
Complex Systems 9 (1995) 169-176

A Generalization of Cellular Automata

J Dana Eckart*
Radford University,
Radford, VA , 24142

Abstract. Cellular auto mata (CA) models have historically included
only a bounded amo unt of state information. Giving cells the ab il­
ity to send and receive a possibly unb ounded number of finite size
messages creates three possible CA programming models: bounded
state only, unb ounded messaging only, and both bounded state and
un bound ed messaging. It is shown t hat the lat ter , alt hough computa­
t ionally equiva lent to the other models, provides a more effect ive way
of describing some CA .

1. Adding messages

A bounded (or classical) cellular automata (BCA) consists of a possibly in­
finite, n-dimensional lat tice of cells (e.g., [8]). Each cell has a st at e chosen
from a prespecified finite alphabet . Cells update their values by using a tran­
sit ion function. T he transit ion funct ion takes as its input the curre nt states
of the local cell and some finite collect ion of nearby cells t hat lie within some
bounded distance, collect ively known as a neighborhood. Each cell calculates
its next value independent of other cells and up dates its value, synchronously
wit h respect to the cells in whose neighborhoo d it lies, in discrete t ime steps .
BCAs only req uire a finite and bounded amount of information be kept at
each cell. The amount of inform at ion is dep endent only upon the size of
the alphabet . In particular, it is independent of the size, arrangement , and
values given as the initi al state of the lattice cells.

A generalized cellular auto mata (GCA) is a BCA with the added ability
of cells to send messages to cells within their neighb orhood , including them­
selves. The number of messages, each of finite state , which a cell may send is
potent ially unbounded . Messages sent during a t ime step are received at the
beginning of t he next t ime step. Furthermore, messages received during one
t ime step can be repropagated and sent to ot her cells (or even t he receiving
cell) during the same time step in which they were received. Because the
number of messages (each of finit e state) received by a cell in a single t ime

*Electronic mail address: dan acrunet , edu.

170 J Dana Eckart

st ep is unbounded, it is, in general , impossible to determine the amount of
state that a cell will be requ ired to hold . Cellang [3] and Star-Logo [5] ar e
two examples of a growing number of cellular automata (CA) programming
sys tems which provide GCA capabilities .

Another programming syst em , Creatures [6], represents a second subset of
GCA , called messaging cellular automata (MCA) . Unlike BCA, MCA have
no state associated with each cell. Inst ead , all of the information in the
lat ti ce is kept and passed only as messages.

Although BCA, MCA , and GCA are comput at ionally equivalent ;' this
pap er argues that for some types of computations GCA pr ovide a more nat­
ur al way of expressing the computation in addit ion to allowing for more space
and time efficient ways of reali zing it. Becau se BCA are well known for being
"embarrassingly parallel ," the implications that GCA have for parallelism are
also examined . T hese topics are pr esented in the context of the Cellang [3]
pr ogramming lan guage and associate d compiler.

2. An example

Because of the popularity of BCA and programming systems which support
this style of CA programming , GCA will be contras te d only with this subset ."
By examining a sing le problem and its solut ion using both BCA and GCA,
the limitations of BCA ar e demonstr ated. Furthermore, it is shown how the
corresponding GCA solut ion easily handles these difficulti es.

Christopher Langton's virtual ants provide an excellent pr oblem for a
basis of comparison . A virtual ant (vant) is a simple creature that moves
abo ut on a grid of black and whi te cells. If the cell is black the vant turns in
one direction and if it is whi te th e vant turns in the other. Aft er t urn ing, the
van t changes the color of the cell to the opposing color and moves forward
one cell. Figures 1 and 2 show the BCA and GCA versions of the Cellang
[3] code resp ect ively. Each version was designed and written for a single
van t . The implications of supporting multiple vants , and required progr am
changes, are discussed in sect ion 2.2. Alt hough Cellang [3] allows the BCA
and GCA solutions to resemb le one ano ther, the similarity is only supe rficial.

2.1 One vant at a tim e

Lines 1-8 of the BCA code (F igure 1) spec ify that the vant moves about
on a 2-dimensional lattice and that each cell in the lat ti ce contains three
pieces of information: color , vant , and dir. T he co lor indicates the cur­
rent coloring of the cell, which the vant will change as it moves through
the cell. T he pr esence (absence) of a vant is indicat ed by a value of 1

IG CA contains BCA as a proper sub set and BCA can simulat e a TUring mach ine [4J .
Thus by Church' s t hesis, GCA and BCA are equivalent . F inally, MCA can emulate BCA
by having each cell send it self messages repr esenting the state of the corr esponding BCA.

2T he only known MCA system currently availab le is the Creatures [6J syste m. Fur­
thermore, th ere are very few references to thi s, or any similar system , in the literature.

