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Abstract . The recombination of solut ions (crossover) is probably
the most specific operat ion in opt imizat ion by genet ic algorit hms. We
consider a very genera l way of recombining two solut ions using con
cepts relat ed to ort hogonal project ions. This includes most of the
commonly used crossover opera tors such as, for example, one-po int or
uniform crossover.

We examine symmetry properties of the operator, genera lize the
classical schema-oriented app roach to our setting, and study th e dis
tribution of the offspring both geometr ically and stochas t ically. In
par ticular we show that expectat ion and variance of the population
(defined in appropriate terms) are invariant und er crossover.

It t urns out th at the import ant features of the classical crossover
operat ors hold in much more general mode ls, including cont inuous
space.

1. Introduction

Genetic algorit hms (GAs) adapt certain principl es of natural evolut ion to
comb inato rial optimization problems . Op era tions like select ion , cross over ,
and mutati on ar e applied to a population of possible solut ions . The aim is
to breed an opt imal or near op t imal solut ion using the t arget fun cti on of the
optim ization problem as "fitness." See [2] and [4] for an int roducti on to these
concepts . Though t hese algorit hms are quite success ful in many applications ,
the mathem ati cal t heo ry st ill seems to be incom plete. In this pap er we st udy
t heo ret ica l aspects of a general crossover operation in some det ail.

In the classical mod el as described , for example , in [2] or [4], individuals
(i.e. , solut ions) are represented by bi t st rings. Crossover then mixes two bit
strings into a pair of new ones , usuall y by br eaking both into two pieces and
recombining t hem (one- po int cros sover) . The surviva l of advantageous pat
t erns (sche mata) of bi t s is described in t he so-called Schema Theor em , see
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[4]. These concepts and their interplay wit h different isomorphic represen
ta tions of the solut ions have recen tly been invest igated in a series of papers:
[1], [6], [7], and [8].

'v.le introduce a more general concept of recombin ation of two individ
uals x , y being elements of an arbit ra ry set I . First x ,yare br oken into
complementary fragments and then combined into two new individuals. All
that is requ ired of these operatio ns is that, in a sense , no information about
x , y is lost during recombination . Mathematically, this can be expressed
using concepts found in the theory of ort hogonal pro jections. In sect ion 2
we define these operatio ns , study their symmetry propert ies, and give some
examples. In par ticular , we show that the usual one-point crossover and
uniform crossover of binar y st ring are included in our definition.

In section 3 we specialize on ind ividuals that are elements of an euclidean
spac e, for example, IRK Here, to "break" an individ ual x into fragments
means to project x ont o arbitrarily chosen linear subspaces and their orthog
onal complements . T his allows a g omet ric interpretati on of the operations ,
for example, we show that applying crossover to a pair (x,y) amounts to a
rot ation of (x,y) around its cente r (x + y)/2.

In sect ion 4 we examine the effect crossover has on the distribut ion of
the popula tion. We give a general form ula for the pro bab ility density of the
offspring given a joint density of the parent s. As an application we show that
the un iform distr ibution is invariant under crossover and that the ent ropy of
the population increases, as it is known to do for the classical crossover
operato rs .

In section 5 we show for the euclidean case that expectat ion and overa ll
variance of the population remain invar ian t under crossover , though crossover
is someti mes considered as a disp ersion ope rator .

In sect ion 6 we introdu ce the concept of a schema adapted to our setting
and prove a Schema T heorem that includes the classical one .

2 . The general crossover operator

Let I denote the set of individuals and let U be a space of indices (ty pes
of crossover) . We define pairs of crossover operators C ,C such that Cu (x,y)
and Cu(x ,y) are the two offspring individuals when applying a crossover of
type u to parent individuals x , y E I . To be more precise, assume that for
each u E U there is a pair of map pings

'-Pu : I ---> I and CPu : I ---> I (1)

that br eak indi viduals into complementary "fragments" '-Pu (x) and CPu (x)
where we assume for ease of nota tion that fragments can be expressed as
elements of I .

