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Abstract. The recombination of solutions (crossover) is probably
the most specific operation in optimization by genetic algorithms. We
consider a very general way of recombining two solutions using con-
cepts related to orthogonal projections. This includes most of the
commonly used crossover operators such as, for example, one-point or
uniform crossover.

We examine symmetry properties of the operator, generalize the
classical schema-oriented approach to our setting, and study the dis-
tribution of the offspring both geometrically and stochastically. In
particular we show that expectation and variance of the population
(defined in appropriate terms) are invariant under crossover.

It turns out that the important features of the classical crossover
operators hold in much more general models, including continuous
space.

1. Introduction

Genetic algorithms (GASs) adapt certain principles of natural evolution to
combinatorial optimization problems. Operations like selection, crossover,
and mutation are applied to a population of possible solutions. The aim is
to breed an optimal or near optimal solution using the target function of the
optimization problem as “fitness.” See [2] and [4] for an introduction to these
concepts. Though these algorithms are quite successful in many applications,
the mathematical theory still seems to be incomplete. In this paper we study
theoretical aspects of a general crossover operation in some detail.

In the classical model as described, for example, in [2] or [4], individuals
(i.e., solutions) are represented by bitstrings. Crossover then mixes two bit-
strings into a pair of new ones, usually by breaking both into two pieces and
recombining them (one—point crossover). The survival of advantageous pat-
terns (schemata) of bits is described in the so-called Schema Theorem, see
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[4]. These concepts and their interplay with different isomorphic represen-
tations of the solutions have recently been investigated in a series of papers:
[1], [6], [7], and [8].

We introduce a more general concept of recombination of two individ-
uals x,y being elements of an arbitrary set I. First x,y are broken into
complementary fragments and then combined into two new individuals. All
that is required of these operations is that, in a sense, no information about
z,y is lost during recombination. Mathematically, this can be expressed
using concepts found in the theory of orthogonal projections. In section 2
we define these operations, study their symmetry properties, and give some
examples. In particular, we show that the usual one-point crossover and
uniform crossover of binary strings are included in our definition.

In section 3 we specialize on individuals that are elements of an euclidean
space, for example, IRX. Here, to “break” an individual z into fragments
means to project x onto arbitrarily chosen linear subspaces and their orthog-
onal complements. This allows a geometric interpretation of the operations,
for example, we show that applying crossover to a pair (z,y) amounts to a
rotation of (z,y) around its center (z + y)/2.

In section 4 we examine the effect crossover has on the distribution of
the population. We give a general formula for the probability density of the
offspring given a joint density of the parents. As an application we show that
the uniform distribution is invariant under crossover and that the entropy of
the population increases, as it is known to do for the classical crossover
operators.

In section 5 we show for the euclidean case that expectation and overall
variance of the population remain invariant under crossover, though crossover
is sometimes considered as a dispersion operator.

In section 6 we introduce the concept of a schema adapted to our setting
and prove a Schema Theorem that includes the classical one.

2. The general crossover operator

Let I denote the set of individuals and let U be a space of indices (types
of crossover). We define pairs of crossover operators C,C such that C,(z,y)
and C,(z,y) are the two offspring individuals when applying a crossover of
type u to parent individuals x,y € I. To be more precise, assume that for
each u € U there is a pair of mappings

ool —1 and B, I —1 (1)

that break individuals into complementary “fragments” ¢, (z) and @,(x)
where we assume for ease of notation that fragments can be expressed as
elements of 1.

To combine arbitrary fragments into a new individual, let h: [ x I — I
and put

Culz,y) = hpu(2),?,(y)) and Culz,y) = h(eu(y),B.(z)) (2)
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such that C,C are mappings from I x I x U — I . Let T,(z,y) =
(Cu(z,y),Cyu(z,y)) denote the ordered pair of offspring.

All we assume about ¢,,®, and & is the following condition that holds
throughout this paper.

Condition 1.  For all z,y,z € [ and u € U

h(eu(2),2.(y)) = 2z <= vu(z) = pu(z) and B,(y) = 2,(2).

Condition 1 guarantees that no “information” about x and y is lost during
Crossover.