A Generalization of Cellular Automata 171

2 dimens i on s of
White = 0 and Black = 1
co l or of 0 . . 1
vant of 0 . . 1

Nor t h = 0 , East = 1. South = 2. West = 3
dir of 0 . . 3

end

ne sw[] f or 4 : = [0 , 1] , [1 ,0], [0 , -1] , [-1,0]
c e l l . vant := 0

f orall i
if ne sv [i) .vant k nesv [i] . dir = i +%2 then

dir := nesv [i] .dir - 1 when c e l l . co lor
:= ne sv [i] .dir + 1 otherwise

c ell . d i r : = (ddr + 4) % 4
ce l l .vant := 1
ce l l. co lor : = !ce ll. co l or

end
end

Figure 1: BCA code for virt ual ants.

(1) 2 dim ensions of
(2) # White = 0 and Bl ack = 1
(3) c o l or of 0 . . 1
(4)

(5) ag en t of
(6) # Nor t h = 0 , Ea st = 1 , Sou t h = 2 , We s t = 3
(7) dir of 0 .. 3
(8) end
(9)

(10) forall vant : agent
(11) dir := vant . dir - 1 whe n cell. color
(12) : = van t .dir + 1 ot he r wise
(1 3)
(14) dir : = (d i r + 4) % 4
(15)
(1 6) agent Idar) - > [0, 1] when dir = 0
(17) -> [1, 0] whe n dir = 1
(18) -> [0 , - 1] when dir = 2
(19) - > [- 1 , 0] when dir = 3
(20)

(21) cell . color : = !cell. color
(22) end

Figure 2: GCA code for virtual ants.

(0) for vant , and di r indicat es th e direction the vant is traveling in , if
present.

The BCA solut ion method is to have each cell look at its neighb ors and
determine which one, if any, contains a vant headed towards the cell. Line 10
sets th e four elements of the neswarray, a temporary variab le, to the values of
the north, east , sout h, and west neighboring cells respectively. Neighbo ring
cells are indi cated by using relative ind exing, where [0, 0] would indicate the
cell itself. The fo raH loop on line 13 then considers each neighbo ring cell
in turn , and determines whether or not a vant is app roaching from that
neighbor. By defaul t , the compiler infers that the loop index i will take on
the values 0..3 since it is used as an index for the nesw array. The boolean
condit ion for the i f statement on line 14 is t rue only when there is a vant in
the neighboring cell and that vant is headed toward the cell. Note here, tha t
i +%2 is equivalent to (i+2)%4 where %is t he modulo operator. Lines 15-18
turn t he approaching vant left or right and t hen assigns the dir , vant , and
col or fields accordingly. It is imp ortant to note the necessity of set t ing the
vant field to 0 on line 11. A cell cont aining a vant must erase its presence
since the vant must travel int o some other cell.

For a single vant , the BCA solut ion is not particularly comp lex, though
it may cause confusion for some people to think of having to examine neigh­
boring cells to find vants moving toward a cell. However , even if no vant
is present within a cell, that cell st ill maintains a dir field . Whether or
not this actually represents wast ed space depend s upon the implement ation ,
but from a programming st andpoint , it is dangerous because it provides an
oppor tunity to (mis)use invalid data.

The GCA solution, shown in Figur e 2, on the ot her hand, uses a message
to represent a vant . Each cell st ill maintains a co l or field , just as the BCA
solut ion did , but the vant itself is represented by an agent (message) which

172 J Dana Eckart

contains a dir field to indicate the vant 's direction of travel. The f or aH
loop on line 10 examines all of the agents sent to the cell during the previous
t ime step. The loop index vant corresponds to each of th ese agents in turn.
Lines 11-14 det ermine if the vant shou ld turn left or right, in the same way
the BCA solution did. Here, however, the loop index vant rather than th e
more awkward vant [i] names the vant in quest ion. Lines 16-19 build a new
agent (message) with the newly determined direction, and sends the agent
(representing the vant) to the appropriate cell, depending upon the direct ion
of travel. F inally, line 21 changes the color of the cell once the vant has
passed through .

The GCA solution mor e accurately reflects the components of th e prob­
lem . Every cell has an associated color which is always mean ingful. The
presence of an agent (message) represents the presence of a vant , and the vant
moves (is sent) to the next cell in its newly determined direction of travel.
Likewise, the absence of any agents (messages) indicates no vants and the
f oraH loop does not hing . Unlike the BCA solut ion , all of the information
at each cell in the GCA solut ion is always meaningful.

