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A bstract. A formalism recently int roduced [4, 5] uses the met hods
of statist ical mech anics to mod el the dynamics of gene t ic algor it hms
(GAs) . To be of mor e general int erest this formalism must be able to
descr ibe problems ot her th an the tes t cases cons idered in [5]. In this
pap er , the technique is applied to th e subset sum prob lem , which is
a combinatorial optimizat ion problem with a strongly nonlinear en­
ergy (fit ness) fun ct ion and many local minima under single spin flip
dyn ami cs. It is a pr ob lem that exhibits interest ing dyn ami cs, reminis­
cent of stabilizing select ion in popu lation biology. The dyn amics are
solved under certain simplifying ass umptions and are reduced to a set
of difference equa tions for a small nu mb er of relevant qu an ti ties. The
quantities used are the cumulants of the population , which describe
it s sha pe, and th e mean corre lation wit hin the populati on , which mea­
sures the microscopic simila rity of populat ion members. Including the
mean corre lat ion allows a better description of the popula t ion than the
cumulants alone would pr ovide and represents a new and important
extension of the technique. The formalism includes finit e population
effects and descr ibes problems of realisti c size. T he theory is shown
to agree closely to simulations of a real GA and the mean best energy
is acc urate ly predict ed .

1. Introduction

Genet ic Algorit hms (GAs) are general-pur pose search techn iques that are
loosely based on natural select ion [1, 2]. A population of solutions evolve
under the influence of geneti c ope ra tors , which are rou ghly analogous to the
pr ocesses at work in biological popula tions. GAs are growing in popularity
and are being used in a large variety of problem domains (e.g., [3]). It is the
existence of a populat ion of solutio ns being processed in parallel tha t makes
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the GA different from other stochas t ic search techniques, such as simulated
annealing . It is thought that the popul ation allows th e GA to find mutually
useful feat ures in distinct solutions, which it may then recombine to crea te
bet ter solutions. Although there is a lar ge body of theoreti cal work on GAs,
the established theory does not yet provide a complete picture.

A form alism for modeling the dynam ics of the GA, using methods from
statist ical mechanics has been introdu ced [4, 5, and 6]. T wo closely related
toy problems were considered; the random field par am agnet and the Ising
spin cha in, for which the dynam ics can be solved exact ly [5]. In this pap er
their formalism is generalized to a harder combina torial opt imizat ion prob­
lem: the subset sum. Although strictly NP-comp let e, this is a pro blem tha t
is quasipolynomial and in most cases can be solved with trad itio nal algo­
rithms in polynomial time [7]. T his is still a toy problem , since stochas tic
methods will not perform as well as these algorithms , but there are closely re­
la ted st rong NP-complete problems, such as bin-packing, to which GAs have
been applied effectively [8]. T he solut ion of the dynam ics for the subset sum
problem may be useful in understanding these harder cases.

In th e simp le GA considered here, solutions to a problem are coded as bi­
nary t rings and each string is assigned an energy, or negative fitness, through
some map ping funct ion. A population of such strings is generated at ran dom
and GA operators act on it in sequence , over a numb er of genera tions , in or­
der to find solutions of low energy (high fitness) . The three most common
operators are select ion, crossover , and muta tion . These are the only opera­
tors considered in this work. Und er select ion , new population memb ers are
selected wit h replacement by some probabilist ic meth od weight ed towards
the fit test. Selection requires the du plication of popula tion memb ers in or­
der to keep the populat ion size constant. Crossover mixes pairs of population
memb ers, crea ting offspring that may lie far from either parent in Hammi ng
space. Under muta tion , bit s are flipp ed at random wit hin the populat ion.
The GA has many tunable par am eters, such as the population size, selec­
tion st rength , and mutation ra te. A good choice of these param eters is often
crucial to the perfor mance of the GA .

A full description of the dynami cs of the GA is very difficult . The numb er
of possible popu lation realizat ions is astronomical for a typical problem and
crossover intr odu ces a st rongly nonlinear interact ion within the population.
Following the form alism due to [5], the populat ion is modeled by a small
num ber of macroscopic quant it ies and anything not trivially rela ted to these
quan ti ti es is retr ieved through a maximum ent ropy meth od . This reduces the
dynamics to a small number of difference equations describing the average
effect of each operator on each relevant quanti ty. T he formalism includes
finite population effects and describ es problems of realistic size. Describing
the dynamics in this manner lends insight into which are the most impor tant
features of each operator and can be used to make optimal paramet er choices.

The subset sum problem exhibits very interesting dynam ics. T he optimal
solution lies in a dense region of solut ion space, so that the population seems
to stabilize around it . This form of selective pressur e is known to popula-
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tion biologists as stabilizing select ion and is very different from the problems
considered in [5], where select ion is direct ional and pushes the population
towards the optimal solut ion, which lies in a sparse region of the solution
space. Because of the nonlinearity wit hin the energy, the rela tionship be­
tween the string coding and energy is mor e complex than in the par am agnet
and spin chain considered in [5]. T he cumulants of the population (describing
shape) are not sufficient to describe the sta te of the populat ion accurately
and another degree of freedom is required ; the mean corre la tion within the
population , being a measure of the microscopic similarity between population
members.

