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Staggered Invariants in Cellular Automata
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Abstract. A necessary and sufficient condition for a given cellular
automaton (CA) rule to admit a staggered invariant is derived. This
condition is written in the form of the equation of continuity. By util-
izing the condition, a number of invariants are obtained in Wolfram’s
elementary CA and their reversible variants.

1. Introduction

Conserved quantities are one of the most fundamental characteristics of a
dynamical system. In some cases, they are connected with symmetries of the
system via Noether’s theorem [1]. However, it is a difficult problem to find all
conserved quantities for a given dynamical system. To find a set of conserved
quantities, it is necessary to impose some restrictions on the properties of the
conserved quantities.

For one-dimensional cellular automata (CA) with the periodic boundary
condition of period N, a general method is given in [2] for finding additive
conserved quantities of the form

N-1
q)(Xt) = F(l’?, 37?_'_1, e 7xf+a)$ (11)
=0
where x* = (z},...,2%_;) € XV denotes dynamical variables, the set of site
values X is arbitrary, and « is a given integer. In particular, for a time
evolution rule of the form

xf—H = g($§—lax€7$;+l) (12)

(i.e., the case of nearest-neighbor interactions), a necessary and sufficient
condition for ®(x") to be constant is that the function F satisfies the equation
of continuity

G(.’L’g,xl, cas 7xa+1;$a+2)
= F(.’L’hmz, . ,$a+1)+J(IE0,.’E1, e ,.’IIQ+1)—J(IE1,$2, . .,$a+2), (13)
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where function G : X*™® — R is defined by

G(CL'(), Llyeeny .Ta+2)
= F(g(x()) xy, mz),g($1, T2, .’Eg), ce 7g(a:a) Tad1, $a+2))7 (14)
and the function J : X**? — R is defined by
J(.’L'(), T1yeeey Tay xa+1)
ot at1-1 at2-1

e N— —
= |F(P,...,P,x,21,...,m1) — G(P,...,P,xo,21,...,2)| (L.5)
1=0

with an arbitrary fixed value P € X. If a CA rule and nonnegative integer o
are specified, one can obtain, if any, all the functions F' with which ®(x*) is
invariant by solving equation (1.3). In [2] the additive conserved quantities
of range @ < 6 for elementary cellular automata (ECA) [3] and those of
range @ < 2 for the elementary reversible cellular automata (ERCA) [4]
are obtained. In the latter case, the additive conserved quantities are of
particular importance for the statistical properties of the systems, because
they can be considered as Hamiltonians in the sense of statistical mechanics.

Modeling a physical phenomenon with CA usually takes the converse
approach. Namely, one looks for a rule that satisfies prescribed conservation
laws. For example, lattice-gas automata for simulating fluid motions are
devised to conserve the total number of particles and the total momentum.

There are cases where such models unexpectedly admit the existence of
spurious invariants. The two-dimensional lattice-gas automata in [5] con-
served total momenta on each line. The model was improved in [6] by using
the triangular lattice instead of the square lattice. The model in [6] had been
believed not to have conserved quantities other than the total number of par-
ticles and the total momentum. However, in [7] are found extra nonphysical
invariants written as

H, = (=1 S (~1)B"CE - glr, ) (1.6)

r

where r denotes a lattice point, Cf; (v =1, 2, 3) is a unit vector perpendic-
ular to one of the three nonparallel lattice vectors of the triangular lattice,
and B, = 2C,/3, and g(r,t) is the momentum density. Since these invari-
ants include factors (—1)* and (—1)B~*, they are called staggered invariants.
Staggered invariants are also found in other models of lattice-gas automata
(eg7 [8’ 97 10])'

Thus, the staggered invariants were found and discussed for some lattice-
gas automata, but there has been little discussion about them for more gen-
eral CA. Since lattice-gas automata are a special kind of CA, some new
interesting features may appear in general CA. For example, although stag-
gered invariants found so far in lattice-gas automata are limited to the linear
case, or a = 0 in the present notation, those with o > 0 are commonly seen
in general CA. In this paper, the method of [2] is extended to give a general
method of finding staggered invariants in one-dimensional CA and apply it
to ECA and ERCA.
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2. Conservation condition

