 12k+ 10 14k+ 20

q~
6k + 4i + 12) 14k+ 20 12k+lQ14k+20 - q~

10k + 4i + 14) 1 2k+l0 014k+ 20 14k+ 2 q}
10k + 4i + 15) 1 2k+l 0 14k+ 20 14k+20

q~
10k + 4i + 15) 12k+ 1Q1 4k+ 20 14k+20 - q~

Note how, at row 2 k + 4i + 9, i disap pear s from the stacks and all points
ente r the same cycle , exact ly that of Claim 3. •

Cla im 4 shows that for any integer k there exists a Heart.Quake gam e in
which at least k matches enter a cycle whose period is greater than k .

Note that matches in (4) are such that Neal has two zeroes in his pack.
It can be shown that there exists a dual series of k mat ches in which Nea l
has only one zero . Experimentally it seems that no ot her matches fall into
cycles ; if this is t rue , then also this game is fully decided-one only has to
inspect the match rather than running the game procedure on it in order to
pr edict its outcome.

What happens for game 'H4,2k+2 , kEN, t hat is, for games in the fourth
row of (3) ? A graph of lengths shows that in this case cycle s also appear (see
Figure 5) . Bu t this time their dist ribution seems t o be completely random
and so is unpredict ab le. The degree of uncertaint y of a game with at least
four zeroes is su ch t hat pr ediction of it s long term behavior or eventual
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Di agraMof l~ngths for H(4,2k+2}, k=1" .. ,10lengths
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Figure 5: Length of ga mes H4,2k+ 2 , k = 0, ... , 12.

outcome is no longer possible. In other words , HeartQuake is another simple,
det erministic system which , under certain condit ions, behaves unp redict ab ly
or randomly.

4 .2 Other paths

A number of ot her sub-families of 11.vO,v 1 have been considered, that is, a
number of other paths int o matri x (3) have been explored . All these paths
exhibit cycles whose number and period seem completely random. In no
ot her case except scanning row by row have we found the equilibrium point
between decidabili ty and chaos that can be observed at the third row of MI '
For example, considering games in

(11.2k - i ,i ) k= 1,2,... i = 1,2, . . . , 2k - 1

we move th e atte nt ion from games in the rows of mat rix (3) to those in the
secondary diagonals. Note that this t ime th e kth element of the series is not
an infinite series itself, but is made up of 2k - 1 games. An int erpretation
for this family is: consider increasing populations of cards , for every fixed
popu lation we change the ratio of good over bad cards and see what happens.
For n = 1 and 2 all matches end, for k = 3 there is only one point which
enters a cycle, and for k > 3 the number of cycles and their period seem to
be complete ly unpredict able. F igure 6 shows an excerpt from the "one-page
dict ionary" for cycles in this family.

5 . Images of HeartQuake

Given a HeartQuake automato n 11. = t;K, Q, 8,w) and a point x EM, the
recursive procedure in Definition 10 is fully decided . In some sense , all the
informat ion of a match resides in its initial play configuration. Every such
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F igure 6: A "one-page dic tionary" for cycles in gam es
(Hi-j,j ) i = 2,4 .. .,26' j = 1, . . . , i - 1. T he i axis represents t he num
ber of cards in the packs, t he j ax is is t he number of aces in the pack,
and gray levels express periods-the white r the gray level , t he long er
the cycle. No reg ula rity appears to be det ect able.
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point is made of two meaningful fields, that is, t he two stacks SN an d SJ.
T hese two dat a st ructures may be simply regarded as st rings of digit s in a
base-m + 1 nu mer al system . As a consequence, a mapping can be set up
between the stacks in a match and two integer numbers b(SN) and b(SJ).
Such numbers can be in turn int erpr et ed as a row and a column index into
a matrix of pixels- an image. It is therefore possible to set up an inj ective
mapping between ini ti al play configurat ions and pixels of a matrix of p x p
pixels, p being

p = max{y E N Iy = b(SN), (SN' SJ , St) E M}.

Pixel (x, y) will be turned on if there exists a match (SN , SJ , () ) so that
y = b(SN) and x = b(SJ ). Moreover , it is possible to map some information
regard ing a match wit h the natural attribute of pixels, that is, color . For
example, t he length of a game won by Jack may be repr esented with different
tones of green , red may be used for Neal , and gray levels may represent cycles.
Figure 7 shows the image corresponding to game 'H4,2 '

5.1 Im ages of games with two cl a sses of cards

First we focus our at tentio n on M1-games, that is, games wit h m = 1 or
consist ing of zeroes and ones. Consider a matrix of graphs arranged in a way
similar t o matrix (3) , for example:

G(2,0) G(2,2) G(2,4 )
G(3, 1) G(3,3) G(3,5)

G(4, 0)

G(l ,l)
G(0,2)

G(4,2)

G(1,3)
G(0,4)

G(4,4)

G(1,5 )

(5)
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N

J

Figure 7: An image with all matches in 7i4,2 . Match (x,y) is mapped
onto [x,x + l[x [y - l ,y[ in order to indicat e the outcome. The
light gray pixel (2,4) pointed to by the arrow corresponds to mat ch
((100) , (010), ()) , which falls into a period-6 cycle.