2. T he a lgorithm

2.1 Subset sum

Posed as a question , the subse t sum problem asks whether a set of numbers
has a subset which exac tly sums to a goa l value [7]. Posed as an op timiza tion
pr oblem , one wishes to find the subset tha t comes as close as possible to th e
goal value. Let the set of possibilities be {WI,W 2 . .. , W N } , chosen from some
arbitra ry distribution . In this pap er , the iu, come from a uniform distr ibu tion
of reals over the int erval [0, 1], although the theore tical resul ts are valid for
any distr ibu tion wit h a well-defined variance in the large N limit . If G is the
goal, then one wishes to minimize,

N

I LxiWi - GI
i=l

where Xi E {O, 1}.

One possible choice of energy, or nega tive fitness, is the squared deviation ,

E = (h - G)2
N

N

where h = L XiWi

i = l

(1)

so that the aim of the GA would be to minimize this energy by making
a par ticular choice of the X i . T here are other possible choices of energy
function , bu t this choice is analytically advantageous as it is cont inuous wit h
respect to h. The factor of l i N is chosen to make the energy of order N.
Here, h is the field value associated with energy E.

2 .2 The genetic a lgor ithm

A simple GA is considered . A random populat ion of solutions is created ,
in this case binary st rings of the form { X l , X 2 . .. , X N } where the alleles Xi

are as defined pr eviously. The size of populat ion P remains fixed . Under
selection , populat ion memb ers are chosen by some pr ocess weight ed towards
the indi viduals with the lowest energy. Alt hough Baker (or determ inist ic)
select ion is generally thought to be more effect ive [9], we use roulette wheel
select ion maki ng the problem more amenable to an alysis and allowing an
accurate mod el for finite population effects . The populati on is th en divided
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Figure 1: Evolution of a simple GA under the energy in equation (1)
averaged over 1000 runs. The field distribution of the population is
shown at 0, 10,20 ,30 ,50 , 80, 110, and 140 generat ions. Th e goal value
GIN was 0.35.

into pair s of parents for crossover. Under uniform crossover , the alleles of the
child are chosen independently and randomly from each parent , perhap s fa­
voring alleles from one parent. Under mu tation , alleles are flipped at ran dom
throughout the population wit h some pr obabili ty Pm.

Figure 1 shows the evolut ion of a simple GA, averaged over a number
of runs using the energy defined in equat ion (1) . The evolution is depicted
in terms of the distribu t ion of field variab les p(h) defined in equat ion (1),
allowing a bet ter description of the GA dynam ics than the energy distri bu­
tion . Clearly the field dist ribution will become centered around G as the GA
evolves. Two stages in the evolution can be identified .

1. A dir ectional stage, where the mean of the population moves towar ds G.

2. A convergent stage, where the var ian ce of the populati on is reduced
as popu lat ion members close in on the optimum value . Here, select ion
te nds to stabilize the mean of the populat ion around G.

As the distribution converges, the best population memb er will usually im­
prove , alt hough it may fluctu ate between generations. Eventually the popu ­
lati on may reach equilibrium, where the muta t ion rate keeps the population
from converg ing further . Note that the field dist ribution is always close to a
gauss ian , while the energy distribut ion would clearly become unsymmetrical
as t he popu lation evolves. In choosing to model the field distr ibut ion , one
avoids the problem of dealing wit h a strongly nongaussian dist ribution .

3 . The formalism

Following [5], the dyn ami cs are described in terms of each operator 's average
effect on the cumulants of the dist ribution , which describe the shape of the
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popula tion. T he results for each operator are presented in sections 4, 5, and 6.
T he third and four th cumulant expressions for crossover and mu ta tion are not
presented here, as they are equivalent to the par am agnet result in [5] under
a simple cha nge in variables. Unlike the par am agnet or the spin cha in , for
this problem the mean corre lation wit hin the population cannot be dedu ced
from the variance of the popula tion and must be treated ind ep endently. T he
corre lation expressions are derived in sect ion 7 and repr esent an imp or tant
new cont ribution to the formalism introduced in [5J. Once express ions are
derived for each operator 's effect on the cumulants and the mean corre la tion ,
they can be iterated in sequence in order to simulate the evolution of the GA .

3.1 The cum ulant s of t he pop u la tion

The nth cumulant will be denoted K n , with Kl and K2 defined as the mean
and variance respectively. Higher cumulants are a measur e of the higher
moments digression from th ose of a gaussian. The third and fourt h cumu­
lants are related to the skewness and kur tosis of the population resp ectively.
The cumulants of the population can be generated from the logarithm of a
partition function Z :

an P
- log ZI where Z = "" e,ha

.Kn =~ , =0 L.J
u 7

n
a = l

The first two cumulants are ,

(2)

N

Kl = (ha)a = L ui; (xf) a (3)
i = l

K 2 = (h;)a - (ha); = (1 - ~) ( (h;) a - (hahl1)a#3)

= ( I - ~) (~ w; ( (Xf) a - (xf xf)a#3 )

- ~~WiWj ( (XfXj ) a - (X f xf) a#3)) (4)

where a and (3 index population members and P is the popula tion size. T he
averag es over the pop ulat ion are defined as

(
a ,11) _ 1 ;., "" a 11

X X a#3 - P (P _ 1) L.J L.J X X .
a=l l1#a

T he (1 - l iP) factor in equa tion (4) is the finite population correct ion to
the variance of an infinite population. Note that x; = Xi since Xi E {O, I }.