Because the extension to general one-dimensional CA is straightforward, I
concentrate on the case of nearest-neighbor interaction rules of the form (1.2).
Let us consider quantities written as

U(xh) = e > ezgilF(xf, T Bl (2.1)

under the periodic boundary condition of period N and assume that N is
a multiple of A. Given a rule g and integers «, 7, and A, if this quantity
is conserved for any N and any initial conditions, it is called a staggered
invariant of range « and of type (7, ). Staggered invariants of type (7,) =
(1,1) amount to additive conserved quantities.

In the following, a condition for ¥ to be invariant is derived in the same
manner as in [2]. Clearly, if identity ¥(x**!) = ¥(x") holds true at ¢t = 0
for any initial condition x°, it remains true also for all ¢ > 0. Representing
x° = (20,2%,...,2%_,) as x = (zo,%1,...,2n-1) and using G defined by
equation (1.4), one can write

2mi zil
U(x)=eT 2 G (@11, Tt - -y Tlpat)- (2.2)
=0
Hence, if ¥ is invariant, function H(x) defined by
Dl 2mil [ 2mi
H(X) = e [e T G(a"l—lv Tyyeeny $l+a+1) - F(:L'l, Tlg1y- - ,.’L'H_a)] (23)

=0
identically vanishes. Accordingly, inserting a particular value P into zy does
not change the value of H. Thus one has

H(zo,z1,...,28-1) — H(P,Z1,...,ZNy—1) =0 (2.4)

Substitution of equation (2.3) into equation (2.4) makes the Gs and F's not
including z in their arguments cancel and leads to an identity composed of
2a + 5 variables Tn_q—2, TN—q—15---sTN—-1, Loy L1, T2, ..,Tora. Since all
these variables are arbitrary, one can insert value P into zyx_n_2,...,zx to
obtain

e?G(mo,wl, g ,-’L'ail-z) = F(z1,22,. .., Tat1)

I+1
2m(1+1) 2mi s, 3
= —Ze er G(P,...,P,zo,...,ZTat1-1)

ot Nimmaiy
=I(P, .., PGy : ; Bw1)

41
2mi

i ——
+ Ze—zl\’ er G(P P7w17‘--ama+2—l)
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l

Y e
—F(Py---7P7$15---7xa+1—l)
+e =52 [ G(P,...,P) - F(P,...,P)]. (2.5)
When A = 1, identity H(P,...,P) = 0 brings a further condition
e G(P,P,...,P)=F(P,P,...,P), (2.6)
and the last term of the right-hand side of equation (2.5) vanishes. For
the case when A # 1, H(P,..., P) trivially vanishes and no new conditions
appear.

Thus, if one defines the conserved current J as

l
atl _2mi(l41) e —
A

J(@o, @1, ..., Tap1) = (T, A)+ D€ F(P,...,P,zg,...,Tq)

1=0

I+1

— % G@,... P zo,. .., Tas1-1) (2.7)
where ¢(7, A) is defined by
0 for A =1,
= _ 2mi(a+2) - 2.8
(7 A) ej [eTG(P, ., P)=F(P,... ,P)] otherwise. (28)
1=e

Condition (2.5), incorporated with equation (2.6) in the case when A = 1,
is rewritten into the form of the equation of continuity

2mi
€ :IG(ZL'O,.’L'l, T E ,Z’a+2) = F(ml,mg, S e ,-73014-1)

= J(zo, Ty, ., Tog1) — egir_iJ(:rl,azz, ey Tatn)- (2.9)

This is the conservation condition for .

Because the above condition was derived based on the assumption that ¥
is an invariant, it is a necessary condition. Conversely, it is obvious that if the
condition is satisfied, ¥ is an invariant. Thus it is also a sufficient condition.
Substitution of (7,A) = (1,1) into equations (2.7) and (2.9) reduces them to
the condition for additive conserved quantities (1.3) and the definition of the
conserved current in that case (1.5).

