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Abstract. A necessary and sufficient condit ion for a given cellular
automat on (CA) rule to admit a staggered invariant is derived. This
condition is written in th e form of the equation of continuity. By util­
izing the condition, a number of invariant s are obtained in Wolfram's
elementary CA and their reversible variants.

1. Introduction

Conserved qu antities are one of the most fundamental char acteri stics of a
dynamical system . In some cases , t hey are connected with symmet ries of t he
system via Noet her 's theorem [1]. However , it is a difficult problem to find all
conserved qu antities for a given dynamical syste m. To find a set of conserved
quantities , it is necessary to imp ose some res trict ions on the properties of the
conserved quantities.

For one-dimensional cellular auto mata (CA) wit h the pe riodic boundary
condit ion of period N , a general method is given in [2] for finding additive
conserved quantitie s of the form

N-I

cf?(x
t
) = L F( x;, x;+l" " , x;+c,) ,

1=0

where x t = (xt , . . . ,Xlv-I ) E X N denotes dynamica l variables, the set of site
values X is arbitrary, and ex is a given integer. In particular, for a t ime
evolut ion rule of the form

(1.2)

(i.e. , the case of neare st-neighbor int eractions) , a necessary and sufficient
condition for cf?(xt ) t o b e constant is that the fun ction F satisfies the equation
of cont inuity

G(xo, Xl , · ·· , Xa+l' Xa+2)

= F( Xl, X2, . .. , Xa+l)+J(XO ' Xl, ... ,Xa+l)- J( XI' X2, .. . , Xa+2), (1.3)
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where function G : x a+3 -+ R is defined by

G(x o, X l , · · ·, Xa+2 )
= F(g (xo, X l, X2) ,g(XI' X2 , X3) , . .. , g(Xa, Xa+l , Xa+2 )),

and the function J : x a+2 -+ R is defined by
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(1.4)

J(Xo, X l , ' .. , Xa, Xa+l )

a+l [~ ~ ]=L F(P, . . . , P, XO, X l, ···, Xl- I) - G(P, . .. , P , XO, Xl , . . . , Xl ) (1.5)
1=0

with an arbitrary fixed value P EX. If a CA rule and nonnegat ive integer a

are spe cified , one can obtain, if any, all the functions F with which cI> (x t
) is

invariant by solving equat ion (1.3) . In [2] t he addit ive conserved quantit ies
of range a :::; 6 for elementary cellular automat a (ECA) [3] and t hose of
range a :::; 2 for the elementary revers ible cellular automata (ERCA) [4]
are obtained. In the lat ter case, the ad dit ive conserved quantit ies are of
particular import ance for the statistical properties of the systems, because
t hey can be cons idered as Hamiltonians in the sense of statistical mech an ics.

Modeling a physical phenomenon with CA usually takes the converse
approach . Nam ely, one looks for a ru le that satisfies prescribed conse rvation
laws. For example, lat tice-gas automata for simulating fluid motions are
devis ed to conserve the total number of particles and the total momentum.

There are cases where such models un exp ect ed ly admit the existence of
spurious invariants. The two-dimensional lat t ice-gas automata in [5] con­
served total momenta on each line. The model was improved in [6] by using
the triangular lat ti ce instead of the square lat t ice. T he model in [6] had been
believed not to have conserved quantit ies other than the total number of par­
ticl es and the total momentum. However , in [7] are found ext ra nonphysical
invariants written as

(1.6)
r

where r denotes a lat t ice point, C~ b = 1, 2, 3) is a unit vector pe rpendic­
ular to one of the three nonparallel lat t ice vectors of the triangular lat t ice,
and B-y = 2C-y/3, and g(r , t ) is the momentum dens ity. Since these invari­
ants include factors (-1)t and (-1 )B-y. r , t hey are called staggered invariants .
St aggered invariants are also found in ot her models of lat t ice-gas automata
(e.g., [8, 9, 10]).

