Complex Systems 9 (1995) 213-234

The Dynamics of a Genetic Algorithm under
Stabilizing Selection

L. Magnus Rattray”
Computer Science Department,
University of Manchester,

Oxford Road, Manchester M13 9PL, U.K.

Abstract. A formalism recently introduced [4, 5] uses the methods
of statistical mechanics to model the dynamics of genetic algorithms
(GAs). To be of more general interest this formalism must be able to
describe problems other than the test cases considered in [5]. In this
paper, the technique is applied to the subset sum problem, which is
a combinatorial optimization problem with a strongly nonlinear en-
ergy (fitness) function and many local minima under single spin flip
dynamics. It is a problem that exhibits interesting dynamics, reminis-
cent of stabilizing selection in population biology. The dynamics are
solved under certain simplifying assumptions and are reduced to a set
of difference equations for a small number of relevant quantities. The
quantities used are the cumulants of the population, which describe
its shape, and the mean correlation within the population, which mea-
sures the microscopic similarity of population members. Including the
mean correlation allows a better description of the population than the
cumulants alone would provide and represents a new and important
extension of the technique. The formalism includes finite population
effects and describes problems of realistic size. The theory is shown
to agree closely to simulations of a real GA and the mean best energy
is accurately predicted.

1. Introduction

Genetic Algorithms (GAs) are general-purpose search techniques that are
loosely based on natural selection [1, 2]. A population of solutions evolve
under the influence of genetic operators, which are roughly analogous to the
processes at work in biological populations. GAs are growing in popularity
and are being used in a large variety of problem domains (e.g., [3]). It is the
existence of a population of solutions being processed in parallel that makes
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the GA different from other stochastic search techniques. such as simulated
annealing. It is thought that the population allows the GA to find mutually
useful features in distinct solutions, which it may then recombine to create
better solutions. Although there is a large body of theoretical work on GAs,
the established theory does not yet provide a complete picture.

A formalism for modeling the dynamics of the GA, using methods from
statistical mechanics has been introduced [4, 5, and 6]. Two closely related
toy problems were considered; the random field paramagnet and the Ising
spin chain, for which the dynamics can be solved exactly [5]. In this paper
their formalism is generalized to a harder combinatorial optimization prob-
lem: the subset sum. Although strictly NP-complete, this is a problem that
is quasipolynomial and in most cases can be solved with traditional algo-
rithms in polynomial time [7]. This is still a toy problem, since stochastic
methods will not perform as well as these algorithms, but there are closely re-
lated strong NP-complete problems, such as bin-packing, to which GAs have
been applied effectively [8]. The solution of the dynamics for the subset sum
problem may be useful in understanding these harder cases.

In the simple GA considered here, solutions to a problem are coded as bi-
nary strings and each string is assigned an energy, or negative fitness, through
some mapping function. A population of such strings is generated at random
and GA operators act on it in sequence, over a number of generations, in or-
der to find solutions of low energy (high fitness). The three most common
operators are selection, crossover, and mutation. These are the only opera-
tors considered in this work. Under selection, new population members are
selected with replacement by some probabilistic method weighted towards
the fittest. Selection requires the duplication of population members in or-
der to keep the population size constant. Crossover mixes pairs of population
members, creating offspring that may lie far from either parent in Hamming
space. Under mutation, bits are flipped at random within the population.
The GA has many tunable parameters, such as the population size, selec-
tion strength, and mutation rate. A good choice of these parameters is often
crucial to the performance of the GA.

A full description of the dynamics of the GA is very difficult. The number
of possible population realizations is astronomical for a typical problem and
crossover introduces a strongly nonlinear interaction within the population.
Following the formalism due to [5], the population is modeled by a small
number of macroscopic quantities and anything not trivially related to these
quantities is retrieved through a maximum entropy method. This reduces the
dynamics to a small number of difference equations describing the average
effect of each operator on each relevant quantity. The formalism includes
finite population effects and describes problems of realistic size. Describing
the dynamics in this manner lends insight into which are the most important
features of each operator and can be used to make optimal parameter choices.