An initi al, random distribution will be close to gaussian , which has K n = °
for n > 2, although there are O(N ) corre ct ions to the higher even cumulants
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due to the finite string length and 0 (1/ P ) correc tions du e to the finite pop­
ula tion . T he first two cumulants of the ini tial dist ribution are

. N W i
n;~ = 2: -

i=l 2
. 1 N w 2

n;; = (1 - - ) 2: --2- .
P i = l 4

3.2 The co r relation

(5)

(6)

(7)

(9)

(10)

An importan t quant ity is the weight ed correla tion between two population
memb ers a and f3 which is defined by

1 N
Qcx{3 = - 2:w;( 2xf - 1)(2x f - 1).

4N i = l

This is a simple measur e of the corre la tion between different strings within
the popu lation and is not a function of energy. It differs from the usual
measur e used in statist ical mechanics because of th e w; facto r . Knowing the
correlat ion is impor tant to determine the effect of crossover . T he average
corre lat ion within the population is Q, defined by

1 N w 2 1 N

Q = (Qcx{3)cx# = N 2:-t - N 2:w;( (xf)cx - (x f x f)cx#/3) ' (8)
,=1 ,=1

Not e that the second par t of this quantity appears in the expression for the
varian ce, equat ion (4) , so that an increase in corre lation corre sponds to a
propor tional and opposite change in the variance if all ot her terms remain
fixed . A completely uncorrela ted population has Q = 0 while a t maximum
corre lation, where each population memb er is identical , Q = Qmax where ,

1 N w 2

Qmax = N 2:-t .
,=1

4 . Selection

Roulet te wheel select ion is used , where the new population is chosen from the
old with replacement. The probabili ty of choosing a population member is
equal to it 's Boltzmann weight [4, 10]. This form of fitness scaling keeps the
distribu t ion very close to a gaussian distr ibu t ion and since the other genet ic
operators tend to ret urn the population to a gaussian , it is a natural choice
for thi s problem. T he probability of select ion for populat ion member a wit h
energy Ecx is

e-{3E",
p., = 2:P e-{3E",

where f3 is the select ion st rength , which determ ines the difference in select ion
probab ility for solut ions of different energy. If energy is a function of the



Th e Dynamics of a Genetic Algorithm under S tebil izuig Selection 219

field value h the n one can generalize the calculation from [4J to calcula te
the effect of select ion on the cumulants of the field distribut ion . Define a
part it ion func tion for selection,

p

z, = L e - fJE(hul+-yhu . (11 )
0'= 1

The logari thm of this quan ti ty is the genera ting function for the cumulants
of the field distribution aft er selection

an< = -a 10g ZsIF O',n (12)

Following [4J one makes the approxima tion tha t popul ation members are
independ entl y drawn from a cont inuous distribu tion p(h) so tha t th e average
of log Zs is

(13)

This can be tr ansform ed into a double integral th a t can be calculated numer­
ically or approximated analyt ically in the limit of small f3 (see ap pendix B).
In the simula tions presented in sect ion 8 the int egration is done numerically,
but the small f3 expansion shows the relevan t cont ributions for each cumu­
lant. Expand ing equation (B.8) for the first three cumulants to first order
one finds,

(14)

(15)

(16)

where f3s= f3"'d N is a scaled selection par ameter . Note that the variance is
redu ced even for zero select ion st rength because of finite popul ation sampling
effects. The third cumulant starts at zero (since th e distribution is ini tially
symmetrical) and becomes negat ive, indica ting a skewed popu lation. This is
solely a finite population effect and is due to the sparseness of the popu lation
at the edge of the dist ribution, important dur ing the dir ect ional stage of
the dynami cs. The major consequence of th e negative third cumulant is an
accelerated redu ct ion in variance under fur th er selection (the cumulants are
O(N ), so th e term in equa tion (14) involving the third cumulant is sma ll) .
Although a narrow popu lat ion is not necessar ily bad in this prob lem, the
redu ction in variance due to the third cumulant is du e only to increased
correlations within the population. In sect ion 7 it is shown explicitly that
the higher cumulants intr oduced by select ion increase the accumulation of
correlations under select ion, causing the GA to converge faster.
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After a few genera t ions, the mean becomes arbitra rily close to G and the
magni tu de of the third cumulant is reduced as the pop ulation becomes more
symmetrical. Ignoring higher cumulants, the ratio of the second cumulant
after and before select ion at this stage is

1 1
--- ---- ----,,-
1 + 2,68 P (1 + 4,68) 1 .

(17)

One can keep this rat io fixed by scaling ,6 so that ,68 is kept constant . This
requires an increased select ion strength as th e GA converges, a met hod rec­
ommended to avoid premature convergence to nonoptimal solutions [2]. Al­
though the skewness is reduced , selection st ill increas s the magnitude of
th e negat ive fourth cumulant , rela ted to the kur tosis, which increases the
energy (reduces the fitness) of the best populati on memb er on average (see
appendix D).

5 . Crossover

The crossover and mutation calcula tions for the field dist ribution are equiv­
alent to the paramag net considered in [5] un der a simple change of variables,
so only an out line of the derivat ion and resul ts for the first two cumulants
will be presented here. Consider two population memb ers, Q and ,6. They
have associated field values

N

ha = L x f wi
i=l

N

h(3 = L x f wi .
i= l

(18)

The field value of one child after crossover will be

N

he = L (CiXf + (1 - Ci)x f )Wi
i = l

where

{
I with probab ility a,c. - 0 with probability 1 - a.