Here are a few remarks on the condition obtained in the preceding. First,
the conserved density F' is not uniquely determined for a staggered invariant
V. For a given F' and an arbitrary function S : X® — R, function F’
defined by

Fl(zg,...,24) = F(zo,...,%4) + S(T0, ..., Tae1) — ezTﬂS'(xl, con ) (2.10)
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becomes a different density function for the same additive invariant . The
difference between F' and F” is called surface terms. To remove this arbi-
trariness, one may impose the condition

F(P,zi,...,z,) = F(P,P,...,P). (2.11)

This restriction somewhat simplifies the conservation condition as

27t _ 271

G($0>w11 s J$a+2) —€TReT F(mO)xla s 7xa)
I+1
et 2mil R

:ZB_A G(P,...,P,$1,...,$a+2_[)

+1
_2mi e
—e XG(P,...,P,x0,...,Zap1-1)

_ 2mi(a+2) 2mi 2mi

+ [e SRP...., Py e e EF(P,..., P) (2.12)

Note that the last term in the right-hand side vanishes when A = 1. Also
note that if either 7 = 1 or A # 1, then F(P,..., P) can be set as zero,
because a constant term generates a trivial invariant in the former case, or
it is a kind of surface term in the latter case.

Second, the conserved density F' itself may be periodic in time with period
7. If one can make a current J associated with F' identically vanish by
choosing the surface terms properly, such a function F' is called a localized
periodic function. This is the case when the set of (a + 1)-site values X*!
is divided into subsets as

Xt =B \(2.13)

with subsets Bj, satisfying
BNBy=¢ if l#k,

9" (Be) = {(a5, ..., 27) € X**|(a(, ..., wa) € By,
)€ Xfori<Oori>a}
C By, for Vk.

If this condition is satisfied, the characteristic functions of subsets By,

_[1ifbeB,
xk(b) = { 0 otherwise (2.14)

become localized periodic functions. If there exists a localized periodic func-
tion of period 7, it is a conserved density of a staggered invariant of type
(7,A) for an arbitrary A at the same time.
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3. Elementary cellular automata

The ECA in [3] are the simplest example of dynamics of the form (1.2), where
set X = {0,1}. Each rule is referred to by the number

L 1 1

Z Z Z g(a, b, c)2ia+bte (3.1)

a=0 b=0 ¢=0

and there are 256 rules from rule 0 to rule 255 in ECA. However, reflection
and boolean conjugation symmetries classify the 256 rules into 88 equivalence
classes. This paper considers the 88 rules each of which has the smallest rule
number in its class.

Given «, density function F' can generally be represented with 2* + 1
parameters {bo, ..., by} as

F(l‘o, ! o PR ,$a) — bg + blmo + bz(C(]l'l + bg.’L'oiL'Q —+ b4$0$1$2 4+ ..
= bo + Z b]c.Z'g.’,Eclu e ZL‘ZG (32)

(a1,...,aa)€{0,1}2

where 1 < k < 2% denotes the integer corresponding to the binary sequence
(a1, ..., a,) through the relation

k=1+) a2 (3.3)

i=1

Here the condition (2.11) is used with P = 0. If 7 =1 or X # 1, by can be
set as zero without loss of generality because it produces a trivial invariant
or its sum vanishes identically, as remarked earlier.

Inserting equation (3.2) into the conservation condition (2.12), a set of
linear and homogeneous equations for parameters {b;} is obtained. For ex-
ample, when a = 1, the equations are written as

Cl(fl')g, $1,$2)b1 + Cz(l‘o, Zq, Z'z)bz =10 (34)
where
Ci(zo, 1, 22) = g(T0, 21, 72) — 9(0, 21, T3)
27i Ti
+ e_T[g(O’ Zo, wl) i q(07 07 l‘l) - mOe_ZT]
+¢~ % [9(0,0,0) — 9(0,0,0)] (3.5)
and