The subset sum problem exhibits very interesting dynamics. The optimal
solution lies in a dense region of solution space, so that the population seems
to stabilize around it. This form of selective pressure is known to popula-
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tion biologists as stabilizing selection and is very different from the problems
considered in [5], where selection is directional and pushes the population
towards the optimal solution, which lies in a sparse region of the solution
space. Because of the nonlinearity within the energy, the relationship be-
tween the string coding and energy is more complex than in the paramagnet
and spin chain considered in [5]. The cumulants of the population (describing
shape) are not sufficient to describe the state of the population accurately
and another degree of freedom is required; the mean correlation within the
population, being a measure of the microscopic similarity between population
members.

2. The algorithm
2.1 Subset sum

Posed as a question, the subset sum problem asks whether a set of numbers
has a subset which exactly sums to a goal value [7]. Posed as an optimization
problem, one wishes to find the subset that comes as close as possible to the
goal value. Let the set of possibilities be {w;,w, ..., wx}, chosen from some
arbitrary distribution. In this paper, the w; come from a uniform distribution
of reals over the interval [0, 1], although the theoretical results are valid for
any distribution with a well-defined variance in the large N limit. If G is the
goal, then one wishes to minimize,

N
|2 wiwi — G| where x; € {0,1}.
i=1

One possible choice of energy, or negative fitness, is the squared deviation,

(h—G)?

N
N where h = Zriwi (1)

=1

E =

so that the aim of the GA would be to minimize this energy by making
a particular choice of the x;. There are other possible choices of energy
function, but this choice is analytically advantageous as it is continuous with
respect to h. The factor of 1/N is chosen to make the energy of order N.
Here, h is the field value associated with energy FE.

2.2 The genetic algorithm

A simple GA is considered. A random population of solutions is created,
in this case binary strings of the form {x1,22..., 2y} where the alleles z;
are as defined previously. The size of population P remains fixed. Under
selection, population members are chosen by some process weighted towards
the individuals with the lowest energy. Although Baker (or deterministic)
selection is generally thought to be more effective [9], we use roulette wheel
selection making the problem more amenable to analysis and allowing an
accurate model for finite population effects. The population is then divided
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Figure 1: Evolution of a simple GA under the energy in equation (1)
averaged over 1000 runs. The field distribution of the population is
shown at 0, 10, 20, 30, 50, 80, 110, and 140 generations. The goal value
G/N was 0.35.

into pairs of parents for crossover. Under uniform crossover, the alleles of the
child are chosen independently and randomly from each parent, perhaps fa-
voring alleles from one parent. Under mutation, alleles are flipped at random
throughout the population with some probability p,,.

Figure 1 shows the evolution of a simple GA, averaged over a number
of runs using the energy defined in equation (1). The evolution is depicted
in terms of the distribution of field variables p(h) defined in equation (1),
allowing a better description of the GA dynamics than the energy distribu-
tion. Clearly the field distribution will become centered around G as the GA
evolves. Two stages in the evolution can be identified.

1. A directional stage, where the mean of the population moves towards G.

2. A convergent stage, where the variance of the population is reduced
as population members close in on the optimum value. Here, selection
tends to stabilize the mean of the population around G.

As the distribution converges, the best population member will usually im-
prove, although it may fluctuate between generations. Eventually the popu-
lation may reach equilibrium, where the mutation rate keeps the population
from converging further. Note that the field distribution is always close to a
gaussian, while the energy distribution would clearly become unsymmetrical
as the population evolves. In choosing to model the field distribution, one
avoids the problem of dealing with a strongly nongaussian distribution.

3. The formalism

Following [5], the dynamics are described in terms of each operator’s average
effect on the cumulants of the distribution, which describe the shape of the
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population. The results for each operator are presented in sections 4, 5, and 6.
The third and fourth cumulant expressions for crossover and mutation are not
presented here, as they are equivalent to the paramagnet result in [5] under
a simple change in variables. Unlike the paramagnet or the spin chain, for
this problem the mean correlation within the population cannot be deduced
from the variance of the population and must be treated independently. The
correlation expressions are derived in section 7 and represent an important
new contribution to the formalism introduced in [5]. Once expressions are
derived for each operator’s effect on the cumulants and the mean correlation,
they can be iterated in sequence in order to simulate the evolution of the GA.