(19)

(20)

(21)

T he parameter a is the prob ability associated with choosing alleles from
parent Q , with a = 1/ 2 the most common choice for uniform crossover.
Reducing a reduces th e degree of disruption and the size of a typical step
made by crossover. After averaging over the Ci variab les the expressions for
the first two cumulants , from equat ions (3) and (4), become

I\;~ = 1\;1

I\;~ = 1\;2 + 2a(l- a) ((1 - ~)N(Qrnax - Q) - 1\;2 )

where Q and Qrnax are defined in equations (8) and (9) . The higher cumulants
are reduced towards their natural value, with the constra int that the allele
frequency at each site remains fixed within the population. For the higher
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cumulants a maximum ent ropy ansatz is used to calculate any terms not
trivially related to the cumulants of the population or mean corre lation [5].
Crossover reduces the contribution to the second cumulant from the different
site terms, so that the fixed point of the second cumulant under crossover is
given by equation (4) without the i =I=- j contribution .

6 . Mutation

During mutation, bi ts are flipp ed thro ughout the popula tion with pr obability
Pm. T he resul tan t field after mutation of population member Q is

N

hr;: = ~( (1 - M;"') x f + M;"'(1 - Xf ))Wi
i=l

where

M e< = { 1 with pr obab ility P""
, a with prob ab ilit y 1 - Pm.

Averaging over the NIt variabl es in the first two cumulants leads to

"''';' = "'1 + 2Pm ( "'~ - "'1)
",;n= "'2 + 4pm(1 - Pm)("'; - "'2)

(22)

(23)
(24)

where "'i and "'~ are the mean and var ian ce of the ini ti al , random pop ulation ,
defined in equations (5) and (6), which is the fixed po int of the populat ion
under mutat ion. The higher cumulants are also reduced in magni tude [5J .
The mu tation probability Pm determines the rate at which the p opulation
approaches a random population . Som etimes the mutation rate is annealed
while the GA evolves, since a high mu tation rate seems to be most beneficial
at t he begin ning of the search . In this pr oblem, mu tati on was not found to
be par ti cularl y beneficial , since any shift of the mean of the popula tion away
from G reduces the number of good solu tions considerably and this seems to
outweigh the benefits of increased diversity.

7 . Correlations

T he express ions for selection and mu ta tion only requ ire kn owledge of the
cumulants of the distribution , but the express ion for the effect of cross over
on the second cumulant requ ires the estimat ion of the corre la tion Q defined
in equation (8). This is because crossover involves the in teraction of pop­
ulation members, un like the other two operators . In the paramagnet and
spin chain , cons idered in [5], the mean corr elat ion can be deduced from the
variance of the popula tion , but this is not possible in gene ra l. In order to
deal wit h harder problems it will be necessar y to evolve the mean corr elation
explicitly. This is fairly na tu ral for crossover and mutation , but for select ion
one must make some ass umption about the relat ionship between a pop ula­
t ion member 's energy and it 's microstate- the bi t st ring coding . To deal
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wit h this issue a maximum entropy method is used , ext ending the ansatz
present ed in [5].

Crossover does not cha nge the mean correlation, since the allele frequency
a t each site within the population remain s fixed . Using the same meth od
out lined in section 6, one finds the corr ela tion afte r mu tat ion to be

(25)

(26)

This is reasonab le, since the fixed point under muta tion is clearly an un cor­
related dist ribution .

After selection, the expectat ion value for the corre lation is

p p

o, = L P~Qmax + L L PaP(3Qa(3
a = l a = l(3#a

1
= 6 Qdup + (1 - p )Qnat

where Pa is the pr obab ility of select ing memb er O! defined in equat ion (10)
and Q a(3 is the correla tion between population members O! an d (3, defined
in equation (7) . T he first term is the effect of th e du plication of populat ion
memb ers under select ion , where Qmax is the correlat ion between identical
popula tion memb ers, defined in equa tion (9). The second term is due to the
natural increase in corre lat ion as popula tion memb ers become fit ter. Con­
sider each term independently.

7. 1 Duplication t er m

As in the select ion calculat ion , one makes the assumption that popula tion
memb ers are independently drawn from a cont inuous distr ibu tion . Then one
can average over each popula tion memb er in the first term of equat ion (26).
Since the contribut ion from each term in the sum is equa l, only the first term
is required:

The integration int roduces an integran d which factors, so that each average
can be done ind epend ently:

(28)

where

1= 2
f (t ) = _=dh p(h) exp(- 2(3 (G - h)2/ N - t e- (3(G-h) IN)

1= 2
g(t ) = _!,h p(h) exp(_ t e- (3(G -h) IN).
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This expression can be expanded in the small (3 limit by the same method
used for the select ion calculat ion in app end ix B. This turns out to be very
accurate for reasonable select ion strengt hs and to leadin g order one finds

Q
p(2(3) P Qmax

6. dup = (p(3(3 )/ p(2(3 ) + (P - 1)p((3 ))2
(29)

where

p(n(3) = L :dh P(h ) exp( - n (3 (G - hl / N ). (30)

This expression can be calcula ted using the cumulant expansion for p(h)
described in appendix A. To second order in (3 and excluding terms 0 (1/ Vii)
and less one finds

6.Qdu ~ Qmax [1 + 2(32(1 _ i) ( 1 + 2(G - 1\;1)2 _ 2(G - 1\;1)1\;3) ] (31)
p P s P 1\;2 I\;~

where (3s is the scaled select ion par am et er defined in sect ion 4. Ini tially,
the negative third cumulant introduced by selection tends to increase the
accumulat ion of corr ela tions due to dup licat ion.