Thus , the staggered invariants were found and discussed for som e latti ce­
gas automata, but there has been lit tl e discussion about them for more gen­
eral CA. Since lat tice-gas automata are a special kind of CA, some new
interest ing features may appear in general CA. For example, alt hough stag­
gered invariant s found so far in lat t ice-gas automata are limited to the linear
case, or a = 0 in the present notation , t hose with a > 0 ar e commonly seen
in general CA. In this pap er , the method of [2] is extended to give a general
method of find ing st aggered invariants in one-d imensional CA and apply it
to ECA and ERCA.
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2. Conservation condition
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(2.1)

Because the extension to general one-dimensional CA is straightforward, I
concent rate on the case of near est -neighb or int eraction rules ofthe form (1.2).
Let us consider quantities written as

N -I

( t) 2~it '" 2~il ( t t t)
\[I X = e T LJ e x F Xl,X!+I '· ·· , X !+Oi

l=O

und er the periodic boundary condition of period N and assume that N is
a multiple of X, Given a ru le g and integers a, 7 , and ..\ , if t his quantity
is conserved for any N and any initial condit ions, it is called a staggered
invarian t of range a and of type (7,..\). Staggered invariants of type (7,..\) =
(1,1 ) amou nt to additive conserved quanti ties.

In the following, a condition for \[I to be invari an t is derived in th e same
manner as in [2J . Clearly, if identity \[I(Xt+I) = \[I(xt

) holds true at t = 0
for any ini tial condit ion x", it remains t rue also for all t > o. Representing
XO= ( x g , x~, . . . , XfJv-l) as x = ( xo , X l> . .. , XN- I ) and using G defined by
equation (1.4) , one can write

N -I

\[I(xl) = e 2;i L e 2~il G(Xl- I , Xl, .. . , X I+ Oi+1 ).
l=O

Hence, if \[I is invar iant , funct ion H (x ) defined by

(2.2)

(2.3)
N - I

H() '" 2~il [ 2~ i G( ) F( )]x == LJ e > e T Xl- I, Xl , · . . , X l+ Oi+1 - X l , Xl+I, ... ,Xl+ Oi
1=0

identically vanishes. Accordingly, inserting a par ticular value Pinto X o does
not change the value of H. Thus one has

(2.4)

Substit ut ion of equat ion (2.3) into equation (2.4) makes the Gs and Fs not
including Xo in their arg uments cancel and leads to an ident ity composed of
2a + 5 variables XN-0i -2 , XN-Oi-l, . . . , X N - l> X o, Xl , X 2, · .. ,XOi+2. Since all
these variables are arbitrary, one can insert value Pinto XN -0i-2 , · . . ,X N to
obtain
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-pCP,. ~. ,ft ,x" ... , .xaH - ,) ]

2~ ' (a+2 } [ 2~' ]+ e- -'- erG(P, ... , P ) -F(P, ... , P ) .
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(2.5)

When A = 1, ident ity H(P, .. . , P ) = 0 brings a further condit ion

e2;'G(P, P, .. . ,P ) = F( P,P, . . . , P ), (2.6)

(2.7)

and the last term of the right -hand side of equation (2.5) vanishes. For
t he case when A =1= 1, H(P, .. . , P ) t rivially vanishes and no new condit ions
ap pear .

Thus, if one defines the conserved current J as

[

I
a+1 2~'(1+1) ..---"----.

J (xo,Xl, "" Xa+1 ) = c(r, A) + 2:: e- -'- F(P, . . . , P , Xo, · ··, Xa - l)
1=0

1+1 j2 '1f i ..---"----.

- erG(P, . .. , P, Xo, . ·., Xa+1-1 )

where c(r , A) is defined by

c(r ; A) = { ~- 2~i(X+2} 2~ i
"----.;c,2n - [e T G(P, . . . , P ) - F(P, .. . ,P)]

1- e-:A

for A = 1,

otherwise.
(2.8)

Condit ion (2.5), incorporated with equat ion (2.6) in the case when A = 1,
is rewritten into th e form of the equat ion of cont inuity

21fi

erG(xo,Xl,· ··, Xa+2) - F( X1 ' X2, ·· ·, Xa+1)
2'l1"i

= J(xo, Xl, . . . ,Xa+1) - e-:A J( Xl, X2, ' . . ,Xa+2). (2.9)

This is t he conservation condit ion for W.
Because t he above condit ion was derived based on t he assumption that W

is an invariant , it is a necessary cond it ion. Converse ly, it is obvious tha t if the
condition is satisfied , W is an invari ant. Thus it is also a sufficient condi tion.
Substitution of (r , A) = (1, 1) into equat ions (2.7) and (2.9) reduces t hem to
the condit ion for ad dit ive conserved quant it ies (1.3) and the definit ion of the
conserved curre nt in that case (1.5).