To combine arbitrary fragments into a new individual , let h : I x I ---> I
and put
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such that C,G are mappings from I x I x U -4 I . Let Tu(x ,y) :=
(Cu(x, y), Gu(x, y)) denote the ordered pair of offspring.

All we assume ab out 'Pu ,CPu and h is the following condit ion that holds
throughout this pap er.

Condition 1. For all x , y , z E I and u E U

Condit ion 1 guarantees that no "informa t ion" about x and y is lost during
crossover .

Example l.

(a) Binary case: For K E IN let I := {O ,I}K = 71.2 X . .. X 71. 2 as in
the classical mod el of GAs. Let EEl and ® denote the coordinatewise
ad dit ion and multiplicati on modulo 2 (XOR and AND). P ut U :=

{O, I }K and 'P.u(x) := u ® x , cp(x ) := (1 EEl u) ® x and h(x , y) := x EEl y.
Then Con dit ion 1 is fulfilled and

Cu(x , y) := (u ® x) EEl ((1 EEl u) ® y) ,
Gu(x , y) := (u ® y) EEl ((1 EEl u) ® x ).

To obtain th e one-point crossove r one has to restr ict u. to the binary
representat ions of 2k

- 1, wit h k = 1, . .. , K .

(b) Product case : Let 1 := Xk E K '2k be an arbit rary pr odu ct space , then
u E U := {O, I }K selects a par ent for each of the coord inates k E K. A
formal definition can be given analogous to (a) such that Condit ion 1
holds. An imp ortan t case is I = ffi.K , here 'Pu(x) is the pro ject ion of x
onto those coordinates which are marked by Is in u E {O ,I}K.

(c) Euclidean case : Even more generally, ass ume that I is a linear space
wit h an inner product (- , .) and let {Lulu E U} be a set of closed
linear subspaces of I . Let 'Pu resp. Cp" be the orthogonal project ions
of I onto L u resp. ont o th e ort hogonal complement L ; . Then with
h(v ,w) := v + w Cond iti on 1 holds. Note that this essent ially includes
(a) and (b).

Our crossover operat ors work independent ly and symmet rically on both
parent s. In some applications this kind of separability is not fulfilled . For ex
ample, in the t ravelling salesman prob lem there are crossover operators that
select a subtour of one of the par ent s and then complet e it by inserti ng the
missing cities from the second parent , that is, Cu(x ,y) = h('P,,(x) ,cpu(x ,y)) ,
see [10] for a survey. A similar pr oblem arises in some assignment pro blems,
see [9].

Obviously, C has some nice symmet ry properties such as Cu(x ,y) =
G,,(y, x) . Lemma 1 shows that the pair (Cu,Gu) has even more st ruc ture ,
see [8] for a similar observation in the bin ary case .
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Lemma 1. For all z , y E I and all u E U we have the following.

(a) Cu(x ,x) = Cu(x,x ) = x .

(b) Cu (Cu(x,y ),Cu (x , y)) = x and Cu(Cu(x ,y), Cu(x ,y)) = y.

(c) T; := (Cu , Cu ) : I x I -+ I x I is a bijective seli-uiverse m apping, th at
is, Tu(Tu(x ,y)) = (x ,y) for all u E U, with (x ,y) E I x I.

(d) For any F e I x I we have Tu(FuTu(F)) = FUTu(F) . More generally,
F f-7 Tu(F) := F U Tu(F) is a h ull operator, that is,

Proof (a) follows from the "¢=" par t of Condition 1.
(b) P ut v := Cu(x, y) and w := Cu(x ,y ). T hen from Condi tion 1: 'P,Jv ) =

'Pu (x) , ~u (v) = ~u(y) , 'Pu (w) = 'Pu (y) and ~u (w ) = ~u (x ) . But then using
(a) x = h ( 'Pu(x) , ~u(x)) = h('Pu('u) , ~u(w)) = Cu(Cu(x ,y) ,Cu(x ,y)) and
similarly for y .

(c) follows from (b) and (d) from (c).•

3. Crossover in the euclidean case

We consider the euclidean case of Example l (c) mor e closely. It seems to
provide mor e int uitive understanding th en the classical binary case and allows
a geometric interpretation of crossover .