7 .2 Nat u ral incr ease term

T he second term in equat ion (26) is more tricky, since it involves the rela­
tionship between energy and corr ela tion . Ignoring th e lost duplication term s
and treat ing a and (3 as independent , one can average over each pop ulat ion
memb er:

Qnat = p 2(PappQap)p(ha)p(hfj ). (32)

Str ictly speaking, the lost duplica tion terms mean that a and (3 are not
independent , but for reasonab le select ion strengths this approximation is
valid . To calcula te Qnat, one can est imate the prob ability of QaP given ha
and hp before selection , p(QaPl ha, hp), and average this over the distribut ion
afte r select ion , Ps(h) :

Qnat = L ! Qap dhadhp Qap ps(ha)ps(hp)p(QaPlha, hp)

= lim N
1

dd log (jOOdhadhp Ps(ha)Ps(hp)p(- it N lha, hp)) (33)
t- O t - 00

where p(- it N lha, hp) is the Four ier transform of p(Q aPl ha, hp),

p(-itNlha, hp) = L ! Qap p(QaPlha, hp) etNQafj . (34)

A condit ional probability for corr elations p(QaPlha, hp) can be defined if the
alleles of the population are chosen from some distribut ion ,
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where the angled br acket s denote averages over xi and xf . The alleles at
each site are assumed to be distributed according to

P(Xi ) = X ;ti(Xi - 1) + (1 - X i)O(Xi)

where Xi = (x't)" and is defined by

2Xi - 1 = tanh(wi(z + YT/i)) .

(36)

(37)

T he param eters Y and Z are chosen so that the populat ion has the corre ct
mean corre la t ion and first cumulant . The noi 'e term T/i is dr awn at each
site from a gauss ian distribution with uni t variance. T his is equivalent to
assuming a maximum ent ropy distr ibut ion for the alleles, where Y and Z are
Lagran ge mult ipliers chosen to enforce cons traints on two known macroscop­
ics (see appendix C, equat ion (C.8)).

Consider the Fourier transform ofp(Q",6 !h" , 17,,6 ) wit h respect to Q",6 , since
this appears in the appropriate generat ing function (see equation (33)) ,

"(_ . N ih I ) _ p(- it N , 17,,,, 17,,6 )
p it oo 1,6 - "(0 I h ) .

p , 1" , ,6
(38)

Writing the delta fun ctions as integrals (ignoring multiplicative constants)
and noticing that one of the integrals is removed by the Fourier transform ,
one finds

(39)

(40)

where

F (k" , k,6 ,t ) = k"h" + k,6h,6

-t ( k"WiXf + k,6WiXf - tw; (2x f - 1)(2x f - 1)) .
i = 1 4

Each site decouples and the average over each site can be done independently
by integrating over the prob ab ility distribution defined in equation (36) . Af­
te r averaging one find s

(41)

where

N w2 N

c i»; k,6, t ) = k" h" + k,6h,6 + t L -t + L [log(X i2e- wi(k,,+kI3 )
i = l i = l

+ Xi(l - Xi)( e-k I3Wi-tw"fj2 + e- k"wi - tw"fj2) + (1 - X;)2)] . (42)

Since the exponent is O(N ), th is integral can be computed for large N by
the saddle point method (e.g. , [11]):

(43)
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where the sad dle poin t equations fix the values of k~ and kiJ by

:~ (k~(t), k~ (t ) , t ) = 0

:~ (k~(t) , k~(t) , t) = O.

(44)

(45)

Define p(- it N ), whose logarithm is the generating fun ction for Qnat (see
equation (33)) :

p(- it N ) = i !hcxdh/3 Ps(hcx)Ps(h/3)p(- itN lhcx , h/3 )

= i 7!!1cxdh/3 ps( hcx )ps( h/3) eG(k;'( t) ,k~ (t) ,t)-G(k ;' (O) ,k~ (O) ,O) . (46)

T he probab ility distributions can be expressed in term s of their cumulant
expansions , but since the higher cumulant s do not make any contribution
in the large N limit one can consider ga ussian distributions without loss of
generality. T hen , after again applying th e saddle point method, one finds
(ignoring multiplicative constants)

p(- itN ) = exp[H(t)]

where

H (t ) = G(k~ (t ) , k~ (t ) , t ) - G(k~ (O ) , k~ (O ) , 0)

(h~ - '"'02 (h; - '"'0 2

2,",~ 2,",~

(47)

(48)

Here, '"'f and '"'~ are the first two cumulants after select ion and the saddle
point equations fix h~ and h;:

(49)

(50)

As t --7 0 the saddle point equa t ions (44), (45), (49), and (50) are sa tisfied
by

k~ (O ) = k~ (O ) = k

h: = h~ = '"'f

which are rela ted thro ugh the equation

s 2:N
wi(Xie- kwi )

'"' -1 - . 1 - X (l _ e - kWi ) '
1.:= 1 'l

(51)
(52)

(53)
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where X i is defined in equa tion (37) and the bar denotes an average over the
gaussian noise variable 17i . The natural increase contribut ion to the mean cor­
relation afte r selection can be generated from the Fouri er t ransform defined
in equation (46)

Q _ u ~ (lOg p(- itN ))
nat - t~ dt N

= ~ N tv;((1 -Xi( l + e-kWi ))) 2
N ~ 4 (1 - X i (l - e- kWi)) .

