Complex Systems 9 (1995) 169-176

A Generalization of Cellular Automata
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Abstract. Cellular automata (CA) models have historically included
only a bounded amount of state information. Giving cells the abil-
ity to send and receive a possibly unbounded number of finite size
messages creates three possible CA programming models: bounded
state only, unbounded messaging only, and both bounded state and
unbounded messaging. It is shown that the latter, although computa-
tionally equivalent to the other models, provides a more effective way
of describing some CA.

1. Adding messages

A bounded (or classical) cellular automata (BCA) consists of a possibly in-
finite, n—dimensional lattice of cells (e.g., [8]). Each cell has a state chosen
from a prespecified finite alphabet. Cells update their values by using a tran-
sition function. The transition function takes as its input the current states
of the local cell and some finite collection of nearby cells that lie within some
bounded distance, collectively known as a neighborhood. Each cell calculates
its next value independent of other cells and updates its value, synchronously
with respect to the cells in whose neighborhood it lies, in discrete time steps.
BCAs only require a finite and bounded amount of information be kept at
each cell. The amount of information is dependent only upon the size of
the alphabet. In particular, it is independent of the size, arrangement, and
values given as the initial state of the lattice cells.

A generalized cellular automata (GCA) is a BCA with the added ability
of cells to send messages to cells within their neighborhood, including them-
selves. The number of messages, each of finite state, which a cell may send is
potentially unbounded. Messages sent during a time step are received at the
beginning of the next time step. Furthermore, messages received during one
time step can be repropagated and sent to other cells (or even the receiving
cell) during the same time step in which they were received. Because the
number of messages (each of finite state) received by a cell in a single time
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step is unbounded, it is, in general, impossible to determine the amount of
state that a cell will be required to hold. Cellang [3] and StarLogo [5] are
two examples of a growing number of cellular automata (CA) programming
systems which provide GCA capabilities.

Another programming system, Creatures [6], represents a second subset of
GCA, called messaging cellular automata (MCA). Unlike BCA, MCA have
no state associated with each cell. Instead, all of the information in the
lattice is kept and passed only as messages.

Although BCA, MCA, and GCA are computationally equivalent,! this
paper argues that for some types of computations GCA provide a more nat-
ural way of expressing the computation in addition to allowing for more space
and time efficient ways of realizing it. Because BCA are well known for being
“embarrassingly parallel,” the implications that GCA have for parallelism are
also examined. These topics are presented in the context of the Cellang [3]
programming language and associated compiler.

2. An example

Because of the popularity of BCA and programming systems which support
this style of CA programming, GCA will be contrasted only with this subset.?
By examining a single problem and its solution using both BCA and GCA,
the limitations of BCA are demonstrated. Furthermore, it is shown how the
corresponding GCA solution easily handles these difficulties.

Christopher Langton’s virtual ants provide an excellent problem for a
basis of comparison. A virtual ant (vant) is a simple creature that moves
about on a grid of black and white cells. If the cell is black the vant turns in
one direction and if it is white the vant turns in the other. After turning, the
vant changes the color of the cell to the opposing color and moves forward
one cell. Figures 1 and 2 show the BCA and GCA versions of the Cellang
(3] code respectively. Each version was designed and written for a single
vant. The implications of supporting multiple vants, and required program
changes, are discussed in section 2.2. Although Cellang [3] allows the BCA
and GCA solutions to resemble one another, the similarity is only superficial.

2.1 One vant at a time

Lines 1-8 of the BCA code (Figure 1) specify that the vant moves about
on a 2-dimensional lattice and that each cell in the lattice contains three
pieces of information: color, vant, and dir. The color indicates the cur-
rent coloring of the cell, which the vant will change as it moves through
the cell. The presence (absence) of a vant is indicated by a value of 1

LGCA contains BCA as a proper subset and BCA can simulate a Turing machine [4].
Thus by Church’s thesis, GCA and BCA are equivalent. Finally, MCA can emulate BCA
by having each cell send itself messages representing the state of the corresponding BCA.