2.2 Multip le va nt s

Watching a single vant pass through its myr iad of gyrations can eventually
become t iresome. It is only natural to consider what would happen when
each of the previous solutions is extended to allow mult iple vants . If each cell
contains at most one vant at a t ime, the previous solutions cont inue to work
correct ly. Unfortunately, it is not always possible to determine that vants
will never meet. If two or mor e vants enter the same cell simult aneously it is
important to consider what should happen to the cell color, how th e vants
should turn, and whether or not the previous solutions must be modified.
When multiple vants arrive at a cell at the same t ime step , assume that all
vant s at that cell see the same initial color, turn in the same dir ect ion (all
turning left or all turning right) , and change the cell's color to the same
color after pass ing through . Finally, assume that the number of vants in the
cell lattice is finite , say 10. Thus, no more than 10 vants will ever be within
the same cell at the same time.

Figure 3 shows the resul ting updated version of the BCA solut ion. It
is st ruct ured much as it was before except that instead of a single cell field
each for vant and dir , lines 4 and 7 show arrays of 10 fields for each. Thus
a foraH loop is needed on lines 12- 14 to remove all of the vants current ly
locat ed at the cell, although vants could subsequent ly move into the cell via
the remaining code. An addit ional foraH loop , line 18, and loop index j
ar e needed to examine each of the array elements in the vant and dir field
arrays of the neighb oring cells. The index k is used , lines 16, 23, 24, and
26, to place vants in subsequent posit ions within t he cell's field arrays." The

3In actuality, th e Cellang programming language does not allow t he use of k as an
index into an array. It has bee n used here to sim plify what would ot herwise become a
more complex solution.

A Generalization of Cellular Automata

(1) 2 dimensions of
(2) # White = 0 and Black =
(3) co lor of 0 . . 1
(4) vant [] f or 10 of 0 . . 1
(5)

(6) # North = 0 , East = 1, South = 2, West 3
(7) dir [] for 10 of 0 .. 3
(8) end
(9)

(10) ne s v l l for 4 : = [0 , 1] , [1 , 0], [0 , - 1] , [- 1 , 0]
(11)
(12) forall j
(13) ce ll . vant [j] : = 0
(14) en d
(15)
(16) k: = 0
(17) forall i
(18) foral l j
(1 9) if ne sw[i] .vant[j] & nesw [i] . di r [j] = i+%2 then
(20) dir := ne sw[i] . di r [j] - 1 when cell .color
(21) : = ne s v j i.] . d i r [j] + 1 otherwise
(22)
(23) ce ll.dir [k] : = (dir + 4) % 4
(24) ce ll. vant [k] : = 1
(25) ce ll . color .= !cell . color
(26) k : = k + 1
(27) end
(28) end
(29) end

Figure 3: BCA code for multiple virtual ants .

173

requirement that all of the vants see the same cell co lor and change it to the
same color is accomplished since references to cell fields within expressions
(i.e. , lines 20 and 25) use the original value of the cell field and not the new
one which may have been assigned (i.e. , line 25) but which does not take
effect until the next time st ep.

While the BGA solution has become mor e complex , the pr evious GGA
solution works without any modification. Further more, the BGA solution
shown her e fails when the number of vants exceed 10, whereas the GGA
solut ion in no way dep ends upon a prespecified bound of the number of
vants in a cell. Furthermore, if the number of vants in the lattice is small ,
the BGA solution wastes a significant amount of storage, whereas the GGA
solution does not .

H an unbounded number of vants is called for , the GGA solution still
remains unchanged . The BGA solution , on the other hand would require
extensive red esign . Since a BGA has bounded state , an unbounded num­
ber of vants could only pass through it in unbounded time. Thus it would
be necessary to trade additional (unbounded) t ime for lack of (unbounded)
space. The solution would be come decidedly more complex. GGA provide a
mor e natural, extensible, and space efficient means for expressing solutions
to some problems than do BGA .

174 J Dana Eckart

3 . Im plicat ions for parallelization

Given that GCA allow more read abl e algorit hms and pro gram s t o be written
in some cases , if t hey cannot be efficient ly implement ed then they are of little
pract ical concern. Techni ques for implementing BCA are well known an d un­
derst ood . Thus , the discussion here is limi ted to the efficient implementation
of messages. On a single processor system , one of the most st raightforward
implementations is to associate a list pointer with each cell. Messages sent
t o a cell are added to that cell's associate d linked list. Although this ap­
pro ach can be somewhat wasteful of memory, it is simp le and reasonabl y
quick. This tec hnique is used by the Cellang compiler of the Cellular syste m
[3] . An alte rnate tec hnique , used by Cr-eatu res [6], is to use bucket hashing
with cell locations serv ing as keys. Since all of the states kept by this syste m
reside within agents (the equivalent of messages) the use of the hash table
works reasonabl y well. T he Cellang lan guage originally only sup po rte d BCA
programming . It used a dense repr esent ation since many CA, such as the
hod ge-podg e machine and lattice-gas mod els, are dense in nature ." Since the
compiler already sup porte d a dense representation, wherein the state of every
cell in the lattice is explicit ly maintained , the simp le linked list approach to
implementing messaging was pr eferred.