In this section let I be a linear space with an inn er product (. , .) and the

norm II x 11:=~. Let {Lu I u E U} be a set of closed linear subspaces.
Then th e ort hogonal projections 'Pu and ~u on Lu and its orthogonal com
plement L; are known to exist . Not e that if Lu has finit e dimension then it
is closed . Let x + Lu := {x + Y lyE Lu } be the linear manifold spanned
by x E I and subspace Lu . We use

Lemma 2 shows that the pair of parents has certain invar ian ce properties:
their sum and their dist an ce are not cha nged under crossover.

Lemma 2 . For any x , y E I ,u E U we have the following.

(a) x + y = Cu(x , y) + Cu(x , y).

(b) II x - y 11 2=11Cu(X, y) - Cu(x , y) W·

Proof (a) From x = 'Pu (x ) + ~u (x ) we have at once

x + y = 'Pu (x ) + ~u (y ) + ~u (x ) + 'Pu(y ) = Cu(x, y) + Cu(x, y).

(b) For any a, t e I we have

(a , b) = 0 (i.e., a..lb) ~ II a + b 11 2=11 a - b 11 2
. (3)
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Since i.pu (x) - i.pu(Y) E Lu and 'Pu (x) - 'Pu(y) E L-!; ar e ort hogonal to each
ot her we obtain

II Cu(x ,y) - Cu(x ,y) 11 2
= II (i.pu(x) - i.pu (Y)) - ('Pu(x) - 'Pu(Y)) 112

= II (i.pu(x) - i.pu (Y)) + ('Pu(x) - 'Pu(Y)) 11 2

= II x - y 11 2
. •

T heorem 1 examines the behavior of the potent ial offspr ing of a set of
par ents under a fixed crossover u (see Figure 1) and of a fixed pair of par
ents under all possible cross overs u E U (see Figure 2). Figure 2 shows in
particular that all possible offspring of parents x , y lie on

S( x,y):= {z E I I II z- x ; 11 =11 X; yII} ,

t hat is, t he sur face of the smallest ball of full dimension that contains x and y .
Note that start ing from the viewpoint of continuous evolu tionary strategies
a similar result was found in [11].

Figure 1: The circles represent three parent individuals, the dot s are
all their possible offspring from c; resp. Cu'

Figure 2: All offspring of x , y under Tu, u E U are lying on the circle.
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(a) Let u E U be fix ed and let D e l be a set of "paren ts." Then

D u {Cu(x , y ) I x , y E D} =

U {x + i; I X E D } n U {x + L~ I XE D} ,

that is, the parents and all their p ossible oiispring generated by crosso ver
u occupy the p oin ts on the in tersections of all linear m ani folds which
run thro ugh paren t individuals and wbica are parallel to Lu or L!; (see
Figure 1). The same holds with C; replaced by C u.

(b) For any x , y E I and any U' c U

{Cu(x , y ) 1 u. E U' } U {C u(x , y ) I u E U' } C S(x ,y).

Let {Lu I u E D} be the set of all one-dimensional linear subspaces of
I . Th en

S( x ,y) = {Cu(x , y ) I uE D}

(see Figure 2), that is, applying som e crossover u to a pair of parents
(x , y ) m eans to rotat e (x , y) around the cen ter (x - y )/2 by an angle Q

with

( / 2)
_ II 'Pu(x - y ) II

cos Q - II x - y II .

Proof. (a) From 'Pu(z ) E Lu we have for any Z E I Z E x + Lu ~
'Pu(z) = 'Pu(x ) and similarly z E x + L!; ~ 'Pu(z) = 'Pu(x) . Hence

z E U {x + L; I X E D } n U {x + L~ I x E D }

~~ x,Y E D z E (x + Lu)n(y + L~)

~~ x , y E D 'Pu(z) = 'Pu(x) and 'Pu(z) = 'Pu(y)

~z E {Cu(x , y ) I x , y E D} .