2The only known MCA system currently available is the Creatures [6] system. Fur-
thermore, there are very few references to this, or any similar system, in the literature.
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2 dimensions of (1) 2 dimensions of
# White = 0 and Black = 1 (2) # White = 0 and Black = 1
color of 0..1 (3) color of 0..1
vant of 0..1 (4)
(5) agent of
# North = 0, East = 1, South = 2, West = 3 (6) # North = 0, East = 1, South = 2, West = 3
dir of 0..3 (€p] dir of 0..3
end (8) end
(9
nesw[] for 4 := [0, 1], [1, 0], [0, -1]1, [-1, 0] (10) forall vant : agent
cell.vant := 0 (11) dir := vant.dir - 1 when cell.color
(12) := vant.dir + 1 otherwise
forall i (13)
if nesw[il.vant & nesw[il.dir = i+%2 then (14) dir := (dir + 4) % 4
dir := nesw[i].dir - 1 when cell.color (15)
:= nesw[i] .dir + 1 otherwise (16) agent(dir) -> [0, 1] when dir = 0
an -> [1, 0] when dir =1
cell.dir := (dir + 4) % 4 (18) -> [0, -1] when dir = 2
cell.vant := 1 (19) -> [-1, 0] when dir = 3
cell.color := !cell.color (20)
end (21) cell.color := !cell.color
end (22) end
Figure 1: BCA code for virtual ants. Figure 2: GCA code for virtual ants.

(0) for vant, and dir indicates the direction the vant is traveling in, if
present.

The BCA solution method is to have each cell look at its neighbors and
determine which one, if any, contains a vant headed towards the cell. Line 10
sets the four elements of the nesw array, a temporary variable, to the values of
the north, east, south, and west neighboring cells respectively. Neighboring
cells are indicated by using relative indexing, where [0, 0] would indicate the
cell itself. The forall loop on line 13 then considers each neighboring cell
in turn, and determines whether or not a vant is approaching from that
neighbor. By default, the compiler infers that the loop index i will take on
the values 0..3 since it is used as an index for the nesw array. The boolean
condition for the if statement on line 14 is true only when there is a vant in
the neighboring cell and that vant is headed toward the cell. Note here, that
i+%2 is equivalent to (i+2)%4 where % is the modulo operator. Lines 15-18
turn the approaching vant left or right and then assigns the dir, vant, and
color fields accordingly. It is important to note the necessity of setting the
vant field to 0 on line 11. A cell containing a vant must erase its presence
since the vant must travel into some other cell.

For a single vant, the BCA solution is not particularly complex, though
it may cause confusion for some people to think of having to examine neigh-
boring cells to find vants moving toward a cell. However, even if no vant
is present within a cell, that cell still maintains a dir field. Whether or
not this actually represents wasted space depends upon the implementation,
but from a programming standpoint, it is dangerous because it provides an
opportunity to (mis)use invalid data.

The GCA solution, shown in Figure 2, on the other hand, uses a message
to represent a vant. Each cell still maintains a color field, just as the BCA
solution did, but the vant itself is represented by an agent (message) which
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contains a dir field to indicate the vant’s direction of travel. The forall
loop on line 10 examines all of the agents sent to the cell during the previous
time step. The loop index vant corresponds to each of these agents in turn.
Lines 11-14 determine if the vant should turn left or right, in the same way
the BCA solution did. Here, however, the loop index vant rather than the
more awkward vant [i] names the vant in question. Lines 16-19 build a new
agent (message) with the newly determined direction, and sends the agent
(representing the vant) to the appropriate cell, depending upon the direction
of travel. Finally, line 21 changes the color of the cell once the vant has
passed through.

The GCA solution more accurately reflects the components of the prob-
lem. Every cell has an associated color which is always meaningful. The
presence of an agent (message) represents the presence of a vant, and the vant
moves (is sent) to the next cell in its newly determined direction of travel.
Likewise, the absence of any agents (messages) indicates no vants and the
forall loop does nothing. Unlike the BCA solution, all of the information
at each cell in the GCA solution is always meaningful.

2.2 Multiple vants

Watching a single vant pass through its myriad of gyrations can eventually
become tiresome. It is only natural to consider what would happen when
each of the previous solutions is extended to allow multiple vants. If each cell
contains at most one vant at a time, the previous solutions continue to work
correctly. Unfortunately, it is not always possible to determine that vants
will never meet. If two or more vants enter the same cell simultaneously it is
important to consider what should happen to the cell color, how the vants
should turn, and whether or not the previous solutions must be modified.
When multiple vants arrive at a cell at the same time step, assume that all
vants at that cell see the same initial color, turn in the same direction (all
turning left or all turning right), and change the cell’s color to the same
color after passing through. Finally, assume that the number of vants in the
cell lattice is finite, say 10. Thus, no more than 10 vants will ever be within
the same cell at the same time.