Example 1.

(a) Binary case: For K € IN let I := {0,1}¥ = Z, x ... x Z, as in
the classical model of GAs. Let @ and ® denote the coordinatewise
addition and multiplication modulo 2 (XOR and AND). Put U =
{0,1}¥ and ¢, (z) :==u®z, P(z) = (1@ u)®z and h(z,y) =z D y.
Then Condition 1 is fulfilled and

Cu(z,y) = (u@2)® (1Ou) ®yY),

Culz,y) = (u®y)® (10U ®2).

To obtain the one-point crossover one has to restrict u to the binary
representations of 2k — 1, withk=1,.... K.

(b) Product case: Let I := XpexZi be an arbitrary product space, then
u € U := {0, 1}¥ selects a parent for each of the coordinates k € K. A
formal definition can be given analogous to (a) such that Condition 1
holds. An important case is I = IR¥ | here @, (z) is the projection of z
onto those coordinates which are marked by 1s in u € {0, 1}%.

(¢) Euclidean case: Even more generally, assume that [ is a linear space
with an inner product (-,-) and let {L,|lu € U} be a set of closed
linear subspaces of I. Let ¢, resp. @, be the orthogonal projections
of I onto L, resp. onto the orthogonal complement L:. Then with
h(v,w) := v+ w Condition 1 holds. Note that this essentially includes
(a) and (b).

Our crossover operators work independently and symmetrically on both
parents. In some applications this kind of separability is not fulfilled. For ex-
ample, in the travelling salesman problem there are crossover operators that
select a subtour of one of the parents and then complete it by inserting the
missing cities from the second parent, that is, C,(z,y) = h(pu(z), B (2, v)),
see [10] for a survey. A similar problem arises in some assignment problems,
see [9].

Obviously, C' has some nice symmetry properties such as C,(z,y) =
C.(y,z). Lemma 1 shows that the pair (C,,C,) has even more structure,
see [8] for a similar observation in the binary case.
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Lemma 1. For all z,y € I and all uw € U we have the following.

@) Clag) = Clem) = =
U(I

(b) Cu(Culz,),Culz,y)) = & and Ty (Culz,y),Culz,y)) = .
(¢) T, :=(C,,C,) : I x I — I x I is a bijective self-inverse mapping, that
is, Ty(Tu(z,y)) = (z,y) for allu € U, with (z,y) € I x I.

(d) For any F C I x I we have T,,(FUT,(F)) = FUT,(F). More generally,
F s 7, (F) = FUT,(F) is a hull operator, that is,

Fcr(F), FCF =7(F)Cn(F) and 7, (r(F))="(F).

Proof. (a) follows from the “<” part of Condition 1.

(b) Put v := C,(z,y) and w := C,(x,y). Then from Condition 1: ¢,(v) =
eu(®), Bu(v) = B, (y), vu(w) = pu(y) and B, (w) = B,(z). But then using
(a) z = hpu(2),Bu(2) = h(pu(v), B, (w)) = Cu(Culz,y), Cu(z,y)) and
similarly for y.

(¢) follows from (b) and (d) from (c). =

3. Crossover in the euclidean case

We consider the euclidean case of Example 1(c) more closely. It seems to
provide more intuitive understanding then the classical binary case and allows
a geometric interpretation of crossover.

In this section let I be a linear space with an inner product (-, -) and the

norm || z ||:= y/(x,z). Let {L, | u € U} be a set of closed linear subspaces.
Then the orthogonal projections ¢, and @, on L, and its orthogonal com-
plement L are known to exist. Note that if L, has finite dimension then it
is closed. Let # + L, := {z+y |y € Ly} be the linear manifold spanned
by « € I and subspace L,. We use

Culz,y) = pu(z) +B,(y) and Culz,y) :=7,(z) + @u(y).

Lemma 2 shows that the pair of parents has certain invariance properties:
their sum and their distance are not changed under crossover.