Here are a few remarks on the condit ion obtained in the preceding . First,
the conserved density F is not uniquely determined for a st aggered invariant
W. For a given F and an arb it ra ry function S : X" -> R , function F'
defined by

F'(xo, . . . , xa) = F (xo, . . . , xa) + S (xo,. . . ,Xa-1) - e 2~i S (X1"' " xa) (2.10)
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becomes a different density fun ction for t he same additive invariant \)!. T he
difference between F and F' is called surf ace term s. To remove this arbi­
trariness, one may impose the condit ion

F(P,X l , . . . , X a ) = F(P,P, . .. ,P).

This restri ction somewhat simplifi es the conservat ion condit ion as

(2.11)

(2.12)

Note that the last t erm in the right-hand side van ishes when A = 1. Also
note that if either T = 1 or A i-I , then F (P, . .. ,P) can be set as zero ,
because a constant term generat es a trivial invariant in the form er case , or
it is a kind of sur face term in the lat ter case.

Second, the conserved density F it self may be periodic in t ime wit h period
T . If one can make a curre nt J associated with F identically vanish by
choosing the surface terms properly, such a fun ction F is called a localized
periodic fun ction. This is the case when the set of (a + 1)-sit e values xa+1
is divided into subse ts as

X a +1 = UBI
I

wit h subsets Bk satisfying

BI n Bk = ¢ if I i- k,

gT(Bk) == {( x; , .. . ,x: ) E xa+1 l(xg, .. . ,x~ ) E Bv;

x? E X for i < 0 or i > a}
C s, for vi:

~
(2.13)

If t his condition is sat isfied , t he cha racterist ic functions of subsets Bk,

(b) _ { 1 if b E Bk ,
Xk - 0 otherwise (2.14)

become localized periodi c functions. If t here exists a localized periodic func­
tion of period T , it is a conserved density of a staggered invari ant of type
(T,A) for an arbitrary A at the same t ime .
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3. E lementar y cellula r automata

The ECA in [3] are the simp lest example of dynamics of the form (1.2) , where
set X = {O , 1}. Each ru le is referred to by the number

I I I

L L L g(a , b, c)24a+2b+c
a=Ob=Oc=O

(3.1)

and there are 256 ru les from ru le °to ru le 255 in ECA . However , reflection
and boolean conjugat ion symmetries classify the 256 rul es into 88 equivalence
classes. This paper considers the 88 rules each of which has the smallest rule
number in its class.

Given a, density funct ion F can generally be represented with 2a + 1
parameters {bo, .. . , b2,, } as

F( xo, Xl, · .. ,Xa) = bo+ blXo+ b2Xo XI + b3XoX2+ b4XoXIX2+ .. .
= bo+ L bkXOX~' . . . X~" (3.2)

(c i ,... ,a" )E {O,I }"

where 1 :::; k :::; 2a denotes the integer corresponding to the binary sequence
(aI , . . . , aa) through th e relation

a

k = 1 + L ai2i-l .
i = l

(3.3)

Here the condit ion (2.11) is used with P = 0. If T = 1 or >. ¥- 1, bo can be
set as zero with ou t loss of generality because it pro du ces a t rivial invarian t
or its sum vanishes identically, as remar ked earlier.

Insert ing equat ion (3.2) into the conservation condit ion (2.12) , a set of
linear and homogeneous equations for parameters {bd is obtained . For ex­
ample, when a = 1, the equat ions are written as

(3.4)

where

CI( XO , XI, X2 ) = g(XO, XI, X2) - g(0, XI, X2)

+ e" 2t [g (O , Xo , X l ) - g(O,0, Xl ) - Xoe- 2;i J

+ e- 4~i [g(O , 0, XO) - g(O , 0, 0)] (3.5)

and

C2(XO, XI, X2) = g(XI, X2, X3)[g(XO, XI, X2 ) - g(0, XI, X2)]

+e- 2~i [g(O, Xo,XI)g(XO' Xl, X2) - g(O,0, XI)g(O, XI, X2) - XOXle - 2;' J
+ e- 4~i [g(O ,0, Xo)g(O, Xo, Xl) - g(O, 0, O)g(O, 0, XI)J

+e- 6~i g(O,0, O)[g(O,0, XO) - g(O , 0, 0)]. (3.6)
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Equ ation (3.5) must be satisfied for any values of (XO, Xl, X2) . When both
A =I- 1 and 7 = 1 are satisfied, a fur th er condition

(3.7)

is requir ed. Similar equations are also obtained for a larger a, though their
expressions are then more complicated.