3.1 The cumulants of the population

The nth cumulant will be denoted &, with x; and k, defined as the mean
and variance respectively. Higher cumulants are a measure of the higher
moments digression from those of a gaussian. The third and fourth cumu-
lants are related to the skewness and kurtosis of the population respectively.
The cumulants of the population can be generated from the logarithm of a
partition function Z:

"

3 ~—1log Z|,=p where Z = Ze“fh“. (2)

a=1

K’TL
The first two cumulants are,
I\Y
k1= (ha)a = D wizf)a (3)
i=1
1
= (h)a — (ha)a = (1 - p)((’li)a = (hahg)azs)
N
(Z w; (@227 )as)
1
- Z > wiw; (2527 )a — (x?m?)aﬁ)) (4)

i=1 j##i
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where a and ( index population members and P is the population size. The
averages over the population are defined as

Z (1'(11"6)0#5 Z 2;5:

"U[

The (1 — 1/P) factor in equation (4) is the finite population correction to

the variance of an infinite population. Note that z = ; since z; € {0, 1}.
An initial, random distribution will be close to gaussian, which has x,, = 0

for n > 2, although there are O(N) corrections to the higher even cumulants
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due to the finite string length and O(1/P) corrections due to the finite pop-
ulation. The first two cumulants of the initial distribution are

N

5 (5)

FA
i =
i=1
; 1 w?

H’Z:(l_ﬁ)ZT' (6)

i=1

3.2 The correlation

An important quantity is the weighted correlation between two population
members o and [ which is defined by

Qap = 4NZw 1)(222 —1). (7)

This is a simple measure of the correlation between different strings within
the population and is not a function of energy. It differs from the usual
measure used in statistical mechanics because of the w? factor. Knowing the
correlation is important to determine the effect of crossover. The average
correlation within the population is @, defined by

)
Q = (Qaplazs = Z L - Z Wi ((25)a — (2527 )arp)- (8)
=1

Note that the second part of this quantity appears in the expression for the
variance, equation (4), so that an increase in correlation corresponds to a
proportional and opposite change in the variance if all other terms remain
fixed. A completely uncorrelated population has @ = 0 while at maximum
correlation, where each population member is identical, Q = Qax Where,

L
N ¢

SN

w;
4 .

Mz

Qmax = (9)

Il
it

i

4. Selection

Roulette wheel selection is used, where the new population is chosen from the
old with replacement. The probability of choosing a population member is
equal to it’s Boltzmann weight [4, 10]. This form of fitness scaling keeps the
distribution very close to a gaussian distribution and since the other genetic
operators tend to return the population to a gaussian, it is a natural choice
for this problem. The probability of selection for population member « with
energy F, is
¢~FFa

Pa = W (10)
where [ is the selection strength, which determines the difference in selection
probability for solutions of different energy. If energy is a function of the
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field value h then one can generalize the calculation from [4] to calculate
the effect of selection on the cumulants of the field distribution. Define a
partition function for selection,

P
Z —BE(ha)+vha ) (11)

The logarithm of this quantity is the generating function for the cumulants
of the field distribution after selection
aﬂ,

Ky = pr log Z|=o- (12)
Following [4] one makes the approximation that population members are
independently drawn from a continuous distribution p(h) so that the average
of log Z is

(log Zs) piny = (H / dha> log Z,. (13)

This can be transformed into a double integral that can be calculated numer-
ically or approximated analytically in the limit of small § (see appendix B).
In the simulations presented in section 8 the integration is done numerically,
but the small 3 expansion shows the relevant contributions for each cumu-
lant. Expanding equation (B.8) for the first three cumulants to first order
one finds,

K] =K1+ (1 — %) (Z(G — K1) — E%) +O(3?) (14)
= (1= =201 -3) (- G-m)2)+0() ()