(54)

Again , the bar denotes an average over the noise in X i' Note tha t for k = a
one retrieves the origina l values of K 1 and Q given in appendix C. For small
changes in the mean one can expand equa tions (53) and (54) around k = a
to obtain

k N
Qnat = Q - - L tvIX i ( l - X i )(2Xi - 1) + O(k 2

)

N i =1

K1 - K
S

k '::::'. 1.
N(Qm ax - Q)

(55)

(56)

Note that when X i is greater tha n 1/ 2 on average, an increase in the mean
of the popul ation resul ts in an increased corre lation . T his is as expec ted, be­
cause the population is moving into a region of lower entropy. The expressions
can be averaged numerically over the gaussian noise and the weights, which
are dist ributed uniformly over the interval [0, 1J. The small k approximation
is a good start ing point for the numerical root finding required to determine
k from equation (53) and then to calculate Qnat from equation (54) .

Now bot h term s in equa t ion (26) can be est imated from equat ions (29)
and (54) to give the mean corr elation afte r selection . T he agreement with
simulat ions is very good, although there is some discrepan cy during the ini­
tial evolution where the population is most skew and the maximum entropy
calcula tion is not complete ly accurate . During the convergent stage of the
dynamics, when K1 = G , the increase in corre la tion under select ion is solely
due to du plica tion. T his calcula tion is an imp ortant extension of th e form al­
ism presented in [5] , since it might allow the met hod to be ext ended to less
trivial problems. T he corre lat ion within the popu lation provides inform ation
that cannot be derived from the stat ist ics of the pop ulation 's energies (or ,
in this case , field values) . It is cruc ial to calculat ing the effect of crossover,
since high corre lat ions will clearly lead to less disruption , an d it is an ideal
measur e for describing the populat ion 's convergence.

8 . Simulating the dynamics

The dynamics have been described in terms of difference equa tions for the
cumulants of the field dist ribution and the mean correlation Q. To simulate
the GA , the difference equa t ions for the first four cumulants and the mean
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correlation were iterated in sequence and compared to average d result s from
a real GA. The mean, variance , and corre lation are shown in Figure 2 as
the GA evolves for a typical choice of parameter set tings. Mutation was
not found to be part icularly useful in this problem and was not included
in the simulat ions. The GA was stopped when the corr elation was 85%
of a fully correlated populat ion. The best popu la tion member , averaged
over the same runs used in Figur e 2, is shown in Figure 3 for the later
stag es of the GA evolut ion. The theoret ical value is est imated by assuming
populat ion members are ind ependent ly drawn from a distribution with the
correc t cumulants (see ap pendix D).

Most of the erro r in the curves of Figure 2 is due to an initial und er­
est ima te of the increased corr elation under select ion . This is because the
pop ulat ion is most skew at this point and the maximum entropy ansatz is
least accurate here. The worst case in this set of simulat ions is an underes­
tima te of about 5% at generation 4. After generation 15 the erro r is always
within 0.5% and th is is st ill during the st age of evolution where the natural
increase term in equation (26) is an importan t contribut ion. If one were to
model the GA start ing from this point the agreement would be nearly per­
fect. Once the mean st ab ilizes at G , the increase in correlation is solely due
to du plication und er select ion.

0 . 10

0 .0 5

1 0 0so0 .00 ~------~;;---------:-:::::-----'

Generation

F igure 2: T he t heory is compared to simula tions averaged over 1000
samples . The mean , variance, and corr ela tion are shown , with t he
dashed line showing t he t heory. T he par ameters were f3s = 0.05,
P opula tion = 70, N = 150, and GIN = 0.35. Un iform cros sover was
used over the who le pop ulation.
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2.0e-05

1 .0e - 0 5

12 010 06060
O .O e + OO 4'::-0------==--------=c:::----:-::c::----,-::-::---'

Generat ion

Figure 3: The best ene rgy fou nd in t he popula tion each gen era tion is
averaged over 1000 sa mples of a real GA and compared to the t heory.
T he data is from t he same runs used in Figure 2. T he solid cur ve is
the value est imate d from t he t heoret ical cumulant values .

9. Conclusion

The formalism introduced in [4, 5J has been ext ended to a less t rivial problem
with a st rongly nonlinear energy function. The theory shows good agreement
to simulat ions of a real GA average d over many runs, although there were
small systema tic errors due to an initial und erest imate of the increased corre­
la tion under select ion. In this pr oblem, as in the spin chain and paramagnet
considered in [5], the higher cumulants are shown to increase convergence as
th ey increase th e accumulation of corr ela tions under select ion. Dur ing th e
later stages, the increase in correlat ion is shown to be almost solely due to
the dup licat ion required to maintain the populat ion size afte r select ion. The
role of crossover seems to be to distribute the correlations more evenly in
order to increase diversity, reducing the magnitude of the higher cumulants.
The penalty of crossover is an increased variance, which reduces the density
of solut ions close to G and leads to an increase in average energy within the
popul ation. Duri ng t he la ter stages of evolut ion it is shown that the ratio of
the field dist ribu tion variance before and after select ion can be kept constant
by scaling the select ion para meter so that it is inversely pro portional to vari­
ance. This problem exhibits dynamics very different from most problems and
it might be interesting to look at mor e realist ic problems with this type of
dynamics, such as bin packing and knap sack problems tha t have been solved
by GAs in the past [8].