C2($07x17$2) = g(x17x27z3)[g($07x1a m2) - g(O,.’El,Zz)]
_2mi o
+e7 3 [9(0, zo, 71)g (w0, T1, T2) — g(0,0,21)g(0, 1, 22) — Toz1€ = ]

+€_% [g(O, 0, z0)g(0, zo, 1'1) — 9(0,0,0)g(0,0, xl)]
+e= % ¢(0,0,0)[g(0,0, z0) — (0,0,0)]. (3.6)
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Equation (3.5) must be satisfied for any values of (zg,z;,72). When both
A # 1 and 7 =1 are satisfied, a further condition

2%i

bo(1 — =) + (by + by)g(0,0,0) = 0 (3.7)

is required. Similar equations are also obtained for a larger «, though their
expressions are then more complicated.

The equations have been solved with the aid of computers in cases (7, A) =
(1,1), (1,2), (2,1), and (2,2) with a < 6 for the 88 rules considered. Table 1
shows the number of staggered invariants of range a = 6 for the 88 rules,
where each number denotes the linear dimension of the solution space {b;},
that is, the number of free parameters. Tables 2 through 4 show the staggered
invariants of types (7,A) = (1,2), (2,1), and (2,2) up to range a = 4.
Additive conserved quantities of ECA for the same range « are found in [2].

As can be seen in Tables 1 through 4, the appearance of staggered in-
variants is always accompanied with some additive conserved quantities (i.e.,
(1,A) = (1,1)). Moreover, the rules possessing staggered invariants belong
to the class 2 according to the classifications in [11]. Namely, these rules de-
velop space-time patterns consisting of separated periodic regions. Actually,
the density functions of staggered invariants F' correspond to these periodic
patterns. For example, rule 12 conserves pattern (z;,z;41) = (0,1). Thus,
F(zi,zi41) = (1 — z;)ziq1 is a localized periodic function of period 1 and
leads to a staggered invariant of type (1,2) as well as an additive conserved
quantity. Another example is rule 170, which works as a shift. Every pattern
goes to the left by one site at a time step. Thus, any function is a density
function of a staggered invariant of types (1,1) and (2,2). Other cases also
have similar structures to these two examples.

Although the staggered invariants are connected with patterns generated
by class-2 rules, not all class-2 rules have additive or staggered invariants.
This is because contrary to the classifications in [3], which relates to asymp-
totic behavior of a system, the definition of invariants here is concerned
with a property valid for all time ¢. Since ECA are dissipative systems, the
condition for ¥(x') = U(x') with ¢ > 0 can be different from that for
U(x') = ¥(x%). To obtain a better correspondence between patterns and
invariant quantities, asymptotic properties must be considered. For exam-
ple, in rule 104, pattern (0,0,1,1,0,0) can be created from other patterns
but cannot be destroyed if once created. Hence, the lattice sum of local
values of its characteristic function approaches a constant in ¢ — oo. The
asymptotic behavior or the structure of attractors in an ECA should be well
reflected by such asymptotic invariants. However, it is beyond the scope of
the present paper.
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Table 1: Number of staggered invariants of range oo = 6 for ECA.

Rule Type (7, ) Rule Type (1, A)
(L,1) (1,2) (2,1 (2,2 L1 (1,2) (21 (2,2
0 56 1
1 2 2 2 2 57
2 3 3 58
3 7 7 60
4 5 5 62
5 4 4 3 3 72 2 2
6 73
vd 74
8 76 18 18
9 T 2 2
10 6 6 78
11 1 90
12 8 8 94
13 104
14 1 105
15 32 32 32 32| 106
18 108 5 5 1 1
19 1 1 1 1| 110
22 122
23 i 1 1 1| 126
24 1 1| 128
25 130
26 132 3 3
27 4 4 134
28 136
29 5 5 5 5| 138 9 9
30 140 8 8
32 142 1
33 146
34 8 8| 150
35 1 152
36 1| 1 154
37 156
38 2 2 2 2| 160
40 162
41 164
42 20 20 | 168
43 1 170 64 64
44 172 3 3
45 178 1 1 1 1
46 2 2| 184 1
50 1 1 1 1| 200 16 16
51 32 32 32 32 | 204 64 64
54 232 2 2
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Table 2: Staggered invariants of type (1,2) up to range a = 4 for