. %),{3 — 86, ((1 - %)53 + %(G = Hl)ng) +O0()  (16)

where 3, = K2 /N is a scaled selection parameter. Note that the variance is
reduced even for zero selection strength because of finite population sampling
effects. The third cumulant starts at zero (since the distribution is initially
symmetrical) and becomes negative, indicating a skewed population. This is
solely a finite population effect and is due to the sparseness of the population
at the edge of the distribution, important during the directional stage of
the dynamics. The major consequence of the negative third cumulant is an
accelerated reduction in variance under further selection (the cumulants are
O(N), so the term in equation (14) involving the third cumulant is small).
Although a narrow population is not necessarily bad in this problem, the
reduction in variance due to the third cumulant is due only to increased
correlations within the population. In section 7 it is shown explicitly that
the higher cumulants introduced by selection increase the accumulation of
correlations under selection, causing the GA to converge faster.
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After a few generations, the mean becomes arbitrarily close to G' and the
magnitude of the third cumulant is reduced as the population becomes more
symmetrical. Ignoring higher cumulants, the ratio of the second cumulant
after and before selection at this stage is

~S
Mt .. L _ (17)

One can keep this ratio fixed by scaling 3 so that [, is kept constant. This
requires an increased selection strength as the GA converges, a method rec-
ommended to avoid premature convergence to nonoptimal solutions [2]. Al-
though the skewness is reduced, selection still increases the magnitude of
the negative fourth cumulant, related to the kurtosis, which increases the
energy (reduces the fitness) of the best population member on average (see
appendix D).

5. Crossover

The crossover and mutation calculations for the field distribution are equiv-
alent to the paramagnet considered in [5] under a simple change of variables,
so only an outline of the derivation and results for the first two cumulants
will be presented here. Consider two population members, a and 3. They
have associated field values

N N
he = erw, hg = Zw?wi : (18)
i=1 =1

The field value of one child after crossover will be

he = i(cﬂ‘? +(1-C)2fyw; (19)

i=1
where

C. = 1 with probability «,
"7 1 0 with probability 1 — a.
The parameter a is the probability associated with choosing alleles from
parent «, with @ = 1/2 the most common choice for uniform crossover.
Reducing a reduces the degree of disruption and the size of a typical step

made by crossover. After averaging over the C; variables the expressions for
the first two cumulants, from equations (3) and (4), become

Ky = K1 (20)
5 = 2+ 20(1=0) (1= SN Qe = @) = 1) @)

where @ and Q.. are defined in equations (8) and (9). The higher cumulants
are reduced towards their natural value, with the constraint that the allele
frequency at each site remains fixed within the population. For the higher
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cumulants a maximum entropy ansatz is used to calculate any terms not
trivially related to the cumulants of the population or mean correlation [5].
Crossover reduces the contribution to the second cumulant from the different
site terms, so that the fixed point of the second cumulant under crossover is
given by equation (4) without the ¢ # j contribution.

6. Mutation

During mutation, bits are flipped throughout the population with probability
Pm- The resultant field after mutation of population member « is

N
Ryt = ((1— M{)zf + M3 (1 —af))w; (22)
i=1
where
Mo — 1 with probability p,,,
i 7] 0 with probability 1 — p,,.

Averaging over the M variables in the first two cumulants leads to

K=+ 20— 1) (23)
Ko + 4p1n(1 - pm)("‘é - /{2) (24)

Il

m
Ko

where £} and k} are the mean and variance of the initial, random population,
defined in equations (5) and (6), which is the fixed point of the population
under mutation. The higher cumulants are also reduced in magnitude [5].
The mutation probability p,, determines the rate at which the population
approaches a random population. Sometimes the mutation rate is annealed
while the GA evolves, since a high mutation rate seems to be most beneficial
at the beginning of the search. In this problem, mutation was not found to
be particularly beneficial, since any shift of the mean of the population away
from G reduces the number of good solutions considerably and this seems to
outweigh the benefits of increased diversity.