The equations have been solved with the aid of computers in cases (7, A) =
(1,1) , (1,2), (2, 1), and (2,2) wit h a ::::; 6 for the 88 rules considered . Table 1
shows the number of staggered invari ants of range a = 6 for t he 88 rules,
where each number denot es the linear dimension of t he solut ion space {bi } ,

that is, the number of free par ameters. Tables 2 through 4 show the staggered
invari ants of typ es (7, A) = (1,2) , (2, 1), and (2,2) up to range a = 4.
Additive conserved quantities of ECA for th e same range a are found in [2J .

As can be seen in Tables 1 through 4, t he appear ance of staggered in­
variants is always accompanied with some addit ive conserved quantities (i.e. ,
(7,A) = (1,1)). Moreover , the rules possessing st aggered invariants belong
to the class 2 according to the classifications in [11J. Namely, these rules de­
velop space-time patterns consist ing of separated periodic regions . Actually,
t he density funct ions of staggered invariants F corr espond to these periodic
patterns . For example, rule 12 conserves pattern (Xi, Xi+1 ) = (0, 1). Thus,
F (Xi' Xi+1) = (1 - Xi)Xi+l is a localized periodic funct ion of period 1 an d
leads to a staggered invariant of ty pe (1,2) as well as an addit ive conserved
quant ity. Another examp le is ru le 170, which works as a shift. Every pattern
goes to the left by one site at a t ime step . Thus, any function is a dens ity
function of a staggered invari ant of types (1, 1) and (2,2) . Ot her cases also
have similar struct ures to these two examples.

Alth ough the staggered invariants are connected with patterns generated
by class-2 rules, not all class-2 rules have add it ive or staggered invari an ts.
This is because cont ra ry to the classifications in [3], which relates to asymp­
toti c behavior of a system, the definition of invariants here is concerne d
with a prop erty valid for all time t . Since ECA are dissipative systems, the
condi tion for \IT (xt+1 ) = \IT (x t

) with t > °can be different from t hat for
\IT (Xl ) = \IT(XO). To obtain a better correspondence between pa t terns and
invariant quantities, asympto tic properties must be considered . For exam­
ple, in ru le 104, pattern (0,0 ,1 ,1 ,0,0) can be created from other patterns
but cannot be destroyed if once created. Hence, th e lattice sum of local
values of it s characteristic function approaches a constant in t -+ 00. The
asymptotic behavior or the st ruct ure of attrac tors in an ECA should be well
reflected by such asympt ot ic invari ants. However, it is beyond the scope of
th e present pap er.
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Table 1: Number of staggered invariants of range a = 6 for ECA.

Rule Type (T, >')
(2, 2)

Rule Type (T, >')
(1,1) (1,2) '(2, i) (1, 1) (1 ,2) '(:2,1) (2, 2)

0 56 1
1 2 2 2 2 57
2 3 3 58
3 7 7 60
4 5 5 62
5 4 4 3 3 72 2 2
6 73
7 74
8 76 18 18
9 77 2 2

10 6 6 78
11 1 90
12 8 8 94
13 104
14 1 105
15 32 32 32 32 106
18 108 5 5 1 1
19 1 1 1 1 110
22 122
23 1 1 1 1 126
24 1 1 128
25 130
26 132 3 3
27 4 4 134
28 136
29 5 5 5 5 138 9 9
30 140 8 8
32 142 1
33 146
34 8 8 150
35 1 152
36 1 1 154
37 156
38 2 2 2 2 160
40 162
41 164
42 20 20 168
43 1 170 64 64
44 172 3 3
45 178 1 1 1 1
46 2 2 184 1
50 1 1 1 1 200 16 16
51 32 32 32 32 204 64 64
54 232 2 2
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Table 2: Staggered invar iants of type (1,2) up to range a = 4 for
ECA.
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R ule bI b2 b3 b4 b5 b6 b7 bs bg blO bl1 bI 2 bl3 bI 4 bI 5 bI 6