Figure 3 shows the resulting updated version of the BCA solution. It
is structured much as it was before except that instead of a single cell field
each for vant and dir, lines 4 and 7 show arrays of 10 fields for each. Thus
a forall loop is needed on lines 12-14 to remove all of the vants currently
located at the cell, although vants could subsequently move into the cell via
the remaining code. An additional forall loop, line 18, and loop index j
are needed to examine each of the array elements in the vant and dir field
arrays of the neighboring cells. The index k is used, lines 16, 23, 24, and
26, to place vants in subsequent positions within the cell’s field arrays.® The

3In actuality, the Cellang programming language does not allow the use of k as an
index into an array. It has been used here to simplify what would otherwise become a
more complex solution.
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(1) 2 dimensions of

(2) # White = 0 and Black = 1

(3) color of 0..1

(4) vant[] for 10 of 0..1

(5)

(6) # North = 0, East = 1, South = 2, West = 3
(7 dir[] for 10 of 0..3

(8) end

(9)

(10) nesw[] for 4 := [0, 1], [1, o], [0, -1], [-1, O]
(11)

(12) forall j

(13) cell.vant[j] := 0

(14) end

(15)

(16) k :=0

(17) forall i

(18) forall j

(19) if nesw[i].vant[j] & nesw[i].dir[j] = i+/2 then
(20) dir := nesw[i].dir[j] - 1 when cell.color
210 nesw[i].dir[j] + 1 otherwise
(22)

(23) cell.dir[k] := (dir + 4) % 4

(24) cell.vant[k] := 1

(25) cell.color := !cell.color

(26) k =k + 1

27) end

(28) end

(29) end

Figure 3: BCA code for multiple virtual ants.

requirement that all of the vants see the same cell color and change it to the
same color is accomplished since references to cell fields within expressions
(i.e., lines 20 and 25) use the original value of the cell field and not the new
one which may have been assigned (i.e., line 25) but which does not take
effect until the next time step.

While the BCA solution has become more complex, the previous GCA
solution works without any modification. Furthermore, the BCA solution
shown here fails when the number of vants exceed 10, whereas the GCA
solution in no way depends upon a prespecified bound of the number of
vants in a cell. Furthermore, if the number of vants in the lattice is small,
the BCA solution wastes a significant amount of storage, whereas the GCA
solution does not.

If an unbounded number of vants is called for, the GCA solution still
remains unchanged. The BCA solution, on the other hand would require
extensive redesign. Since a BCA has bounded state, an unbounded num-
ber of vants could only pass through it in unbounded time. Thus it would
be necessary to trade additional (unbounded) time for lack of (unbounded)
space. The solution would become decidedly more complex. GCA provide a
more natural, extensible, and space efficient means for expressing solutions
to some problems than do BCA.
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3. Implications for parallelization

Given that GCA allow more readable algorithms and programs to be written
in some cases, if they cannot be efficiently implemented then they are of little
practical concern. Techniques for implementing BCA are well known and un-
derstood. Thus, the discussion here is limited to the efficient implementation
of messages. On a single processor system, one of the most straightforward
implementations is to associate a list pointer with each cell. Messages sent
to a cell are added to that cell’s associated linked list. Although this ap-
proach can be somewhat wasteful of memory, it is simple and reasonably
quick. This technique is used by the Cellang compiler of the Cellular system
[3]. An alternate technique, used by Creatures [6], is to use bucket hashing
with cell locations serving as keys. Since all of the states kept by this system
reside within agents (the equivalent of messages) the use of the hash table
works reasonably well. The Cellang language originally only supported BCA
programming. It used a dense representation since many CA, such as the
hodge-podge machine and lattice-gas models, are dense in nature.* Since the
compiler already supported a dense representation, wherein the state of every
cell in the lattice is explicitly maintained, the simple linked list approach to
implementing messaging was preferred.