(b) Assume z E {Cu(x , y ) I u E U }, then there is an u E U such that
z = 'Pu (x) + 'Pu(Y). Hence using (3)

II z - x + Y 11
2 = ~ II (z - x) + (z _ y) 11

2

2 4
1

= "4 II ('Pu(y) - 'Pu(x )) + ('Pu (x) - 'Pu (Y)) 11
2

1 x - Y 2
= "4 II -('Pu(Y) - 'P,,(x )) + ('P,,(x) - 'Pu(Y)) 11

2
= II - 2- II ,

th at is, z E S (x , y ). An ana logous argument applies if z E {C u(x , y) I u E U }.
On the other hand , if z E S (x , y ) then we have from II z - (x + y) / 2 11

2=

II (x - y )/2 11 2 that II (z - x ) + (z - y ) 11
2

=11 (x - z ) + (z - y) 11
2 From (3)

we see that (z - x) and (z - y) must be perp endicular. Let L u := (z - y) be
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the one-dimensional linear subspace spanned by (z - y). Then we must have
lfu(Z - x ) = 0 = 4'UZ - y) and hence

lfu(Z) = lfu((Z - x ) + x) = Ifu(z - x ) + lfu(X) = lfu(X)

'Pu (z ) = 'Pu ((z - y) + y) = 'Pu (z - y ) + 'Pu (y ) = 'Pu (y )

tha t is, Z = Cu(x , y). T he assert ion about the rotation angle can be verified
in Figur e 2. •

For I = IRK one may simulate the result Z of a random crossover of x
and y by choos ing Z with a suitable distribut ion from S( x , y) . For example,
if crossover uses a randomly chosen one-dimensiona l subspace L u then Z

should be uni formly distributed on S( x ,y) . If the Lu are chosen parallel to
the coordina te axis (as in the product case of Example 1) then Z should be
uniformly dist ributed on the vertices of the K -dimensional standard cube
contained in S( x ,y) .

4 . T h e d istrib ut ion of t h e offspring

In this section we examine the distribution of the outcome Tx(X,Y) of a ran
dom crossover X applied to two randomly chosen parent s X ,Y . We assume
tha t I and U are endowed with a -algebr as and that If , '15 , and h are such that
(u , x ,y) f-+ Cu(x , y ) and (u , x ,y) f-+ C u(x ,y) are measur ab le mappings. For
mor e genera l readabili ty we do not fur ther discuss measur abi lity quest ions.

Theorem 2.

(a) For any Fe I x I we beve P( Tx(X,Y) E F ) = P((X,Y) E Tx(F)) .

(b) Ass ume that (X ,Y) and X are independent and that (X ,Y) has a
density p wit h respect to a a-finit e measure e on I x I . Let e fulfill

(4)

for all F c I x I and u E U. Then the following three assertions hold.

(i) Tx(X,Y) has the conditional e-density (v ,w ) f-+ p(Tu(v ,w)) gi ven
X = u, that is, for all F c I x I

P (Tu(X ,Y) E F) = ke(dv ,dw) p(Tu(v ,w )).

(ii) Tx(X,Y) has the uncondi tional e-density

(v ,w) f-+ .[PX(dtl)P(Tu(v ,w)).

(iii) If in addit ion, e = ~l X f-l for some measure f-l on I , then Cx(X,Y)
has the conditional ie sp. unconditional u-density

v f-+ / f-l(dw) p(Tu(v ,w)) resp.

v f-+ / f-l( dw) .[ P x(du) p(Tu(v ,w)) .
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Proof. (a) Since Tu = T,-;l we have
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P (Tx(X ,Y ) E F ) j~ Px(du) P [Tu(X ,Y ) E F I X = uJ

LPx(du) P [(X ,Y ) E Tu(F ) I X = uJ

P ((X ,Y ) E Tx(F )).

(b) From (4) we see that e(F) = e(Tu(F)) = e(T;:l (F )), that is, e coin
cides with its image er; for any u E U. Hence we obtain from the indepen
dence of (X ,Y ) and x, and from a simple integral tra nsformation:

P (Tx(X ,Y ) E F ) = LPA du)P(Tu(X ,Y ) E F )

= lpx(du)Je(dx ,dy) p(x ,y) I F(Tu(x , y))

=1P x(du) / eT,,(dv,dw) p(T;:l(V,w)) I F(v ,w)

= rPx(du) re(dv,dw) p(Tu(v ,w)).Ju JF

Now (i) - (iii) follow. •
Equation (4) means that e is invariant under the mappi ngs Tu . The fol

lowing examples show that this condition holds in some of the most important
cases.