1 1 - 1 1
4 1 - 1

1 - 1 -1 1 1 - 1
5 3 - 1 1 - 1

1 - 1 1 - 1 - 1 1 -1 1 1 - 1
12 1 1

1 - 1 1 - 1
1 -1 1 - 1

15 1
1 - 2

1 1 - 1 -1
1 1 -1

1 - 1 2 - 2 -2 - 3 - 3 6
2 1 - 2

1 -1 1
1 2 - 4 - 4 -4 8

19 1
29 1 2 -1 -1 1

1 - 2 1 -1 3 - 2 4 2 - 4
36 1 -2 1 -1 1 1 - 1 1 - 1
38 1 -2 - 1 -1 - 1 2 - 1 2 - 2
5 1 1

1 - 1
1

1 1 - 2
1 -1

1 -1 1 1 - 1 1 - 1 -1
1 1 1 - 1 - 1

1 -1 1 1 - 1
72 1 - 1
76 1 - 1

1 - 1
1 1 - 1 - 1
1 -1 -1 1

1 - 1
108 1 1 1 - 1 - 1 2 2 -3
132 1 - 1 1 - 1 -1 1
140 1 1

1 - 1 1 - 1
1 -1 1 - 1

172 1 1 - 1 1
200 1

1
1

1
1

204 any
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Table 3: Staggered invari ants of typ e (2, 1) up to range a = 4 for
ECA.

Rule bo bl bz b3 b4 bs be b7 bs bg blO bll bI 2 bI 3 bI 4 bl S bI 6

1 1 -4 2 - 2 2 2 -2
3 1 -3 1 -1 1

1 -2 -2 3 -1 2 2 -3 1 - 1 -1 1
5 1 -3 1 - 1 1

15 1 -2
1 - 1 -2 -2 4

1 -2 -1 2
1 - 1

1 -1 -2 -2 3 2 -1 -1 - 1 1
1 -4 -3 4 2

1 -2 -1 2 1 -1 -1 -1 2
1 -1

19 1 - 4 - 6 8 2 2 -4 2 - 2 -2 2
27 1 - 3 3 -1 -1 1 - 1
29 1 - 2

1 -1 -1 - 1 2 -1 2 1 -2
38 1 - 3 -1 3 1 2 - 3 - 2 2
51 1 - 2

1 - 1 - 2 - 2 4
1 - 2 -1 2

1 -1
1 - 1 -2 - 2 3 2 -1 - 1 -1 1

1 - 4 -3 4 2
1 -2 - 1 2 1 - 1 - 1 - 1 2

1 - 1
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Table 4: Staggered invari ant s of type (2, 2) up to range a = 4 for
ECA.
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Rule bl b2 b3 b4 bs b6 b7 i « bg blO bl1 bI 2 h 3 bI 4 bl S bI 6

1 1 1 -1 - 1 1
2 1 1 - 1 1
5 1 - 1 -1 1

10 1 -1
1 1 -1 1

15 1 -1
1

1
1 1 -2

1 -1
1 -1 1 1 - 1 1 -1 - 1

1 1 -1 -1
2 - 1 2 1 -2

19 1 1 - 1 -1 1 1 -1
24 1 - 1 -1 -1 - 1 -1 1 1
29 1 1 -1 1 - 1 -1 1

1 1 -1
34 1 1

1 - 1 1 -1
1 - 1 1 -1

38 1 1 -1 1 -1 1
42 1 1

1 -1 -2
1 - 1 1

1 -1 1 - 1
1 -1 1 -1

1 - 1 1 - 1
46 1 1 -1 1 -1 1
51 1

1 1 - 1 -1
1 -2

2 1 -1
- 2 1 1 - 1 2

1 -1 - 1 2 2 2 -4
1 - 1 -1

1 2 - 4 1 - 4 - 4 8
138 1 -1 1

1 - 1 1
1 -1 1

170 any
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4. Elementary reversible cellular automata

ERCA are another example of CA of the form (1.2) . In this case, X = {O, 1F
and x; = (o-f,o-f) , where af and o-f t ake values in the set {0,1 }. The time
evolut ion rul e of ERCA is writ t en as

(4.1)
(4.2)

where f : {O, 1P ----> {O, I} is an arbit rary funct ion and E9 denotes the ex­
clusive OR operation (i.e ., 1 E9 0 = 0 E9 0 = 1, 1 E9 1 = 0 E9 0 = 0) . Each
rul e is named by the rule number given by equ ation (3.1) where f replaces g,
followed by an R. There are 256 rule s for ERCA and again the reflection and
boolean conjugat ion symmetries are used to classify them into 88 equivalence
classes.