7. Correlations

The expressions for selection and mutation only require knowledge of the
cumulants of the distribution, but the expression for the effect of crossover
on the second cumulant requires the estimation of the correlation @ defined
in equation (8). This is because crossover involves the interaction of pop-
ulation members, unlike the other two operators. In the paramagnet and
spin chain, considered in [5], the mean correlation can be deduced from the
variance of the population, but this is not possible in general. In order to
deal with harder problems it will be necessary to evolve the mean correlation
explicitly. This is fairly natural for crossover and mutation, but for selection
one must make some assumption about the relationship between a popula-
tion member’s energy and it’s microstate—the bit string coding. To deal
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with this issue a maximum entropy method is used, extending the ansatz
presented in [5].

Crossover does not change the mean correlation, since the allele frequency
at each site within the population remains fixed. Using the same method
outlined in section 6, one finds the correlation after mutation to be

Qm = (1= 2pn)*Q. (25)

This is reasonable, since the fixed point under mutation is clearly an uncor-
related distribution.
After selection, the expectation value for the correlation is

Z ngJmaX + Z Z papﬂQnﬁ

a=1 f#a
= AQdup & (1 = F)Qnat (26)

where p,, is the probability of selecting member « defined in equation (10)
and Qup is the correlation between population members o and £, defined
in equation (7). The first term is the effect of the duplication of population
members under selection, where Q,.x is the correlation between identical
population members, defined in equation (9). The second term is due to the
natural increase in correlation as population members become fitter. Con-
sider each term independently.

7.1 Duplication term

As in the selection calculation, one makes the assumption that population
members are independently drawn from a continuous distribution. Then one
can average over each population member in the first term of equation (26).
Since the contribution from each term in the sum is equal, only the first term
is required:

e—2BE(h1)

AQaup = PQuas (H / dha) . e PER)

= Pana,x (H/ dh ) —2BE(hy) /Oloodt te_tzae_ﬁE(hﬂ). (27)

The integration introduces an integrand which factors, so that each average
can be done independently:

AQdup = PQmax /Uoflt tf(t)gpﬁl(t) (28)
where
= / “dh p(h) exp(=2B(G — h)?/N — te=HGh1/N)

= /oodh p(h) exp(—tePE-M*/N)
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This expression can be expanded in the small g limit by the same method
used for the selection calculation in appendix B. This turns out to be very
accurate for reasonable selection strengths and to leading order one finds

B P(26) PQmax

(29)
where
p(np) = / dh p(h) exp(—nB(G — h)?/N). (30)

This expression can be calculated using the cumulant expansion for p(h)
described in appendix A. To second order in 3 and excluding terms O(1/v N)
and less one finds

AQdup ~ Qmax [

4 2(G — k1) 2(G — K1)ks
14232 1+ - 31
-5 (1+ 252 (1)
where [, is the scaled selection parameter defined in section 4. Initially,
the negative third cumulant introduced by selection tends to increase the

accumulation of correlations due to duplication.

7.2 Natural increase term

The second term in equation (26) is more tricky, since it involves the rela-
tionship between energy and correlation. Ignoring the lost duplication terms
and treating o and f as independent, one can average over each population
member:

Qnat = P*(pappQop)p(ha)p(hs)- (32)

Strictly speaking, the lost duplication terms mean that o and 3 are not
independent, but for reasonable selection strengths this approximation is
valid. To calculate @Qa, one can estimate the probability of Q.g given h,
and hg before selection, p(Qap|ha, hg), and average this over the distribution
after selection, py(h):

Qunt = | dQup dhadhy Qup pe(ha)pc(h)p(@oslia: o)

. 1d o0 o
= %1_)11(1). NI log (/_Oslh&dhﬂ Ps(ha)ps(hg) p(—it N |hq, ’lﬂ)) (33)
where p(—itN|hg, hg) is the Fourier transform of p(Qag|ha; hp).
p(—itN|ha, hg) = / 4Qup P(Qaslha, hg) €VQas. (34)

A conditional probability for correlations p(Qag|ha, hs) can be defined if the
alleles of the population are chosen from some distribution,