Example 2 .

(a) If I is countable and e is the usual count ing measure we have:

hence (4) holds and we obtain from Theorem 2(b) par t (iii)

P (Cx(X ,Y ) = v) = L L P (X = u)P (X = Cu(v ,w))P(X = Cu(v ,w)) .
u EU w EI

assuming tha t U is countable too and that X and Y are drawn inde
pendent ly and identically dist ribut ed.

(b) Consider the product case and assume that there are a-fini te measures
J-lk on 3 k , k E K , and let J-l:= X k E KJ-l k ' Then with Ak , Bi. C 3 k ,

k: E K , we have for any u E U

and
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where Dt := Ak, D2 := Bk and D~ := Bk,D~ := Ak. Using Lemma
l (c) we have for {! := I-" x I-"

{!(Tu ( XkEKAk x XkEKBd) = e (( XkEKD~k X XkEK~k) )

= II I-"k(Ak) . II I-"k(Bk)
kEK kEK

= {!( XkEKAk x XkEKBk),

that is, condit ion (4) of Theorem 2 is fulfilled .

(c) Now consider the euclidean case wit h J = IRK, K < 00 , and 'Pu a
pro ject ion on some m(u) -dimensional subspace L u of IRK. To give an
explicit expression of 'Pu let B; be an orthonorm al K x K mat rix whose
first m (u) columns span Lu and let Eu resp . E u be the pr ojections on
the first m( u) resp . last K - rn (u) coordina tes of IRK, that is,

1 0 0

o ".
1

o

o 0 0

o " .
o

1

o ...
" . 0
o 0

. ".0
o 0 1

Then , as is well kn own from linear algebra, 'Pu (x) = BuEuB~x and
fi5 (y ) = BuEuB~y wher e B~ denot es the t ranspose d matrix . As h(v ,w) =
v + w is symmetrical, t he t ransformat ion (x, y) r--. Tu(x , y) is given by
the matrix

T = ( Bu 0 ) ( liu E u ) (B~ 0 )
u 0 B; E; E; 0 B~ .

Let (2 := )/< x )..K where )..K denotes t he K-dimensional Lebesgue mea
sur e on IRK T hen we have, from the t ran sformat ion theorem for (2K )
dimensional Lebesgue integrals, for F C IRK x IRK:

(!TJF ) = kIdet (Tu)1d( )..K x )..K) = (2 (F)

as Idet (Tu)I = 1 is easily verified. Hence, the condit ion of (4) holds in
t his case too.

As an applica tion we consider two propert ies that are known to hold for
classical crossover op erators: that the uniform dist ribution is invari an t under
crossover and that the entropy increases.

Corollary 1. A ssume tha t the conditions of Theorem 2(b) hold .

(a) If (X,Y) is uniformly distribu ted over some set F C J x J then given
X = u the conditional distrib ution of th e pair of offspring Tx (X ,Y) is
the uniform distribu tion on Tu(F). In part icular, if X , Y are drawn
independently and uniformly distribu ted from J then Cx(X,Y ) and
C x(X, Y ) are also independ ent and uniformly dist rib ut ed.
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(b) For the en tropy H (X , Y ) := - E 10g(p (X , Y )) we have (fl'Om[12]) :

(i) H (X , Y ) H (T,,(X ,Y )) for any u E U and

(ii) H (X ,Y ) < H (Tx(X ,Y )).

Proof (a) The uniform distribution on some set F with a < (2 (F ) < 00

has th e density p(x , y) := I F(x ,y)/(2(F), hence by Theorem 2(b) par t (i) ,
T,,(X,Y ) has density

p(T,,(x ,V)) = (2 (F )-l l F(T,,(x ,V))
= (2(T; l( F)) - l lT,;- l(F)(X,y)

= (2(T,,(F ))-l lT
u
(F)(X,y).