In this case, function F is generally developed as

F to«, 0-0 , . .. , acx , o-cx)
= bo+ b1ao + b20-0 + b3 aoo-o + b4aoa1 + bSo-Oa1 + ...
= bo+ 2:: bkag°o-go . .. a~ao-~a , (4.3)

(00,"0, .. ,aa,"a) E {O, 1}2a+2
(00,"0 ) # (0,0)

with the use of 3 . 4cx + 1 par am eters {bd , and k is the integer given by

o

k = ao + 2ao + 3 2::(ai + 2ai)4 i-1 .
i=l

(4.4)

As in the case of ECA , bo is not necessar y if 7 = 0 or >- of- 1.
The equations have been solved for {bd in cases (7, >-) = (1,1), (1,2) ,

(2,1) , and (2,2) , with ran ge a :::; 2 for each rule. The number of invariants
obtained are shown in Tabl e 5. The numbers of localized invar iants of 7 = 1
are also shown for reference.

A remarkabl e feature seen in Table 5 is that every ru le that has an addit ive
conserved qu antity also possesses staggered invari ants of type (1,2) and / or
(2,2) . Moreover , there are some rules that have staggered invari ants but do
not have an ad dit ive conserved qu antity. These facts are in cont rast to the
case of ECA. On t he other han d, ERCA and ECA have in common the
fact that most of the staggered invari ants are induced by localized periodi c
functi ons.

Some staggered invariants are related with symmetries of the rules. Rules
90R , 95R, and 165R are the peripheral rules where t he ru le fun ct ion f (x,y , z)
actually does not depend on y. Then t he space-t ime pattern of {an is
separate d into two independent reg ions like a checkerboard . Therefore, if
such a rule has an addit ive conserved quantity, it is decomposed into two
conserved quan ti ti es each defined on a compo nent of the checkerboard, which
are nothing but staggered invari an ts of type (2, 2) .
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Table 5: Number of staggered invariants for t he range a = 2 for
ERCA. T he numbers in parentheses in t he column of type (1, 1) ar e
the numbers of independent localized periodic functions of per iod 1.
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Rule Type (T, A) R ule Type (T, A)
(1,1) (1, 2) (2,1) (2,2) (1, 1) (1,2) (2,1) (2 2)

OR 26~26 26 22 22 59R 2(2) 2
lR 16 15 15 11 12 60R
2R 1111 11 7 7 61R
3R 8(8 8 4 4 62R
4R 13(13 13 9 9 63R
5R 77 7 5 5 73R 2(1) 1
6R 5 5 5 2 2 75R
7R 3 3 3 1 1 77R 3(0) 1
9R 4 4 4 1 1 79R