_ p(Qaﬁﬂ ha, hﬂ) _
p(Qaﬂ|thﬁ) - p(ho“hﬁ) -

(6(Qap — g Dw?(2af — 1)(22F — 1)) 6(ha — S wiaf) §(hy — X wial))
(6(ha — S wiag) 6(hg — S wial))

(35)
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where the angled brackets denote averages over z¢ and z,ﬂ The alleles at
each site are assumed to be distributed according to

p(z;) = Xib(z: — 1) + (1 — X;)6(z:) (36)
where X; = (), and is defined by
2X; — 1 = tanh(w;(z + yn;)). (37)

The parameters y and z are chosen so that the population has the correct
mean correlation and first cumulant. The noise term 7; is drawn at each
site from a gaussian distribution with unit variance. This is equivalent to
assuming a maximum entropy distribution for the alleles, where y and z are
Lagrange multipliers chosen to enforce constraints on two known macroscop-
ics (see appendix C, equation (C.8)).

Consider the Fourier transform of p(Qaps|ha, hg) with respect to Qqp, since
this appears in the appropriate generating function (see equation (33)),

p(—itN, ha, hg)
/3(0, }La, h/_-]) '
Writing the delta functions as integrals (ignoring multiplicative constants)

and noticing that one of the integrals is removed by the Fourier transform,
one finds

p(—itN|ha, hg) = (38)

(=it N, heg, hg) = < dkadks exp[F (k. ks, t)]> (39)

{og =}
where

F(k'a’ kﬂ’t) = koha + kﬁhﬂ

o tw?
-3 (kawimf‘ + kgw;z? — 41 (228 —1)(22 — 1)) . (40)

i=1
Each site decouples and the average over each site can be done independently

by integrating over the probability distribution defined in equation (36). Af-
ter averaging one finds

P(—itN, hahg) = [ dbiadks explGka, kg, )] (41)
where
N .2 N
Gk kg t) = aho+ kghg +1 3 —F+ 3 [log(x2ewilkatks)
ge=T; i=1

+ Xi(]. _ Xi)(e—kgw,-—tw:r’/Z +e—kaw,—tw?/2) + (1 _XZ)Z)] (42)

Since the exponent is O(N), this integral can be computed for large N by
the saddle point method (e.g., [11]):

P(=itN, hay hg) = explG(k3 (1), K (), B), (43)
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where the saddle point equations fix the values of k7, and kj by

2 (kate) k3t =0 "
oG,
%(ka(t)v kj(t),t) = 0. (45)

Define p(—itN), whose logarithm is the generating function for Q..; (see
equation (33)):

p(—itN) = /_ " dhadhg ps(ha)ps(hg)H(—it N|ha, hs)

_ / ﬁhadhﬁ Do(he)ps () eCEOBMO-CHOEO0  (46)

The probability distributions can be expressed in terms of their cumulant
expansions, but since the higher cumulants do not make any contribution
in the large N limit one can consider gaussian distributions without loss of
generality. Then, after again applying the saddle point method, one finds
(ignoring multiplicative constants)

p(=itN) = explH(2)] (47)
where
H(t) = G(kg(t), k5(t), t) — G(k3(0), k5(0),0)
(ht —r3)*  (hp—K3)°

= - ! 48
2K3 2K5 48]

Here, k7 and &3 are the first two cumulants after selection and the saddle
point equations fix i, and hj:

oH , ., . . . hi — kS
m(hm hi) = ko (t) — k5(0) — —hg—l =0 (49)
oH ., .. . - hy — K3
8—hﬂ(hmhﬂ) = kj(t) — k3(0) — £ =0. (50)

K3

As t — 0 the saddle point equations (44), (45), (49), and (50) are satisfied
by

k2(0) = k5(0) = k (51)
W=l = K (52)

which are related through the equation
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where X; is defined in equation (37) and the bar denotes an average over the
gaussian noise variable n;. The natural increase contribution to the mean cor-
relation after selection can be generated from the Fourier transform defined
in equation (46)