Figure 8 depi cts 15 images of G1 which suggest a nu mber of obse rvations.
Let rand c be any two integers su ch that r + c is even .

O bservation 1. For any r > 0 and c > 0: G(r ,c) can be partitioned into
four equal blocks.

T his is clearl y visible , for example, in the two last rows of Figure 8.

Observation 2 . For any rand c: the pat tern represented in G(r , c) is one
of those contained in G(r , c + 2), that is, every graph is fully contained in it s
right neighbor. (This is shown as an example in Figures 8 and 9.)

Observation 3 . Th e four patterns in G(r ,c) are the same as those in the
following im ages: G(r - 2, c), G(r - 1, c - 1), and G(r , c - 2). Patterns are
arranged according to the following scheme:

G(r - 1, c - 1)
G(T - 2, c)

G(r ,c-2)
G(r - 1,c - 1) ,

that is, a 2 x 2 matrix in which the diagonal contains the one repeated pat tern.

Anot her way to represent Ob servation 3 is

G(r, c) = G(r - 2, c) + 2G(r - 1, c - 1) + G(r, c - 2). (6)

T he validity of t his pr operty seems t o be strenghte ned by the fact that if
you consider the number of matches in a Heart Quake game with two class es,

( ) - (r +c)! thp T , c - - , -" ent-tc:

p(T,C) = p(T - 2,c) + p(C,T - 2) + 2 x p(r - l , r - 1) ,
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Figure 8: Images of 15 HeartQuake games plotted with the same size.
Light gray pixels fall int o cycles.
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Figure 9: Patterns of games rt3,3, rt3,5, and rt3,7.

that is, t he number of mat ches of the four gam es equals that of G(T,c). This
is true only for the patterns depict ed , outcomes are different in general.

Not e that (6) represents a relationship between gam es made of T + c
cards and games with 2 cards less . It erating the process, we "decompose"
any G(T, c) int o a number of at omic pattern s, or patterns that cannot be
further decomposed. Such pat te rn s are all arranged in a frame mad e of the
first two rows and the first two columns of matrix (5) . Mor eover , given any
T and c great er than 2, the decomposition of G(T, c) is a linear combination
of games G(O , i), G(I , i) , G(j ,O), and GU,I) wit h i :"::: c, and j :"::: T . For
example, G(8,6) can be "factored" int o the following atomic pat terns:

G(8,6) = G(0,6) + 28 x G(0,4) + 210 x G(O , 2) + 210 x G(2,0)
+ 420 x G(I, 1) + 112 x G(I ,3) + 8 x G(I ,5) + 70 x G(4,0)
+196 x G(3, 1) + 15 x G(6, 0) + 50 x G(5, 1) + G(8, 0) + 6 x G(7, 1)

Figure 10 shows t he distribution of the basic bri cks of G(8,6) within matrix
(5) , while Figure 11 shows its decomposition tree.

G(0,2)21O G(0,4)28 G(0, 6)1
G(1, 1)420 G(1 , 3)112 G(1,5) 8 r

G(2, OJ21O r
G(3, 1)196 r

G(4, W O r
G(5, 1)50 r

G(6, 0)15 r
G(7,1 )6 r

G(8, W t- t- t- t- t- G(8,6 )

Figure 10: The basic blocks of image G(8, 6). Gk means k occurrences
of pattern G. A . means "pattern not involved."
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Figure 11: Decomposition tree for image G(8,6 ).
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Observation 4. \:Ir , c: G(r,c) is spec ular to G( c, r) , that is, G and i ts trans
pose depict equal pat terns up to a resizing and a roto translation.

This is clearl y visible comparing couples of games in Figure 8. Figur e 12
show s three such couples.

Observation 5. Som e im ages depict a certain degree of self-similarity.

As an example see Figure 13, which depicts G(8,6).

5.2 Images of games with m ore than two classes of cards

In this sect ion we take into considera tion games in Mk , wit h k > 1, that is,
games in the k-dimensional ext ension of matrix (3) , or games consist ing of k
classes of cards.

A number of obse rvations mad e for games with two class es of cards can
be extend ed to those wit h more classes. For example, images depicting Mz
games seem to consist of nine blocks. Such blocks represent patterns of ot her
games according to the following ru le of decomposition :

G (i ,j, k) = 2G(i - l , j , k - 1) + 2G(i ,j - 1, k - 1) + 2G(i - l , j - 1, k )

+G(i , j - 2, k) + G(i - 2, j , k ) + G(i ,j, k - 2). (7)

As an example, Figure 14 shows image G(6,4, 2) indicat ing it s first- level
blocks. Moreover , note G(6,3, 1) and the third block in t he first row of
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'H8(0 )6( 1) , 127 x 127

'H6 0)8 1 ,128 x 128

Figur e 12: A pack of fourteen cards is considered . Each image is
lab elled with its game and it s or iginal dimension . Ignoring dimen
sion and rotation , images G(i ,j) and G(j ,i) seem to depict t he same
pattern.