Lemma 2. For any z,y € I,u € U we have the following.
(a) z+y = Cu(z,y) + Cul=,y).
(b) |z =y [P=]l Culz,y) — Culz,y) |I*
Proof. (a) From z = ¢u(x) + @, (z) we have at once
Tty = pu(@) +PuY) + Bul@) + uly) = Cul®,y) + Culz,y)-
(b) For any a,b € I we have
{a,b) =0 (ie., alb) < |a+b|*=[a—0]>. (3)
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Since ¢, (z) — ¢u(y) € L, and 3, (z) — @,(y) € L+ are orthogonal to each
other we obtain

| Culw,y) = Culz,y) I = u() = Bu) I”

( ®
(u(®) = @uly)) + @u(@) —2u)) II”

Theorem 1 examines the behavior of the potential offspring of a set of
parents under a fixed crossover u (see Figure 1) and of a fixed pair of par-
ents under all possible crossovers v € U (see Figure 2). Figure 2 shows in
particular that all possible offspring of parents z, y lie on

=1 =2 13,

that is, the surface of the smallest ball of full dimension that contains x and y.
Note that starting from the viewpoint of continuous evolutionary strategies
a similar result was found in [11].

1—1—1/
S(z,y):={z€l] | 2

L,

LJ_

Figure 1: The circles represent three parent individuals, the dots are
all their possible offspring from C,, resp. Cj.

Figure 2: All offspring of z,y under T,,u € U are lying on the circle.
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Theorem 1.

(a) Let u € U be fixed and let D C I be a set of “parents.” Then

D U {Cy(z,y) | z,y € D} =
U{z+ L. |2 €D} n | J{a+ Ly | z € D},
that is, the parents and all their possible offspring generated by crossover
w occupy the points on the intersections of all linear manifolds which

run through parent individuals and which are parallel to L, or L (see
Figure 1). The same holds with C, replaced by C,,.

(b) For any z,y € I and any U' C U
{Culz,y) |lueU} U {Cu(z,y) [uelU'} C S(z,y)

Let {L, | w € U} be the set of all one-dimensional linear subspaces of

1. Then
S(z,y) = {Culz,y) |ue U}

(see Figure 2), that is, applying some crossover u to a pair of parents
(z,y) means to rotate (z,y) around the center (x —y)/2 by an angle «
with
COS(O(/2) — || ‘Pu(m B 1/) “ )
[z—yll

Proof. (a) From ¢,(z) € L, we have forany z € I 2z € z+ L, <=
?,.(2) = ?,(z) and similarly z € z+ LY <= ¢,(2) = ¢u(z). Hence
ze|J{z+L,|2€D} n (J{z+ Ly |z €D}
<=3Jz,ye€D z€ (z+L,)Ny+LY)
—3nyeD Pd)=Tule) and u(z) = 0uly)
<z € {Cyu(z,y) | x,y € D}.

(b) Assume z € {Cy(z,y) | u € U}, then there is an u € U such that
z = @u(x) + 7,(y). Hence using (3)

I (z—=)+(z—y) I

| @uly) = Pul@) + (2u(@) = 0u®)) IP
| =@u) = Pul@) + (pule) = 0ul)) I = | =52 I

that is, z € S(z, 7). An analogous argument applies if z € {C\,(z,y) | u € U}.
On the other hand, if z € S(z,y) then we have from || z — (z + y)/2 ||*=
| (&= 5)/2 |12 that | (2 — ) + (z — ) P=]| (& — 2) + (s — ) |. From (3)
we see that (z — z) and (z — y) must be perpendicular. Let L, := (z —y) be
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the one-dimensional linear subspace spanned by (z —y). Then we must have
wu(z —z) =0=7,(2 —y) and hence

pul2) = QDH((Z - 1) + :L) = pu(z — -L) + ‘Pu(l’) = Wu(a")
?u(2) (z=y)+y) =2,z —y) + Puly) = 2u(v)

=,
that is, z = C,(z,y). The assertion about the rotation angle can be verified
in Figure 2. ®

For I = IR® one may simulate the result z of a random crossover of z
and y by choosing z with a suitable distribution from S(z,y). For example,
if crossover uses a randomly chosen one-dimensional subspace L, then z
should be uniformly distributed on S(x,y). If the L, are chosen parallel to
the coordinate axis (as in the product case of Example 1) then z should be
uniformly distributed on the vertices of the K-dimensional standard cube
contained in S(z,y).