By evolving the mean correlation, the maxi mum ent ropy ansatz has been
extended in a way that may prove important if progress is to be made on
harder problems. The selection calculation has been genera lized to any en­
ergy that can be expressed in terms of a field . This could be useful in exam-
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ining certain toy problems, such as trap fun ct ions, which hav e received some
atte ntion from GA theor ist s (e.g ., [12]). The form alism is still limi ted to
describing average behavior and an accurate model for fluctu ations would be
an improvement , alt hough in the problems considered under this form alism
the average behavior seems to express mu ch of the most interesting behavior.
To underst and GA dynamics better , an array of different problem domains
must be considered in order to discover generic issues and it is hop ed th at
th is work may provid e a stepping stone towards that goal.
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Appendix A . Cumulant expans ion around a gaussian

It is often necessar y to descr ibe the field distribution by a truncated cumu­
lant exp an sion. The cumulants are defined for a finit e sample in section 3,
equation (2). For a cont inuous distribution this definit ion can be generalized
using a Fourier transform,

whose logari thm is the generating funct ion for the cumulants,

A 00 (it)n
log p(t) = L: "'n-, .

11.=0 n.

(A.l)

(A.2)

(A.3)

On e can define a function whose moment s are correct given a limi ted number
of cumulants [5],

(h) I ( -(h-"'Il
2

) ( L:n c
"' n (h-"'l) )p = --- exp I + --U n - - -

~ 2", ..n/2 If{;y"'"r>.2 2 n=3"'2 y' "2

where un(x) are normalized Herm ite polynomials and nc is the number of
cumulants used . Four cumulants are used in this work and the third and
fourth Hermit e po lynomials are U3(X) = (x3 - 3x)/3! and U4(X) = (x4 ­
6x 2 + 3)/4! . This funct ion is no t a well-defined probability distribution since
it is not necessarily positi ve, but it doe s have the corre ct cumulants .

Appendix B . Selection calculation

Following [4], one can express the logarit hm of th e partit ion functi on as an
integral:

(B.I)
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ow the averag e on the right can be taken :
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(e -tz') p(h) = (lll [ 00 P(hQ) dhQ) exp( - t~ e- f3E(h,,)+-Yh,, )

=fP (t , (3 , , ) (B.2)

where

f (t , (3,,) = [ : p(h) exp(_ te- f3E(h)+ -Yh ) . (B.3)

From equation (12), the cumulants after select ion can be generated from the
logari thm of the par ti tion funct ion:

(B.4)

T his expression can be evalua ted numerically, bu t the small (3 expansion is
found to agree closely to the num erical result for any reasonab le select ion
strength (at least for th e first few cumulants). For sma ll (3 one can expand
f (t , (3, , ):

where

f (t , (3 , , ) c::' 1 - t p(l ,(3 , , ) + ~P(2 , (3 , ,) + ... (B.5)

(B.6)

Following [5] one can exponent iate th is expansion and raise to the power
of P:

Completing th e integral in equation (B.4) one finds

1· an (1 (P ' ( (3 )) 1 (P(2 , (3, ,) ))
Kn = im -;:;-- og p 1, " - - ' 2( ) - 1 .

"1-->0 u , n 2P p 1, (3"

(B.7)

(B.8)

This can be calculated by representing the field distribution in terms of a
cumulant expansion (see appendix A). The resulting expressions can be
expanded as power series in (3, which are shown to first order for th e first
three cumulants in equations (14) through (16) of sect ion 4.
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A p pen d ix C . Maximum ent r opy calculation

To calculate terms requ ired for the determination of the higher cumulants
afte r crossover and mu tation , a maximum entropy calcula tion was intr oduced
in [5] . In this work their calculation is also required in order to estimate the
increased correlat ion wit hin the population und er select ion . Alt hough the
calculation follows that presented in [5] closely, one of the cons traints is
different and the weights come from a un iform distribution rather than a
gaussian .

Define X i, the mean value of the alleles at each site within the populat ion ,

(C.1)

The number of ways of arranging P X i bit s from P is

So one can define an ent ropy

S(Xi ) = 10g[Q(X i ) ]

( 1) (1- X)~ P log 2(1 _ X i) + P X i log X i '

(C.2)

(C.3)

where Stirli ng's approximat ion has been used . Lagrange mult ipliers, z and
y , are used to add const raints on the first cumulant and corre lat ion within
the population:

P N N

2ZPli 1 = 2z L L WiXf = 2zP L wiX i
a = l i = ! i = l

1 P P N

2y2p 2Q = 2y24N L L L w; (1 - 2x f) (1 - 2x f )
,, =1/3=1 i= l

2 N
= p 2 .JLL W2 (1 - 2X y

2N i =l ' t

(C.4)

(C.5)

One can define a probabili ty dist ribut ion for the {Xi} configurat ion that
decoup les for each site :

N N
p({Xi}) = IT p(Xi ) = IT eS(X;)+ 2z PWi Xi +p2y2w f(2Xi - 1)2/2

i = l i= l

;

00 d7) ' _.,2
p(X i) = _ _' e-T-+PG(Xi ,17i ,Wi)

- 00 vz;r
where

G(X i , 7)i , Wi) = S (X i)/ P + 2ZWiX i + YWi(2Xi - l )7)i .