F igur e 13: Image G(S ,6).

G(S , 3, 2) , that is, G(S, 2,1) . They both seem to draw a "gingerbreadman"
like pattern [3] (see Figures IS and 16, respectively) .

In games with a class consi sting of exactly two cards a collapse phe
nomemon occurs. One of the blo cks of the decomposition is t he pattern of
a game with one class less than in the original, that is, if the original game
was in M k , that block belongs to M k - 1 . This phenomenon is clearly observ-
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F igure 14: Image G(6, 4, 2) . Note the self-similarity. First-level blocks
of the decomposition ar e G(6,4) (1.), G(5,4,1) (2.) , G(6,3,1) (3.) ,
G(4,4,2) (4 .) , G(5,3,2) (5 .), and G(6,2 ,2) (6.) .

ab le in Figure 14. The block labelled as G(6,4) belongs t o M1 , and fur ther
decomposing it following (6) we encounte r blocks in Mo. An even st ranger
ph enomenon occurs in games like G(6, 3, 1) and G(5, 2, 1) , tha t is, games
with V m = 1 (see F igur e 15). If we ap ply (7) to G(6,3, 1) we get

G(6, 3, 1) = ?G(5,3) ~ 2G(6, 2),+2G(5, 2, 1)

collapse to M1

+G(6, 1, 1) + G(4, 3, 1) + G(6, 3, - 1) .
'-v-"
impossible!

In other words, t he decomposition ru les st ill apply, and impossible "imagi
nary" blocks like G(6,3, -1) simp ly disappear.

Can we generalize the decomposition ru le to M k games for any k? Ex
perimental results suggest that, for any int eger k > 1, a k-class, p-card game
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Figure 15: Images G(6 , 3, 1) and G(5 , 2, 1) . Note the similarity and
the empty ("imaginary" ) block on the right to p of both images.

F igure 16: A "gingerbreadman" like pattern [3] found in image
G(6,4,2).

can be decomposed into a matrix of k x k blocks . T his decomposition can
be made as follows: k single blocks of p - 2 cards each are disposed through
the main diagonal and k X(; - l ) double blocks of p - 2 cards each ar e sym
metric ally disposed with respect to the main diagonal. More precisely: given
h = {O, 1, . .. , k - I} a set of indices, we can denote with {i} the generic sin
gleton and wit h {i ,j} the generic subset of two elements of h. Experiment al
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results show that the general decomposition rul e is
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G(Vo , Vl , . . . , Vk- l ) = L G(Va<i ,Vi - 2, Vi<b<k)

{i}cIk

+2 L G(Va<i ,Vi - 1, //i <b<j , Vj - 1, Vj <c<k) . (8)
{i,j}ch ,i <j

Relation (8) is consistent with pre viously described relations (6) and (7).
Likewise, it again represents a relationship between games mad e of r+ c cards
and games with 2 cards less. We can it erate the pro cess producing pat terns
that are "at omic" for Mi; Such patterns inherit the same distribution of
those in M 1 : they lie in the first two superficial strata of the hyp ercub e.
Mor eover , given any game in M k , its basic patterns are localizabl e with the
same method shown in Figure 10.

6. Conclusions and future directions

We have just described a dynamic system whose simple formulatio n hid es
a complex behavior which often makes it very hard to predict the outcome
of a run ahead of time. A number of results have been describ ed including
the existence of one fixed point and of cycles. T he existence of runs whose
dynamic behavior is det ectable only after a number of ite ration steps as
big as one likes has also been shown. A straightforward mapping of run
pro cedures into bidimensional graphics has bee n introduced. A number of
morphological pr operties have been observed , including self-similarity and a
sort of factorizabili ty. Future dir ections may include the following .

• Fur t her generalizations , for example, considering a ring of r players,
with a control token flowing clockwise am ong the players . The player
that has the token picks up a card from their pack: if it is a bad card,
they simply pass the token to the next player. If it is a good card, then
that player and the next one fight for the hoard on the table wit h the
rules of standard HeartQuake. This may resul t in mult idimensional
images.

• Further investi gations through ot her paths in M k , k > 1 in search of
unknown phenomena and behavior. Such st udies should necessari ly
take advantage of sharp algorithms and of parallel computing.

• Applications in ot her fields , including data encryption and computer
music.

• Analysis of t he meaning of the properti es observed in Heart Quake's
images.

• Investigation concerning relati onships with cellular automata.
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