157

ECA.
Rule by by b3 by bs bg by bg by big bix biz b1z big bis by
1|11 -1 1
4| 1 -1
1 -1 -1 1 1 -1
5| 3 -1 1 -1
1 -1 1 -1 —1 1 -1 1 1 -1
12| 1 1
1 -1 1 -1
1 -1 1 -1
15| 1
1 -2
1 1 -1 -1
1 1 -1
1 -1 2 -2 -2 -3 -3 6
2 1 —2
1 -1 1
1 2 —4 —4 —4 8
19 1
29| 1 2 -1 -1 1
1 —2 1 -1 3 -2 4 2 —4
36| 1 -2 1 -1 1 1 -1 1 -1
38| 1 -2 -1 -1 —1 2 —1 2 -2
51 1
1 -1
1
1 1 -2
1 -1
1 -1 1 1 -1 1 -1 -1
1 1 1 -1 -1
1 -1 1 1 -1
72 1 -1
76| 1 -1
1 -1
1 1 -1 —1
1 -1 —1 1
1 -1
108| 1 1 1 -1 —1 2 2 -3
132 1 -1 1 -1 —1 1
140| 1 1
1 -1 1 -1
1 -1 L -1
172 1 1 -1 i
200 1
il
1
1
1
204 any
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Table 3: Staggered invariants of type (2,1) up to range o = 4 for

ECA.
Rule bp b1 by b3 by bs be br bs by bio bun biz b1z bia bis bie
11 -4 2 -2 2 2 -2
31 -3 1-1 1
1-2-2 3-1 2 2-3 1 -1 -1 1
51 -3 1 -1 1
15| 1 -2
1 -1 -2 -2 4
1 -2 -1 2
1 -1
1 -1 -2-2 3 2-1 -1 =1 1
1 —4 -3 4 2
1 -2 -1 2 1-1 -1 -1 2
1 -1
19| 1 -4 -6 8 2 2 —4 2 -2 -2 2
271 -3 3 -1 -1 1 -1
29| 1 -2
1 -1 -1 -1 2 -1 2 1 -2
38 1-3-1 3 1 2 -3 -2 2
511 —2
1 -1 -2 -2 4
1 -2 -1 2
1 -1
1 -1-2-2 3 2-1 -1 -1 1
1 —4 -3 4 2
1 -2 -1 2 1 -1 -1 -1 2
1 -1
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Table 4: Staggered invariants of type (2,2) up to range a = 4 for
ECA.

Rule|by by by by bs bg by by by big by b1z b1z by bis big
1 1 1 -1 -1 1
2|1 1 -1 1
5| 1 -1 -1 1
10| 1 -1
1 1 -1 1
15| 1 -1
1
1
1 1 -2
1 —1
1 —1 1 1 -1 1 -1 —1
1 1 -1 -1
2 —1 2 1 —2
19 1 1 -1 -1 il 1 -1
24| 1 -1 -1 -1 -1 -1 1 1
29| 1 1 -1 1 -1 -1 1
1 i -1
34| 1 1
1 -1 1 -1
1 -1 1 -1
38| 1 1 -1 1 -1 1
421 1 1
1 -1 -2
1 -1 1
1 -1 1 —1
1 -1 I —1
1 -1 1 -1
46| 1 1 -1 1 -1 1
51| 1
1 1 -1 -1
1 -2
2 1 -1
-2 i 1 -1 2
1 -1 —1 2 2 2 —4
1 -1 —1
1 2 —4 1 —4 —4 8
138 1 -1 1
1 -1 1
1 -1 1
170 any
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4. Elementary reversible cellular automata

ERCA are another example of CA of the form (1.2). In this case, X = {0, 1}?
and ! = (of, %), where of and 67 take values in the set {0,1}. The time
evolution rule of ERCA is written as

Ult+1 = &}t @ f(Ult—lv Uf, ”;-1-1) (4.1)
FH =gl (4.2)

where f : {0,1}® — {0,1} is an arbitrary function and @ denotes the ex-
clusive OR operation (ie., 1®0=000=1, 1®1=0®0 = 0). Each
rule is named by the rule number given by equation (3.1) where f replaces g,
followed by an R. There are 256 rules for ERCA and again the reflection and
boolean conjugation symmetries are used to classify them into 88 equivalence
classes.