If I allows a un iform distribu tion , that is, there is a measur e p, with a <
p,(I) < 00 then p(x ,y) = p,(I)- 21I(x )lI (Y)' hence for F l , F2 C I

P (Cx(X ,Y) E r ; C,,(X,Y) E F2)

= ( (p, x p, )(dx ,dy ) ( Px (dU)~l(I ) -2(lI (C,, (X , y ) ) .1I(C,,(X,y)))JF,XF2 Ju
= p,(I)- 2p,(Fl )p,(F2).

(b) From Theorem 2(b) part (i) we have

H (T,,(X ,Y )) = - J(](dx , dy)p(T,,(x ,V)) 10g(p(T,,(x ,V)))

= -E log (p(T,,(T,,(X,Y )))) = -E 10g(p(X , Y )) = H (X , Y ).

Since x 1--+ - x log x is st rict ly concave we have from the strict Jensen in
equality

H (Tx(X,Y )) = - J(2 (dx , dy)(1 P x(du)p(T,,(x, y))) log (1 P x(du)p(T,,(x , y)))

> - l p x(du) J(]( dx , dy) p(T,,(x , y)) 10g(p(T,,(x , y)))

=1PA du)H(T,,(X ,Y ))

= H (X , Y ).•

5. T he d istribution in the euclidean case

In t his sect ion we examine th e stochastic effects of crossover in the euclidian
case more closely. For one-po int and uniform crossover it is well known that
within a popu lation represented by a random variable X = (Xl , . .. ,X I< ) the
marginal distribut ion of Xi is not cha nged by crossover. Theorem 3 shows
that this is tr ue for the general crossover for the expected value E Xi at each
coordinate i = 1, . . . , K . Also the variances V (Xl ) ' . . . , V (X I<) change
depend ing on the covariance of the corres ponding coordinates of <p,,(X) and



A Generalized Crossover Operation for Genetic Algorithm s 187

(f)u( X), bu t the overall variance I:i V (X;) = E II X - E X 11
2 remains

un changed.
Let Cx,l(X,Y ), . .. ,Cx,I«X,Y ) be the coordina tes of Cx(X, Y ) and sim

ilarly Cu,i(X,Y) , 'Pu,i and (f)u,i for i = 1, . .. , K .

Theorem 3. Let I = IR.!< and assume that X = (Xl ," " X K ) and Y =
(Y1 , ... , YK ) are two independent and identically distributed random vectors.
Let (X ,Y ) and X be independent.

(a) E X = E CAX,Y ), that is, E X i = E Cx,i(X,Y ) for all 1 ::; i ::; K.

(b) For a11 1 ::; i ::; K and u E U we have

and

K

LV (Cx,i(X ,Y ))
i=l i=l

(5)

Proof. (a) We have, since X , Yare identically distri buted ,

E Cu,i(X,Y ) = E ('Pu,i(X) + (f)u ,i(Y))

= E 'Pu,i(X) + E (f)u,i(Y)
= E 'Pu,i(X ) + E (f)u,i(X)
=E X i .

Hence E Cx,i(X,Y ) = Ju P x(du)E Cu,i(X,Y ) = E x;
(b) We suppress th e index u in 'Pu,i for bet ter readability. We have from

st ra ight forward calculations

E Cu,i(X, Y)2 = E ['Pi(X) + (f)i (Y)j2

= E ['Pi( X)2 ]+ 2E 'Pi(X) E (f)i(Y ) + E [(f)Jy)2]

= E ['Pi(X )2] + 2E 'Pi(X) E (f)i(X) + E [(f)i(X )2]

= E ['Pi(X) + (f)i(X )j2 - 2E ['Pi(X)(f)i(X) ]+ 2E 'Pi (X )E (f)i(X)
= E X; - 2[E ('Pi(X)(f)i(X )) - E 'Pi (X) E (f)i(X) ]
= E X ; - 2 COV('Pi(X ),(f)i(X )) ,

Hence th e first assert ion of (b) follows from (5) . For the second assertion it
suffices to show I:{~ 1 COV('Pu,i(X ),(f)u ,i(X)) = 0 for all u E U as we have