For a dense representation, the standard technique for both shared and
distributed memory multiprocessors, is to divide the cell lattice into segments
(usually as vertical strips) with each processor being assigned the task of
updating the cells within a single segment. Those cells on processor P; which
lay within the neighborhood of cells on processor P; are called boundary
cells. The width of each segment is chosen to be no smaller than the radius
of the largest cell neighborhood. This insures that boundary cells are always
on a numerically adjacent processor. Note that it is possible for a boundary
cell to be a boundary to more than one processor, but to no more than two
since the strips are only at least as wide as the radius, and not the diameter,
of the largest cell neighborhood.

For the BCA portion of the computation, the state of boundary cells
for P; must be copied/transmitted to it before the transition function is
applied. The copied/transmitted cell states are not changed by the receiving
processor, so no changes need be sent back. This is what makes CA so easy
to parallelize, since cells can only update their own state. Messages sent to
cells belonging to another processor, on the other hand, are buffered locally
and then transmitted to the processor whose assigned segment contains the
intended recipient cell. The transmission and combining of buffered messages
takes place after all of the cells have performed their computation. This
technique is used by the Cellang compiler for shared memory multiprocessors
from Sun Microsystems and Silicon Graphics Incorporated. In tests involving
up to four processors, over a wide range of problems, the measured speedup
was consistently within 3-7 percent of optimal. Beck and Castellanos have

4The game of Life, on the other hand, depending upon the initial state of the lattice
cells, can use a very sparse representation.



A Generalization of Cellular Automata 175

modified this implementation to demonstrate the efficacy of these techniques
on distributed memory machines such as the CM-5 [2].

Although BCAs can make effective use of vector processors, and a tech-
nique called microvectors [1] brings the same kinds of benefits to general
purpose processors, the linked list message implementation described here
cannot utilize microvectors. The inability to use the technique stems from
the generally accepted processor design practice of having memory pointers
be the same size as memory words. The microvector technique would require
that several pointers be able to be packed into a single word for any benefit
to be realized. Nor can the linked list message implementation be adapted to
either the CAM-6 [8] or CAM-8 [7] pipelined architectures. Although both of
these architectures use a dense representation of the cell lattice values, nei-
ther provides access to a shared heap that could be used to store a linked list.
In fact, it seems unlikely that any suitable implementation for unbounded
messaging can be developed for either the CAM-6 or CAM-8, though both
remain excellent pipelined architectures well optimized for BCA.

4. Conclusions

GCA provide a useful and effective way for describing some classes of CA
computation. A straightforward implementation of messaging using linked
lists is both simple and efficient for a wide range of general-purpose hardware,
including both shared and distributed memory multiprocessors.

5. Acknowledgements

This work was supported in part by NASA, grant number NAG8-1009, as
part of the USRA/JOVE program. Thanks also to Dr. Edward Okie for his

helpful comments on an earlier version of this paper.

References

[1] Beck, Micah and Antonio Castellanos, Vector Processing on Scalar Architec-
tures (University of Tennessee, Knoxville, TN, Computer Science Department
Technical Report, September 1994).

[2] Beck, Micah, personal communication (beck@cs.utk.edu).

[3] Eckart, J Dana, “A Cellular Automata Simulation System,” available via
anonymous ftp from rucs2.sunlab.cs.runet.edu in the directory pub/ca
or from http://www.cs.runet.edu/~dana/ca/ cellular.html.

[4] Lindgren, K. and Nordhal, M. G., “Universal Computation in Simple One-
dimensional Cellular Automata,” Complez Systems, 4 (1990), 299-318.

[5] Resnick, Mitchel, Turtles, Termaites, and Traffic Jams: Ezplorations in Mas-
siwely Parallel Microworlds (MIT Press, Cambridge, MA, 1994).



176 J Dana Eckart

[6] Stephenson, 1., Creature Processing: An Alternative Cellular Architecture
(Technical Report ASEG92.04, Department of Electronics, University of
York).

[7] Toffoli, Tommaso and Norman Margolus, “Programmable Matter: Concepts
& Realization,” International Journal of High Speed Computing, 5, Number
2 (June 1993), 155-170.

[8] Toffoli, Tommaso and Norman Margolus, Cellular Automata Machines: A
New Environment for Modeling (MIT Press, Cambridge, MA, 1987).