In this case, function F is generally developed as

F(Uo, 6’0, i oo ,oa,&a)
= bo + blo'(] + l)g&g + b30'0(5'0 + b40’00'1 + b55’00‘1 o e
= by + 3 broSPeae |, olaglx, (4.3)
(ao,&o,‘..,aa,du) 6{0, 1}2°'+2

(ao,d@0) # (0,0)

with the use of 3 - 4% + 1 parameters {b}, and k is the integer given by

e
k= ao+2a0+3) (a; + 2a;)4"". (4.4)
i=1
As in the case of ECA, by is not necessary if 7 =0 or A # 1.

The equations have been solved for {b;} in cases (1,\) = (1,1), (1,2),
(2,1), and (2,2), with range o < 2 for each rule. The number of invariants
obtained are shown in Table 5. The numbers of localized invariants of 7 = 1
are also shown for reference.

A remarkable feature seen in Table 5 is that every rule that has an additive
conserved quantity also possesses staggered invariants of type (1,2) and/or
(2,2). Moreover, there are some rules that have staggered invariants but do
not have an additive conserved quantity. These facts are in contrast to the
case of ECA. On the other hand, ERCA and ECA have in common the
fact that most of the staggered invariants are induced by localized periodic
functions.

Some staggered invariants are related with symmetries of the rules. Rules
90R, 95R, and 165R are the peripheral rules where the rule function f(z,y, z)
actually does not depend on y. Then the space-time pattern of {of} is
separated into two independent regions like a checkerboard. Therefore, if
such a rule has an additive conserved quantity, it is decomposed into two
conserved quantities each defined on a component of the checkerboard, which
are nothing but staggered invariants of type (2,2).
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Table 5: Number of staggered invariants for the range o = 2 for
ERCA. The numbers in parentheses in the column of type (1,1) are
the numbers of independent localized periodic functions of period 1.

Rule Type (7, \) Rule Type (7, )
L1 (12 (21) (2,2) (L1) 1,2) (21) (2,2)
OR | 26(26 26 22 22| B59R | 2(2) 2
1R | 16(15 15 11 12 60R
2R | 11(11 11 7 7| 61R
3R 8(8 8 4 4 62R
4R | 13(13 13 9 9 63R
5R | 7(7 7 5 50 73R | 2(1) 1
6R 5(5 5 2 2 T5R
TR| 3(3 3 1 1| 7R | 3(0) 1
9R 4(4 4 1 1 T9R
10R 3(3 3 2 2 90R 4(0 4
11R 1(1 1 91R 3(0 2
12R 4(4 4 94R 1(0 1
13R 95R 2(0 2
14R 105R
15R 107R
18R 6(5 5 1 2 | 109R
19R 9(9 9 3 3| 111R
22R 3(2 2 123R 2(0 1
23R 4(4 5 1 126R 4(2 2 2 3
24R 2(2 2 1| 127R 4(2 2 2 3
25R 129R 7(6 6 3 3
26R IEO; 1|131R 2(2 2
27R 2(2 2 133R 1 1
28R 135R
29R 139R | 1(1) 1
30R 141R
31R 143R
33R | 4(4 5 1 147R |  3(3) 3
35R 4(4 4 151R 1
36R 7(6 6 3 3| 153R
37TR 3(2 3 1 1| 155R
38R 2(2 2 157R
39R 2(2 2 159R
41R 1 165R | 2(0) 2 2 2
43R 167TR 1 kL
45R 175R 1 1
46R | 2(2) 2 179R. |  7(6) 6 1
4TR 183R 2 1
50R | 8(6 6 187R
51R | 16(16 16 189R 1(1 2 1 1
54R 3(2 2 191R 1(1 2 1 1
55R 5(4 4 219R 4(2 2 2 3
57TR 223R 3(2 2 2 2
58R 255R | 12(12 12 12 12
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Table 6: Propagative staggered invariants of type (1,2) up to a =1