K K

LV (Cx,i(X,Y )) = L (1P x(du )E Cu,i(X, y )2 - (E Cx,i(X,YW)
i=l i=l U

K

= L (EX; - 2 k P x(du) cOV('Pu,i(X ),(f)u,i(X)) - (E Xi)2)
t = l

K K

= LV (Xi) - 2JP x(du )L cOV('Pu ,i(X) ,(f)u,i(X) ),
i = l U i=l
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We use the representation of 'Pu( X) from Example 2(c) , that is, 'Pu(x) =
BuEuB~x and 1i3(Y) = BuI!:uB~y where Bu is an orthogonal matrix whose
first m(ll) columns span L u and whose last I< - m(ll) columns span L ; . Not e
that B,]!;uB~ and BuEuB~ are symmetric. Let [BuEuB~] i denote the i th row
of BuEuB~ , th en

COV('Pu,i(X) ,1i3u,;(X)) = cov( [BuEuB~JiX , [BuEuB~JiX)

= [BuEuB~Ji cov(X , X ) ( [BuEuB~];)'

= [BuEuB~l i cov(X , X) [BuEuB~]; .

The last expression is just th e ith diagonal element of th e matrix BuEuB~

cov(X , X) BuEuB~ . Now using th e well known-rule tr(AB) = tr(BA) for
the trace tr(A) = I:{~1 ai,i we have

K

:L cOV('Pu,i(X ),1i3u,i(X )) = tr(BuEuB~, cov(X , X ) BuEuB~)
i=l

= tr( cov(X, X) BuEuB~ BuEuB~)

= tr( cov(X, X) BuEuEuB~ )

= 0,

where we used the fact that Bu is orthogonal and E uEu = o. •

6. Schemata

In this sect ion we sketch a concept of schema ta that generalizes the classical
notion and is compatible with our concept of crossover.

For any a E I ,ll E U define

<I>u(a) := '17:;;1 0 'Pu(a) = {z E I I 'Pu(z) = 'Pu (a)}

and similarly

<Pu(a) := 1i3;;1o 1i3u(a).

We sha ll call <I>u(a) th e schema defined by II and a. Note tha t in our definit ion
the connect ion between schemata and crossover is more obvious th an in th e
classical not ation using wildca rd symbols (e.g ., [2]).

Example 3.

(a) In the binary case, let 'Pu be as in Exam ple l (a). Then <I>u(a) is the
classical schema with fixed posit ions ak where llk = 1 and with wildcard
symbols '#' where llk = o.

(b) In the euclidean case schemata are linear manifolds <I>u(a) = 'Pu (a) +
L; as was not ed in the proof of Theorem 1(b) . In th e case I = IRK
we may consider an orthonormal basis B := {b1 , .. . , bK} of IRK. For
U := {O, I }K and II E U let Lu := (bi 11li = 1,1 ::; i ::; I< ) be the linear
subspace spanned by those b, with u ; = 1. Then L; = (bi I Ui = 0,1 ::;
i ::; I< ) and 'Pu is the projection on the coordina tes selected by u . This
allows a straightforward genera lization of (a) .



A Generalized Crossover Operation for Genetic Algorithms 189

For a generalizat ion of the classical Schema T heorem in [4] we first have
to consider the interplay of crossover and schemata . Lemm a 3 describes the
nondisruption of schemata during crossover .

Lemma 3. Let u , u' E U and y,a E I .

(a) If 'Pu 0 'Pu'

(b) If 'Pu 0 <Put

'Pu then Cut(-,y) maps <I>u(a) into itself.

'Pu then Cu' (·' y) maps <I>u(a) into itself

Proof. Let x E <I>,,(a) an d 'Pu 0 'Pu' = 'P,,, then from Condit ion 1

'Pu (Cut (x ,y)) = 'Pu(h('Pu' (x ),<Pu' (y) ))
= 'P" 0 'Pu' (x ) = 'P,,(x )

and similarly for (b) . •

Ex ample 4.