4. The distribution of the offspring

In this section we examine the distribution of the outcome T} (X,Y") of a ran-
dom crossover x applied to two randomly chosen parents X,Y. We assume
that I and U are endowed with o-algebras and that ¢, @, and h are such that
(u,z,9) = Cyu(z,y) and (u,z,y) — C,(x,y) are measurable mappings. For
more general readability we do not further discuss measurability questions.
Theorem 2.

(a) For any F C I x I we have P(T(X,Y) € F) = P((X,Y) € T (F)).

(b) Assume that (X,Y) and x are independent and that (X,Y) has a
density p with respect to a o-finite measure ¢ on I X I. Let ¢ fulfill

o(Tu(F)) = o(F) (4)
forall F C I x I andu € U. Then the following three assertions hold.

(i) T(X,Y') has the conditional p-density (v, w) — p(T,(v,w)) given
X =u, that is, for all F C I x I

PT(XY)€F) = [ oldv,du) p(Tu(v,w)).
(i) T(X,Y) has the unconditional g-density
()= [ P (du)p(Tu(v,w)).

(iii) If in addition, p = p X p for some measure p on I, then Cy(X,Y)
has the conditional resp. unconditional u-density

v /u(dW) p(Tu(v,w))  resp.

v|—>//,L(dw) /UPx(d“) p(Tu(v,w)).
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Proof. (a) Since T,, = T;7! we have

I

P(T,(X,Y) € F) /P (du) P[TL(X,Y) € F | x =4

/P (du) P[(X,Y) € Tu(F) | x = 4]
P((X,Y) € T (F)).

Il

(b) From (4) we see that o(F) = o(T,(F)) = o(T7*(F)), that is, o coin-
cides with its image o7, for any w € U. Hence we obtain from the indepen-
dence of (X,Y) and x, and from a simple integral transformation:

P(T(X,Y) € F) = /U P (du)P(T,(X,Y) € F)
= | Pulaw) [ oldz.dy) pla.y) 1p(Tu(a.v)
=/P (du) /QTU (dv, dw) p(T; (v, w)) 1p(v,w)
—/ P du/ (dv, dw) p(T,(v,w)).

Now (i) - (iii) follow. m

Equation (4) means that o is invariant under the mappings T;,. The fol-
lowing examples show that this condition holds in some of the most important
cases.

Example 2

(a) If I is countable and p is the usual counting measure we have:
o(Tu(F)) = |Tu(F)| = |F| = o(F)

hence (4) holds and we obtain from Theorem 2(b) part (iii)

PGE, =% 3 . Plx P(X = Cu(v,w))P(X = Cy(v,w))"

uwel wel

assuming that U is countable too and that X and Y are drawn inde-
pendently and identically distributed.

(b) Consider the product case and assume that there are o-finite measures
wrp on Zp, k € K, and let p := Xpegpr. Then with Ay, By, C Zy,
k € K, we have for any v € U

Cu( XpexAr X XpexBi) = Xpex Dyt
and

Cu( XrexAr X XiexBr) = XrexDy*
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where D} := A, D := By and D, := B, D) := A;. Using Lemma
1(c) we have for g :=u x p
o (Tu( XeexAr % XierBi)) = o (( Xuex Dt x XkeKbZk))
kekK keK
o( Xrex Ar X Xiex Bi),
that is, condition (4) of Theorem 2 is fulfilled.
(c) Now consider the euclidean case with I = IR, K < oo, and ¢, a
projection on some m(u)-dimensional subspace L, of IRX. To give an
explicit expression of ¢, let B, be an orthonormal K x K matrix whose

first m(u) columns span L, and let E, resp. E, be the projections on
the first m(u) resp. last K —m(u) coordinates of IR¥, that is, -