lOR 3 3 3 2 2 90R 4 0 4
lIR 1 1 1 9 1R 3 0 2
12R 44 4 94R 1 0 1
13R 9 5R 2 0 2
14R 105R
15R 107R
18R 65 5 1 2 109R
19R 9 9 9 3 3 11IR
22R 3 2 2 123R 2 0 1
23R 44 5 1 126R 42 2 2 3
24R 2 2 2 1 127R 42 2 2 3
25R 129R 76 6 3 3
26R

~~~~
1 131R 2 2 2

27R 2 133R 1 1
28R 135R
29R 139R 1(1) 1
30R 141R
31R 143R
33R 44 5 1 147R 3(3) 3
35R 44 4 151R 1
36R 7 6 6 3 3 153R
37R 3 2 3 1 1 155R
38R 22 2 15 7R
39R 22 2 159R
41R 1 165R 2(0) 2 2 2
43R 167R 1 1
45R 175R 1 1
46R 2(2) 2 179R 7(6) 6 1
47R 183R 2 1
50R 8(6l 6 187R
51R 16(1 6 16 189R 1 1 2 1 1
54R 3~2 2 19 1R 1 1 2 1 1
55R 5 4 4 219R 42 2 2 3
57R 223R 3 2 2 2 2
58R 255R 12(12 12 12 12
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Table 6: P ropaga tive st aggered invariants of type (1,2) up to Q = 1
for ERCA.

Rule b1 b2 b3 s; bs b6 b7 bs bg blO bll b12

33R 1 1
37R 1 1
41R 1 -1 - 1

133R 1 1
15 1R 2 1 -2 1 2 - 2 - 2 -2 2
165R 1 - 1 2

1 1
167R 1 -1 1 -1
175R 1 -1 1 - 1
183R 1 -1 1 - 1

2 1 -2 1 2 - 2 -2 -2 2
189R 1 -1 1 -1
191R 1 -1 1 -1
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Table 7: Staggered invar iants of type (2, 1) up to Q = 1 for ERCA.
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Rule bo b1 b2 ba b4 bs b6 b7 bs bg blO bn b12

OR 1 -1
1 -1

1 -1
1 -1

1 -1
lR 1 -1

1 -1
1 - 1

2R 1 -1 1 -1
1 - 1

3R 1 -1
4R 1 -1

1 -1 - 1 1 -1 1
5R 1 -1

lOR 1 -1 1 -1
33R 1 -1
36R 1 - 1

1 -1 - 1 1 -1 1
37R 1 -1

l26R 2 - 1 -1
l27R 2 - 1 -1
l29R 1 -1

1 - 1 -1 1
l33R 1 - 1
l65R 1 - 2 -2 2 2

1 -1
l67R 1 -2 - 2 2 2
l75R 1 -2 - 2 2 2
l83R 1 - 2 - 2 2 2
l89R 1 - 2 - 2 2 2
19lR 1 -2 - 2 2 2
2l9R 1 - 2 -2 2 1 1
223R 1 -2 - 2 2 1 1
255R 1 -2 - 2 4

1 - 1 - 1 1
2 -1 - 1
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Tab le 8: St aggered invari ants of ty pe (2, 2) up to a = 1 for ERCA.

Rule bI b2 b3 b4 bs b6 b7 bs bg blO bll bI 2

OR 1 - 1
1 - 1

1 -1
1 -1

1 -1
lR 1 -1

1 -1
1 -1

2R 1 - 1 1 - 1
1 -1

3R 1 - 1
4R 1 -1

1 - 1 -1 1 -1 1
5R 1 -1

lOR 1 -1 1 -1
18R 1 -1 1 -1
24R 1 -1 1 - 1
26R 1 -1 1 -1
36R 1 -1 -1 1 - 1 1
90R 1 -1 1 -1

1 1
91R 1 1
94R 1 1
95R 1 1

123R 1 1
126R 1 1
127R 1 1
129R 1 -1 -1 1 1 - 1
189R 1 1 -2 - 1 -1
191R 1 1 -2 -1 -1
219R 1 1
223R 1 1
255R 1 1 - 2

1 1
1 - 1
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Another example is relat ed to boolean comp lement symmetry [4]. For a
fun ction f (x,y , z), we can write

!(x , y , z) = 1 - f( x , y , z ). (4.5)

Then , the rule specified by ! (rule !R) is called the compleme nt of the
rule specified by f (ru le fR). Note that this is different from the boolean
conjugat ion operation or the exchange of the roles of 0 and 1. The lat ter is
executed by

h(x ,y , z) = f(1 - x , 1 - y , 1 - z ).

Let {oD be an orbit in rule fRo If {vi} is defined by

(4.6)

{

a t
I

vi =
1- aT

for t = 4n or 4n + 1

for t = 4n + 2 or 4n + 3,
(4.7)

and n is an integer, {vi} sat isfies the following relation

{

!(Vf_l ' vf,vL) EEl vf-l for t = 4n or 4n + 1
vi =

h(vL ,vf, vL) EEl vt1 for t = 4n + 2 or 4n + 3.
(4.8)

This relation means that if rules !R and hR have an addit ive conserved
quantity in common, rule fR has a staggered invar iant of T = 4 or 2. If the
den sity F is symmetric in t ra nsforma tion (ai, 0-1) <--t (1 - oi,1 - 0-1) , period
T becomes 2. This is the case for rules 165R, 167R, 175R , 183R, 189R, and
191R, where f( x , y , z) = 1 if x EEl z = O. Because their complement s have the
addit ive conserved quantity

<1>(xt
) = 2: [(ai - 0-;+1? + (0-; - a;+1 )2]

I

(4.9)

in common, (-1 )t<1> must be a staggered invariant , or a sum of a staggered in­
variant and an additive conserved quantity. However , because these rule s do
not have an additive conserved quantity of t his range, (-1)1<1> is a staggered
invariant .

In ad diton to those pr eviously mentioned , there are some st aggered in­
var iants that commonly app ear in a number of ru les:

(a) The rules where f (x, y , z) = 0 if x EEl z = 0 have the staggered invariant
of ty pe (2,2 )

lIJ (xt) = (-I)t2:(-I )1 [(0-; - a;+1)2 - (a; - 0-;+1)2]
I

besides the addit ive conserved quantity (4.9) .

(4.10)
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(b) The rules where j (x, y , z ) = 1 if x EB z = 1 have the staggered invari ant

llJ (xt
) = (- lr2)-1)l [(()f - iTf+l)2+ (iTf - ()f+1?]

I

as well as the additive conserved quantity

These may also have some relation to symmetries.

5. Discussion

(4.11)

(4.12)

In this pap er a necessary and sufficient condit ion has been derived so that a
CA has staggered invari ants and it has shown that the condit ion is writ ten
in th e form of the equation of cont inuity. Moreover, t he condit ion has been
applied to ECA and ERCA to obtain the staggered invariants in the case
t ha t a , 7 , and A are relatively small. The staggered invari ants in ECA is
related to space-t ime patterns of the class-2 rules, while th e case of ERCA
contains some nontrivial examples.

Although I have solved the conservation condit ion for ECA and ERCA
only in the case that 7 ::; 2 and A ::; 2, it turns out that staggered invar iants
with larger 7 or A also exist . As st ated in sect ion 2, a localized periodic
funct ion of period 7 (if it exists) becomes a dens ity fun ction for a staggered
invariant of typ e (7, A) with an arbit ra ry A. Thus there is no upper bound
of A. Concerning 7 , there is at least a case with 7 = 4. It is found in rule
255R , where the rule funct ion is j(x ,y, z) = 1 for any (x ,y, z ) and each site
changes its value with period four ind epend ent ly of other sites . Except for
the case of a localized per iod ic funct ion , there may be an upp er bound for 7

and A, though I do not know how to determine it .
Let us consider the possibility of the exte nsion of the conserva t ion condi­

tion. The exte nsion to rules with a wider interact ion range is straightforward .
The case of additive conserved quantities was already discussed in [2]. The
conservation condit ion of staggered invariants can be extended in the same
manner . The exte nsion to higher dimensions is another possibility. I expect
th at the condit ion then can also be written in the form of the equat ion of
cont inuity, where cur rent J must be a vector.

In mechanical syste ms, as ment ioned in the int rodu ction, conserved quan­
tities are connected with the symmetries of the system considered via
Noether 's theorem. Thus, one may find such a relation also in the case
of CA, though the condit ions obtained in this paper do not clearly suggest
it. If one can unveil that possible connect ion hidden in the present condit ion,
it will prov ide us with a unified view for the invar iants of dyn ami cal systems.

ERCA preserve the phase space volume. Hence, if a rule has an addit ive
conserved quant ity, one can develop standard stat ist ical mechan ics there .
By comparison of simulation results with stat istical mechan ics predict ions,
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one can discuss t he relation between microscopic dynamics and ergo dicity.
I have simulated equilibrium and nonequilibrium t hermody namic prope rt ies
of the seven rules 26R, 77R , 90R, 91R, 94R, 95R , and 123R , whi ch have
addit ive conserved qu antiti es of a = 1 but do no t have a locali zed periodic
functi on in any range a [13 , 14, 15]. Table 2 shows that all t hese rules have
staggered invariants of typ e (2,2). It is int eresting to investigat e how t hese
st aggered invarian t s affect the t hermodynamic behavior of t he ru les. Under
t he boundary condition where heat bat hs are at t ached at b oth the ends, no
significant effects have been obs erved [16]. T he effect sho uld b e subtle, if
any. Possible roles on the be havior of other ru les are a future problem .
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