1 (log 3(—it
Quat = %illl (_ (ig/)(TLti))

—0 dt
1 N ow? (1 — Xi(1 + e~kwi)) ’
_NZT((l—X(l—e"“’“‘))) - o

i=1 ‘

1

Again, the bar denotes an average over the noise in X;. Note that for £k =0
one retrieves the original values of k1 and @) given in appendix C. For small
changes in the mean one can expand equations (53) and (54) around k = 0
to obtain

. N

Quat = Q — %Zw?){i(l - X;)(2X; — 1) + O(k?) (55)
i=1

P (56)

o N((gmax S Q) ’

Note that when X; is greater than 1/2 on average, an increase in the mean
of the population results in an increased correlation. This is as expected, be-
cause the population is moving into a region of lower entropy. The expressions
can be averaged numerically over the gaussian noise and the weights, which
are distributed uniformly over the interval [0, 1]. The small k approximation
is a good starting point for the numerical root finding required to determine
k from equation (53) and then to calculate Q. from equation (54).

Now both terms in equation (26) can be estimated from equations (29)
and (54) to give the mean correlation after selection. The agreement with
simulations is very good, although there is some discrepancy during the ini-
tial evolution where the population is most skew and the maximum entropy
calculation is not completely accurate. During the convergent stage of the
dynamics, when x; = G, the increase in correlation under selection is solely
due to duplication. This calculation is an important extension of the formal-
ism presented in [5], since it might allow the method to be extended to less
trivial problems. The correlation within the population provides information
that cannot be derived from the statistics of the population’s energies (or,
in this case, field values). It is crucial to calculating the effect of crossover,
since high correlations will clearly lead to less disruption, and it is an ideal
measure for describing the population’s convergence.

8. Simulating the dynamics

The dynamics have been described in terms of difference equations for the
cumulants of the field distribution and the mean correlation ). To simulate
the GA, the difference equations for the first four cumulants and the mean
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correlation were iterated in sequence and compared to averaged results from
a real GA. The mean, variance, and correlation are shown in Figure 2 as
the GA evolves for a typical choice of parameter settings. Mutation was
not found to be particularly useful in this problem and was not included
in the simulations. The GA was stopped when the correlation was 85%
of a fully correlated population. The best population member, averaged
over the same runs used in Figure 2, is shown in Figure 3 for the later
stages of the GA evolution. The theoretical value is estimated by assuming
population members are independently drawn from a distribution with the
correct cumulants (see appendix D).

Most of the error in the curves of Figure 2 is due to an initial under-
estimate of the increased correlation under selection. This is because the
population is most skew at this point and the maximum entropy ansatz is
least accurate here. The worst case in this set of simulations is an underes-
timate of about 5% at generation 4. After generation 15 the error is always
within 0.5% and this is still during the stage of evolution where the natural
increase term in equation (26) is an important contribution. If one were to
model the GA starting from this point the agreement would be nearly per-
fect. Once the mean stabilizes at G, the increase in correlation is solely due
to duplication under selection.

)§1/3N
0.10 |
0.05 | ‘\\ ’///Q‘
2 = e
f Ko/N —TSs=aol
0.00 - L
o 50 100
Generation

Figure 2: The theory is compared to simulations averaged over 1000
samples. The mean, variance, and correlation are shown, with the
dashed line showing the theory. The parameters were s = 0.05,
Population = 70, N = 150, and G/N = 0.35. Uniform crossover was
used over the whole population.
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Figure 3: The best energy found in the population each generation is
averaged over 1000 samples of a real GA and compared to the theory.
The data is from the same runs used in Figure 2. The solid curve is
the value estimated from the theoretical cumulant values.