I

10 sii vensms 0 O W 500000 nes 0
Eu: 1 - —E'u:: 0
S0 1

L0 0

Oivevesvss 00 O g s 5 wm g o 01

Then, as is well known from linear algebra, ¢,(z) = B,E,B,z and
®?(y) = B,E, B,y where B/, denotes the transposed matrix. As h(v,w) =
v 4 w is symmetrical, the transformation (z,y) — T,(z,y) is given by
the matrix

T s Bu 0 Eu Eu B1IJ, O
v 0 B“ Eu Eu 0 BL ’
Let ¢ := M x AX where AX denotes the K-dimensional Lebesgue mea-

sure on IR®. Then we have, from the transformation theorem for (2K )-
dimensional Lebesgue integrals, for F' ¢ IR¥ x IR¥:

e (F) = [ 1det(T)] d(N x X¥) = o(F)

as |det(T,)| = 1 is easily verified. Hence, the condition of (4) holds in
this case too.

As an application we consider two properties that are known to hold for
classical crossover operators: that the uniform distribution is invariant under
crossover and that the entropy increases.

Corollary 1. Assume that the conditions of Theorem 2(b) hold.

(a) If (X,Y) is uniformly distributed over some set F' C I x I then given
X = u the conditional distribution of the pair of offspring T\ (X,Y) is
the uniform distribution on T,(F). In particular, if X,Y are drawn
independently and uniformly distributed from I then C,(X,Y’) and
—C_X(X ,Y') are also independent and uniformly distributed.
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(b) For the entropy H(X,Y) := —E log(p(X,Y)) we have (from[12]):
(i) HX.,Y) = H(T.(X,Y)) for any v € U and
(i) H(X,Y) < H(T(X,Y)).

Proof. (a) The uniform distribution on some set F with 0 < o(F) < oo
has the density p(z,y) = 1p(z,y)/o(F), hence by Theorem 2(b) part (i),
T,(X,Y) has density

p(Tu(z,y)) = o(F) ™' 1p(Tu(z,y))
T (F) gy (2,9)
o(Tu(F)) 1g,(m) (2, y).

If I allows a uniform distribution, that is, there is a measure g with 0 <
p(I) < oo then p(z,y) = p(I)~?17(x)1(y), hence for Fy, Fy C I

Il

P(CX(X> Y) € Fl,au(X, Y) = Fz)
- leFz(u x p){dz, dy) /UPx(du)ﬂ(j)_2<11(cu(:1;,y)) A 11(5u(1;,y)))

= u(D) 7 u(Fy)u( Fy).
(b) From Theorem 2(b) part (i) we have
H(T.(X,Y)) = —/Q(dw,dy)p(Tu(-’K’y))log(P(Tu($~y)))
= —E log (p(Tu(Tu(X,Y)))) = —E log(p(X,Y)) = H(X,Y).

Since x — —zlogx is strictly concave we have from the strict Jensen in-
equality

H(L(X.Y)) = - [ eldz,dy)( [ Poldwp(Tu(a.y)))log ( [ P(awp(Tu(x.1))
~ [ Puldu) [ olde,dy) p(Tu(z,y)) Lglp(Tu(a.v)))

= /U P, (du)H(T,(X,Y))
=H(X)Y) =

\%

5. The distribution in the euclidean case

In this section we examine the stochastic effects of crossover in the euclidian
case more closely. For one-point and uniform crossover it is well known that
within a population represented by a random variable X = (X1,..., Xk) the
marginal distribution of X; is not changed by crossover. Theorem 3 shows
that this is true for the general crossover for the expected value E X; at each
coordinate i« = 1,...,K. Also the variances V (X;),...,V (Xk) change
depending on the covariance of the corresponding coordinates of ¢, (X) and
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?,(X), but the overall variance >, V(X;) = E || X — EX | remains
unchanged.

Let Cy1(X,Y),...,Cy k(X,Y) be the coordinates of C\(X,Y") and sim-
larly Coi(X,Y), @ui and Py fori=1,... K.

Theorem 3. Let I = IR® and assume that X = (Xy,...,Xkg) and ¥V =
(Y1,...,Yy) are two independent and identically distributed random vectors.
Let (X,Y') and x be independent.