for ERCA.
Rule b1 b2 b3 b4 b5 bg b7 bs bg bl() b]_]_ blZ
33R 1 1
37TR 1 1
41R 1 —i -1
133R 1 1
151R 2 1 -2 1 2 =2 -2 -2 2
1I65R | 1 -1 2
1 1

1I67TR | 1 -1 1 =1
175R | 1 —1 1 -1
183R | 1 -1 1 -1

2 1 -2 1 2 -2 -2 =2 2
189R | 1 -1 i -1
1I91IR | 1 -1 1 —1
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Table 7: Staggered invariants of type (2,1) up to a = 1 for ERCA.

Rule b() bl b2 bg b4 b5 b6 b7 bg bg blO bu b12
OR 1 =i
1 -1
i ~1
1 -1
1 -1
1R 1 =1
1 el
1 =&
2R 1 —l 1 -1
1 -1
3R 1 -1
4R 1 —1
1 —i -1 1 =1 1
5R 1 -1
10R 1 -1 1 —1
33R 1 -1
36R 1 1
1 —={ -1 1 -1 1
37TR 1 -1
126R 2 =1 =1
127R 2 =1 -1
129R 1 =d
1 =1 -1 1
133R 1 -1
165R | 1 -2 -2 2 2
1 =1
167TR | 1 -2 -2 2 2
1I7T5R | 1 =2 =2 2 2
183R |1 -2 -2 2 2
18R | 1 -2 -2 2 2
191R | 1 -2 -2 2 2
219R | 1 -2 =2 2 1 1
223R| 1 -2 -2 2 1 1
255R | 1 -2 -2 4
1 -1 = 1
2 —1 =1
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Table 8: Staggered invariants of type (2,2) up to a = 1 for ERCA.

Rule | by by by by bs bg by by by by byx bio
OR| 1 -1
1 —1
1 —1
i | —1
1 -1
1R 1 —1
1 —1
1 -1
2R| 1 -1 1 —1
1 -1
3R 1 -1
4R 1 —1
1 —1 —1 1 -1 1
5R 1 -1
I0R| 1 -1 1 -1
18R| 1 -1 1 —1
24R | 1 -1 1 -1
26R| 1 -1 1 -1
36R 1 -1 —1 1 -1 1
9OR | 1 -1 1 -1
1 1
91R 1 1
94R 1 1.
95R 1 i)
123R 1 1
126R 1 i
127R : 1
129R 1 -1 -1 1 1 -1
189R | 1 1 -2 -1 —1
191R | 1 1 -2 —1 -1
219R 1 i
223R 1 i
255R | 1 1 -2
1 1
i —1
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Another example is related to boolean complement symmetry [4]. For a
function f(z,y, z), we can write

7(.’1?, Y, Z) =1= f(:E; Y, Z) (45)

Then, the rule specified by f (rule fR) is called the complement of the
rule specified by f (rule fR). Note that this is different from the boolean
conjugation operation or the exchange of the roles of 0 and 1. The latter is
executed by

h(ﬂ;’,y,Z)zf(].—ﬂ'J,l—y,l—Z) (46)
Let {of} be an orbit in rule fR. If {¢/}} is defined by

o} for t=4nor4n+1
(4.7)

&
-
I

1—o} for t=4n-+2or4n—+3,
and n is an integer, {1/} satisfies the following relation

Fi v vt ) @v for t=4nordn+1
v = B (4.8)
h(vt vt vt ) @vi™ for t=4n+2or 4n+3.