(C.6)

(C.7)
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To find the maximally likely value of X i , maximize G with respect to X i·
This leads to the equation

(2X i - 1) = tanh [wi(z + Y'I7i )] (C.8)

where 'l7i is drawn from a gaussian distribution with uni t variance. The
constraints can be used to obtain the values of z and y :

N 'W .

K1 = L ----':' (1 + tanh[wi(z + Y'I7i )])
i = l 2
1 N W 2 - -----,2,..,------- -

Q = - L ~tanh [Wi (Z+ Y'I7i )].
N i = l 4

(C.g)

(C.10)

The bars denot e averages over the noise. The averages over noise and weights
have to be done numerically. The numerical root finding required to deter­
mine Z and Y is simplified by the fact that the functions are fairly smooth
(in fact, the expression for K 1 is monotonic in z).

A p pend ix D . B est p op ulation m em b er

One can estimate the best pop ulation member 's energy assuming th at pop­
ulat ion members are independently selected from a distr ibu tion of energies
p(E ):

(D.1)

This is related to the field distribut ion Ph (h) thro ugh the tr ansformation

p(E ) = ~f1 (Ph(G - VNE) + Ph(G + VNE) ) . (D.2)

Eventually, the field distribution 's mean is at G. Subst itut ing this expression
into equat ion (D.1) for the case of a gaussian field distr ibut ion one finds

(D.3)

One can approximate this expression by using a flat field distribution with
the same height at the mean. This should not affect the value of the best
populat ion memb er significantly, since it will always be close to the G, where
the field distribut ion is locally flat. To inclu de the effect of the higher cu­
mulants, one can use the cumulant expa nsion for the field distribut ion given
in appendix A to calculate the distri but ion 's height . In this case, the height
His

1 ( K4 )H = - - 1 + -
V27rK2 8K~ ·

(DA)
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The best po pulation mem ber 's energy is t herefore:

2HP fak 2 P-lEbest ':::::' -- dx x (1 - 2Hx )
N 0

7rK,2
(D .5)

This will be a lower bound , because there is a larger probability wit hin the
neighborhood of G t han for a gauss ian, but it should become exact in t he
large P limit . This is the expression used to ca lcula te the theo re t ical cur ve
in F igure 3. T he ass umption in writ ing equat ion (D .l) is that the popula t ion
members are indep enden t and this breaks down dur ing the la ter stages of
evolu t ion , when pop ulation memb er s become highly corr elated .

R e ferences

[1] J. H. Holland, Adaptation in Natural and Artificial Syst ems (The University
of Michigan P ress, Ann Arb or , 1975).

[2] D. E. Goldb erg, Genetic Algorithm s in Search, Optimization, and Machin e
Learning (Addison-Wesley, Reading, MA, 1989).

[3] L. Davis (editor), Handbook Of Genetic Algorithms (Van Nost ra nd Reinhold,
New York , 1991).

[4] A. P riigel-Bennett and J . L. Shapiro , "An Analysis of Genetic Algorithms
Using Statistical Mechanics," Physical Review Let ters, 72 (9) 1305 (1994) .

[5] A. Prugel-Benn et t and J . L. Shapiro, "T he Dynamics of a Genetic Algorithm
for Simple Random Ising Syst ems," Comp uter Science Dept ., University of
Manchester , Oxford Road, Man chest er M13 9PL , U.K. (1995) (submit ted to
Physica D for publication).

[6] J . L. Shapir o, A. Prugel-Bennet t , and 1. M. Rat tray, "A Statistical Mechan­
ical Formulatio n of th e Dynamics of Genet ic Algorith ms," Lecture Not es in
Computer Science, 865, special edition on Evolutionary Comput ing edited by
T. C. Fogarty, (1994).

[7] M. R. Garey and D. S. Johnson , "Computers and Intr act ability- A Guide to
the Theor y of NP-Completeness," (W . H. Freeman and Co., San Francisco,
1979).

[8] B. Kroger and O. Vornb erger , "Enumerat ive vs Geneti c Optimizat ion-Two
Parallel Algorit hms for the Bin Packing Problem," Lecture Not es in Comp uter
Science, 594 (1992) 330- 362.

[9] J. E. Baker, "Reducing Bias and Inefficiency in the Selection Algorithm," in
Proceedings of the Second Intern ational Conference on Genetic Algorithms ,
edited by J . J . Grefenstet te, (Lawrence Erl baum , Hillsdale, NJ , 1987).



234 L. Magnus Rattray

[10] M. De la Maza and B. Tidor, "Increased F lexibi lity in Geneti c Algor ithms:
The Use of Var iab le Bolt zmann Select ive Pressur e to Control Propagation ,"
Proceedings of the ORSA CS TS Conference- Computer' Science and Opera­
tions Research: New Developm ents in their Int erfaces, 425- 440 (1991).

[n ] J. E. Marsden , Basic Complex Analysis (W . H. Freeman and Co. , San Fran ­
cisco, 1973).

[12] K. Deb and D. E . Goldb erg , "Analyzing Decep t ion in Tr ap Functions," in
Fbundar ions of Genetic Algorithms 2, edited by L. D. Whitl ey (Morgan Kauf­
mann, San Mateo, CA , 1993).