(a) EX = EC(X.Y), thatis, EX; = EC,;(X,Y) forall1<i< K.
(b) For all1 < i< K and u € U we have

v (Cuz(X7 Y)) =V (Xl) -2 COV(‘pu,i(X)vau,i(X))

and
K K
ZV (CLi(X,Y)) = ZV (X5).
i=1 i=1
Proof. (a) We have, since X,Y are identically distributed,
E Cu,i(Xv Y) = E ((pu,l(X) ot @u,i()/)) (5)
=E (pu,i(X) + E Gu,i(y)
=E pui(X) + E7,;(X)
=EX;,.

Hence EC,;(X,Y) = [y Py(dw)EC,;(X)Y) = EX,.
(b) We suppress the index u in ¢, ; for better readability. We have from
straightforward calculations

E Ci(X,Y)? = E [p:(X) + 7(Y)]®

=E [pi(X)’] + 2E 0:i(X)EF,(Y) + E [7,(Y)?]

= E [0i(X)’] + 2E ¢i(X)E 3,(X) + E [;(X)?]

= E [pi(X) + Z(X)]* — 2E [0:(X)%;(X)] + 2E 9i( X)E 5;(X)
=E X? - 2[E (¢:(X)%:(X)) — E pi( X)E 5;(X)]
=E X7 — 2 cov(pi(X), (X))

Hence the first assertion of (b) follows from (5). For the second assertion it

suffices to show Y5, cov(py:(X),B,,(X)) =0 for all u € U as we have

Mw

ZV (X, Y) = /P (du)E Cui(X,Y)? — (B Cys(X,Y))?)

=1

[\Hﬂx

> (BX2 -2 [ Py(du) cov(pus(X), Bus(X)) — (B X0)?)

-
I
o

2

,.
I
-

V) 2 [ Pi) Y. eov(pni(X),Bus(X))
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We use the representation of ¢,(X) from Example 2(c), that is, ¢,(z) =
B,E,B'x and 3(y) = B,E,By where B, is an orthogonal matrix whose
first m(u) columns span L, and whose last K —m(u) columns span L. Note
that B, E, B, and B,E, B! are symmetric. Let [B.E,B,); denote the ith row
of B,E,B,, then

cov(pui(X), B,i(X)) = cov([B,E,B,;:X , [B.E.B.:X)
= [BuEuB,)i cov(X,X) ([BuEuB,L:)
= [B.EBL): cov(X,X) [B.EBLL.
The last expression is just the ith diagonal element of the matrix B, F, B!

cov(X,X) B,E,B.. Now using the well known-rule tr(AB) = tr(BA) for
the trace tr(A) = XX a;; we have

Z V(0ui(X), Py :(X)) = tr(B,E,B, cov(X,X) B,E,B,)
i=1
= tr( cov(X, X) B,E,B. B,E,B.)
= tr( cov(X, X) B,E,E,B.)

where we used the fact that B, is orthogonal and E,E, =0. m

6. Schemata

In this section we sketch a concept of schemata that generalizes the classical
notion and is compatible with our concept of crossover.
For any a € I,u € U define

D,(a) == @;lopula) = {z€I]|pu(2)=pula)}

and similarly

Ou(a) =7, 07y (a).
We shall call @, (a) the schema defined by u and a. Note that in our definition

the connection between schemata and crossover is more obvious than in the
classical notation using wildcard symbols (e.g., [2]).

Example 3.

(a) In the binary case, let ¢, be as in Example 1(a). Then ®,(a) is the
classical schema with fixed positions a; where u; = 1 and with wildcard
symbols '#’ where u; = 0.

(b) In the euclidean case schemata are linear manifolds ®,(a) = @,(a) +

L} as was noted in the proof of Theorem 1(b). In the case I = IR¥

We may consider an orthonormal basis B := {by,...,bx} of R¥. For

={0,1}¥ andu € U let L, := (b; | u; = 1,1 < i < K) be the linear

subspace spanned by those b; w1th u; = 1. Then L= (b;|u;=0,1<

i < K) and ¢, is the projection on the comdmates selected by w. This
allows a straightforward generalization of (a).
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For a generalization of the classical Schema Theorem in [4] we first have
to consider the interplay of crossover and schemata. Lemma 3 describes the
nondisruption of schemata during crossover.