This relation means that if rules fR and AR have an additive conserved
quantity in common, rule fR has a staggered invariant of 7 = 4 or 2. If the
density F' is symmetric in transformation (oy,6;) < (1 — 0,1 — 67), period
7 becomes 2. This is the case for rules 165R, 167R, 175R, 183R, 189R, and
191R, where f(z,y,2z) = 1 if 2@ z = 0. Because their complements have the
additive conserved quantity

@@6=§:Wﬁ—mﬂf+wrwmnﬂ (4.9)

in common, (—1)*® must be a staggered invariant, or a sum of a staggered in-
variant and an additive conserved quantity. However, because these rules do
not have an additive conserved quantity of this range, (—1)'® is a staggered
invariant.

In additon to those previously mentioned, there are some staggered in-
variants that commonly appear in a number of rules:

(a) The rules where f(z,y,2) = 0 if 2 @ z = 0 have the staggered invariant
of type (2,2)

w&=vﬁ;eﬁ%%¢m—w—%ﬁ] (4.10)

besides the additive conserved quantity (4.9).
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(b) The rules where f(z,y,z) = 1 if 2@ z = 1 have the staggered invariant
W(x') = (-1)" 3(-1)" [(of — 641)* + (6F — ot11)?] (4.11)
1

as well as the additive conserved quantity

2(x) =3 [(6f = o11)* = (0f — 6141)7] - (412)

These may also have some relation to symmetries.

5. Discussion

In this paper a necessary and sufficient condition has been derived so that a
CA has staggered invariants and it has shown that the condition is written
in the form of the equation of continuity. Moreover, the condition has been
applied to ECA and ERCA to obtain the staggered invariants in the case
that «, 7, and A are relatively small. The staggered invariants in ECA is
related to space-time patterns of the class-2 rules, while the case of ERCA
contains some nontrivial examples.

Although I have solved the conservation condition for ECA and ERCA
only in the case that 7 < 2 and A < 2, it turns out that staggered invariants
with larger 7 or A also exist. As stated in section 2, a localized periodic
function of period 7 (if it exists) becomes a density function for a staggered
invariant of type (7,A) with an arbitrary A\. Thus there is no upper bound
of A. Concerning 7, there is at least a case with 7 = 4. It is found in rule
255R, where the rule function is f(z,y,z) = 1 for any (z,y, z) and each site
changes its value with period four independently of other sites. Except for
the case of a localized periodic function, there may be an upper bound for 7
and A, though I do not know how to determine it.

Let us consider the possibility of the extension of the conservation condi-
tion. The extension to rules with a wider interaction range is straightforward.
The case of additive conserved quantities was already discussed in [2]. The
conservation condition of staggered invariants can be extended in the same
manner. The extension to higher dimensions is another possibility. I expect
that the condition then can also be written in the form of the equation of
continuity, where current J must be a vector.

In mechanical systems, as mentioned in the introduction, conserved quan-
tities are connected with the symmetries of the system considered via
Noether’s theorem. Thus, one may find such a relation also in the case
of CA, though the conditions obtained in this paper do not clearly suggest
it. If one can unveil that possible connection hidden in the present condition,
it will provide us with a unified view for the invariants of dynamical systems.

ERCA preserve the phase space volume. Hence, if a rule has an additive
conserved quantity, one can develop standard statistical mechanics there.
By comparison of simulation results with statistical mechanics predictions,
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one can discuss the relation between microscopic dynamics and ergodicity.
I have simulated equilibrium and nonequilibrium thermodynamic properties
of the seven rules 26R, 77R, 90R, 91R, 94R, 95R, and 123R, which have
additive conserved quantities of & = 1 but do not have a localized periodic
function in any range «[13, 14, 15]. Table 2 shows that all these rules have
staggered invariants of type (2,2). It is interesting to investigate how these
staggered invariants affect the thermodynamic behavior of the rules. Under
the boundary condition where heat baths are attached at both the ends, no
significant effects have been observed [16]. The effect should be subtle, if
any. Possible roles on the behavior of other rules are a future problem.
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