'Pu 0 'Put(h('P,,'(x) ,<p",(y)))
'Pu(a)

(a) In the euclidean case we have 'P" 0 'Pu' = 'Pu ¢=? Lu c Lu' and
'Pu 0 <Put = 'Pu ¢=? Lu c Lt ,·

(b) In the binary case wit h one- point crossover we have 'Pu 0'Pu' = 'Pu if and
only if u :S u' , where u' is restricted to the bin ar y repr esentations of
2k

- 1, 1 :S k :S K. In other words, 'Pu 0 'Put = 'Pu (resp . 'Pu 0 <Pu' = 'Pu)
holds if and only if the crossover point encoded in u' (i.e., the leftmost
1) falls left (resp . right ) of all fixed positio ns of the schema <I>u(a).

Theorem 4 gives a lower bound on the survival pr obab ility of a schema
during select ion according to fitness and crossover (we do not take mutat ion
into account ) . It is thus a Schema Theorem for our set t ing.

Let the current populati on be represented by a random variab le X wit h
values in I and a p,-density q on I. Let f : I ---> IR be a fitness funct ion
wit h E f (X ) = II p, (dx )q(x )f(x ) < 00 . T hen parents selected pr oportional
to their fitn ess are two independent identically distributed random var iab les
X ,Y wit h p,-densiti es x f---7 q(x ) := q(x )f(x)/E f (X ). The result of select ing
parent s by fitn ess and applying a randomly chosen crossover X is given by
C)(JX,Y) resp . CxCX',Y) .

Theorem 4. Let X ,X,Y be given as above. For u E U fixed let 0 .
{u' E U I 'Pu 0 'Put = 'Pu or 'Pu 0 <Pu' = 'Pu }. Th en for any a E I

p (Cx(X ,y) E <I>u(a) or C x(X,Y) E <I>,,(a))

~ P (X E <I>u(a)) P (X E 0) E [f(X~ I:x~ <I>,,(a)]
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Proof From Lemma 3(b) we see that U is the set of crossovers u' such th at
schema <Pu(a) is preserved either by Cu' or Cu"

p (Cx( X,Y ) E <Pu(a) or C\ (X ,Y ) E <pu(a))

= Lpx(du' )l~i(dY ) q(y) p(Cu,(X ,y) E <Pu(a)

or Cu, (X ,y ) E <pu(a))

~ fu Px(du' ) l M(dy) q(y) p (Cu,(X ,y) E <Pu(a)

or Cu,(X ,y) E <pu(a))

~ CPx(du' ) rM(dy) q(y) P (X E <Pu(a))i u i f
= P(X E U) P(X E <Pu(a)).

ow the assertion follows as

P(X E <Pu(a)) = r M(dx)q(x)
i iP. (a)

_ J~" (a) M(dx)q(x)f(x)
- E f (X )

E [f (X ) I X E <Pu(a)J
E f (X )

. P(X E <Pu(a)). _

Note that the conditional expected fitn ess E [f (X) I X E <Pu(a)] is the
corr ect expression for what is somet imes referred to as the average fitness or
averag e ut ility of t he schema <Pu(a). Theorem 4 shows that the lower bound
of the survival probability is increasing with the relat ive average fitn ess of the
schema and with the probab ility of nondisrup tion. The usefulness of schema
theorems is often discussed in litera ture (e.g., [3], [5]). Our aim here was
to show that we need much less struct ure for the crossover operator than is
usually assumed in this context.

E x ample 5. For the binary case with one-point crossover we have P(X =
u' ) = 1/ J{ for any u' E U' where U' is the set of all binary representations of
2k

- 1, k = 1, . . . , J{ . vVe get the classical Schema Theorem from T heorem 4
as (see Examp le 4(b))

P(X E U) = P(I;?u 0 I;?x = I;?u or I;?u o 7j5x = I;?u)
d(u)

= P(X ~ u or X < u) = 1 - K

where d(u) is the defining length of schema <Pu(a), tha t is, the maximal
distance of ones in u . For the case q(x) == 2-K , which is often assumed, we
ob tain

E [.t(X ) I X E <Pu(a)J
I:xEiPu(a ) f (x)

l<Pu(a)1
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