Lemma 3. Let u,u’' € U and y,a € I. .

(a) If p, 00y = @, then Cy(-,y) maps ®,(a) into itself.
(b) If p, 0B, = @, then Cy(-,y) maps ®,(a) into itself.

Proof. Let x € ®,(a) and ¢, 0 oy = ¢, then from Condition 1

‘Pu(cu’(xvy)) - (pu(h(SDU( )¢ (y))) = Pu O Pu (h(@u( ) Lpu(/)))
=<Pu°§0u'(') (T) = Qou( )

and similarly for (b). m

Example 4.

(a) In the euclidean case we have ¢, 0oy = ¢, <= L, C Ly and
0y 0Py =@, < L, C L%

(b) In the binary case with one—point crossover we have @, 0@, = ¢, if and
only if u < ', where u' is restricted to the binary representations of
2% —1,1 < k < K. In other words, ¢, 00, = @, (resp. 0, 0B, = @)
holds if and only if the crossover point encoded in ' (i.e., the leftmost
1) falls left (resp. right) of all fixed positions of the schema ®,(a).

Theorem 4 gives a lower bound on the survival probability of a schema
during selection according to fitness and crossover (we do not take mutation
into account). It is thus a Schema Theorem for our setting.

Let the current population be represented by a random variable X with
values in I and a p-density ¢ on I. Let f : I — IR be a fitness function
with E f(X) = [; p(dz)g(z) f(z) < co. Then parents selected proportional
to their fitness are two independent identically distributed random variables
X,Y with p-densities z — () := q(z)f(z)/E f(X). The result of selecting
palcnts by fitness and applying a randomly chosen crossover x is given by

C (X, V) resp. T (X, 7).

Theorem 4. Let X, )/(\,}7 be given as above. For uw € U fixed let U=
{W €U | puopw =, or p,0P,, = p,}. Then for any a € [

P(Cy(X.Y) € ®u(a) or Ty(X,Y) € ®u(a))

E[f(X) | X € ®u(a)]
E f(X) ‘

>P(X € ®,(a)) P(x € D)
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Proof. From Lemma 3(b) we see that U is the set of crossovers u’ such that
schema @, (a) is preserved either by C, or C,.

P(Cy(X,Y) € ®u(a) or Ty(X,7) € @u(a))
= [ Putaw) [ udy) at) P(Cu(X,y) € (@)
or Cu(X,y) € Bu(a))
> [ Py(av) [ udy) 39) P(Cu(Xy) € 2ul@)
or Cu(X.y) € Bu(a))
> [ Py(dw) [ u(dy) qly) P(X € Bua)
=P(x eU) P(X € ®,(a)).
Now the assertion follows as
P(Xedufa) = [, wldn)i()

_ Jou o 1ldz)g(@) f(x)

B E f(X)

_E[f(X) | X € ®.(a)]
E f(X)

Note that the conditional expected fitness E [f(X) | X € ®,(a)] is the
correct expression for what is sometimes referred to as the average fitness or
average utility of the schema ®,(a). Theorem 4 shows that the lower bound
of the survival probability is increasing with the relative average fitness of the
schema and with the probability of nondisruption. The usefulness of schema
theorems is often discussed in literature (e.g., [3], [5]). Our aim here was
to show that we need much less structure for the crossover operator than is
usually assumed in this context.

- P(X €D,u(a). m

Example 5. For the binary case with one-point crossover we have P(y =
u') = 1/K for any u' € U' where U’ is the set of all binary representations of
28 —1,k=1,..., K. We get the classical Schema Theorem from Theorem 4
as (see Example 4(b))

P(X € [7) = P(‘pu O @x = Pu O Py Oﬁx = (pu)
d(u)

K
where d(u) is the defining length of schema ®,(a), that is, the maximal
distance of ones in u. For the case q(z) = 27, which is often assumed, we
obtain

=P(x>u or x<u) =1-

Z:I:ECPH(CL) f(il') )

B[/(X) | X € 2u(a)] = =00
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