For a dense repre sent ation, the standard technique for both shared and
dist ribut ed memory mul ti pr ocessors, is to divid e the cell lattice into segments
(usually as vert ical st rips) with each pro cessor being ass igned the task of
updating the cells wit hin a single segment . T hose cells on processor Pi which
lay within the neighborhood of cells on processor Pj are called boundary
cells . The width of each segment is chosen to be no smaller than the radius
of the largest cell neighb orhood. This insures that boundar y cells are always
on a numerically adjacent processor. Note that it is possible for a boundary
cell to be a boundary t o mor e than one processor, but to no more than two
since the st rips are only at least as wide as the radius, and not the diam eter ,
of the largest cell neighborhood.

For the BCA port ion of the computation, the state of boundary cells
for Pi must be copied/transmitte d to it before the tran sition function is
applied . T he copied/transmit ted cell states are not changed by the receiving
pro cessor , so no chan ges need be sent back. This is what makes CA so easy
to par allelize, since cells can only updat e their own state. Messages sent to
cells belonging to another processor , on the ot her hand, are buffered locally
and then t ransmit te d to the pro cessor whose assigned segment cont ains t he
intend ed recipient cell. T he t ransmission and combining of buffered messages
takes place after all of the cells have perform ed their computat ion . T his
te chnique is used by t he Cellang comp iler for shared memor y multiprocessors
from Sun Microsyst ems and Silicon Graphics Incorporated. In t est s involvin g
up to four processors, over a wide range of problems, the measured spee dup
was consiste nt ly wit hin 3- 7 percent of optimal. Beck and Cas te llanos have

4The game of Life, on the other hand, depending upon th e initial state of the lattice
cells, can use a very sparse representat ion.

A Generalization of Cellular A ut omata 175

modified this implement ation to demonst rate the efficacy of t hese techniques
on distributed memory machines such as the CM-5 [2J .

Although BCAs can make effect ive use of vecto r pro cessors, and a tech­
nique called microvectors [lJ br ings the same kin ds of benefits to general
purpose pr ocessors, the linked list message implementati on described here
cannot utilize microvectors. T he inabili ty to use the technique stems from
the generally accepted processor design pr actice of having memory pointers
be the same size as memory words. T he microvector techn ique would require
that several pointers be able to be packed into a single word for any benefit
to be realized. Nor can the linked list message implementa tion be adapted to
either the CAM-6 [8J or CAM-8 [7J pipelined architectures . Alt hough both of
these architec tur es use a dense representation of the cell lat t ice values, nei­
ther provides access to a shared heap that could be used to st ore a linked list .
In fact , it seems unlikely that any suitable implementation for unbounded
messaging can be develop ed for either the CAM-6 or CAM-8, though both
remain excellent pipelined arc hitect ur es well optimized for BCA.

4. Conclusions

GCA provide a useful and effective way for describing some classes of CA
computat ion . A st raight forward implementation of messaging using linked
lists is both simple and efficient for a wide range of general-purpose hardwar e,
including both shared and distributed memory mult ipro cessors.

5. A cknowle d gement s

This work was supported in part by NASA, grant number NAG8-1009, as
par t of the USRA/J OVE program . Thanks also to Dr. Edward Okie for his
helpfu l comments on an earl ier version of this paper .

R eferen ces

[1] Beck, Micah and Antonio Castellanos, Vector Processing on Scalar Arc hitec­
tures (University of Tennessee, Knoxville, TN, Computer Science Department
Technical Report , September 1994).

[2] Beck, Micah, personal communication (beck@cs.utk. edu) .

[3] Eckart, J Dana, "A Cellular· Automata Simulat ion System," available via
anonymous ftp from rucs2 . sunlab . cs . runet .edu in th e directory pub/ ca
or from http : //www . cs . runet .edul~danalcal cellular .html.

[4] Lindgren, K. and Nordhal, M. G., "Universal Computation in Simple One­
dimensional Cellular Automata," Complex Systems, 4 (1990) , 299-318.

[5] Resnick, Mitchel, Turtles, Termites, and Traffi c Jams : Explorations in Mas­
sively Parallel Microworlds (MIT Press, Cambridge, MA, 1994).

176 J Dana Eckart

[6] Stephenson, I., Creature Processing: An Alternative Cellular Architecture
(Techn ical Report ASEG92.04, Department of Electronics, University of
York) .

[7] Toffoli , Tommaso and Norman Margolus, "Programmable Matter: Con cepts
& Realization, " International Journa l of High Speed Computing, 5, Number
2 (June 1993) , 155-170.

[8] Toffoli, Tommaso and Norman Margolus, Cellular Automata Machines: A
New Environment for Modeling (MIT Press , Cambridge, MA, 1987).