9. Conclusion

The formalism introduced in [4, 5] has been extended to a less trivial problem
with a strongly nonlinear energy function. The theory shows good agreement
to simulations of a real GA averaged over many runs, although there were
small systematic errors due to an initial underestimate of the increased corre-
lation under selection. In this problem, as in the spin chain and paramagnet
considered in [5], the higher cumulants are shown to increase convergence as
they increase the accumulation of correlations under selection. During the
later stages, the increase in correlation is shown to be almost solely due to
the duplication required to maintain the population size after selection. The
role of crossover seems to be to distribute the correlations more evenly in
order to increase diversity, reducing the magnitude of the higher cumulants.
The penalty of crossover is an increased variance, which reduces the density
of solutions close to G and leads to an increase in average energy within the
population. During the later stages of evolution it is shown that the ratio of
the field distribution variance before and after selection can be kept constant
by scaling the selection parameter so that it is inversely proportional to vari-
ance. This problem exhibits dynamics very different from most problems and
it might be interesting to look at more realistic problems with this type of
dynamics, such as bin packing and knapsack problems that have been solved
by GAs in the past [8].

By evolving the mean correlation, the maximum entropy ansatz has been
extended in a way that may prove important if progress is to be made on
harder problems. The selection calculation has been generalized to any en-
ergy that can be expressed in terms of a field. This could be useful in exam-
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ining certain toy problems, such as trap functions, which have received some
attention from GA theorists (e.g., [12]). The formalism is still limited to
describing average behavior and an accurate model for fluctuations would be
an improvement, although in the problems considered under this formalism
the average behavior seems to express much of the most interesting behavior.
To understand GA dynamics better, an array of different problem domains
must be considered in order to discover generic issues and it is hoped that
this work may provide a stepping stone towards that goal.
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Appendix A. Cumulant expansion around a gaussian

It is often necessary to describe the field distribution by a truncated cumu-
lant expansion. The cumulants are defined for a finite sample in section 3,
equation (2). For a continuous distribution this definition can be generalized
using a Fourier transform,

p(t) = [ ph)ean, (A1)
whose logarithm is the generating function for the cumulants,
log p(t) Z Lk n, : (A-2)

One can define a function whose moments are correct given a limited number
of cumulants [5],

1 —(h— e K h — K
p(h) = m exp( 252 (1 + 72 n;/z Up, W)) (A'?’)
where u,(x) are normalized Hermite polynomials and 7. is the number of
cumulants used. Four cumulants are used in this work and the third and
fourth Hermite polynomials are uz(z) = (2* — 32)/3! and uy(z) = (z* —
6z* + 3)/4!. This function is not a well-defined probability distribution since
it is not necessarily positive, but it does have the correct cumulants.

Appendix B. Selection calculation

Following [4], one can express the logarithm of the partition function as an
integral:

66 o=t e [t
flog Zy)yy = [~ S0t gy (B.1)
0



230 L. Magnus Rattray

Now the average on the right can be taken:

(€7 2) pny = (H/ p(he) dha) exp( tz ¢ PEha)trha)
a=1

= f (t7[377) (B2)

where
16,87 = [ plh) exp(—te #EOM) (B.3)

From equation (12), the cumulants after selection can be generated from the
logarithm of the partition function:

" oo p—t _ P
= lim 9 / il il CY0)) dt. (B.4)
=0 gy J - t

This expression can be evaluated numerically, but the small # expansion is
found to agree closely to the numerical result for any reasonable selection
strength (at least for the first few cumulants). For small # one can expand

f(t, B,7):

2

1t 8,7) 2 1= 1p(1,8,7) + 5p(2,B,7) + - (B.5)

where
p(n, B,7) = / ” p(R)enPEEM g, (B.6)

Following [5] one can exponentiate this expansion and raise to the power

of P:

2

s Pt
FTt,B,7) = ¢RI (1 +—-(6(2,8,7) — (1., 7))) . (B
Completing the integral in equation (B.4) one finds

182,87 _
S 1)). (B.8)

s

b (18P0 5) -

= lim
y¥—0

This can be calculated by representing the field distribution in terms of a
cumulant expansion (see appendix A). The resulting expressions can be
expanded as power series in 3, which are shown to first order for the first
three cumulants in equations (14) through (16) of section 4.
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Appendix C. Maximum entropy calculation

To calculate terms required for the determination of the higher cumulants
after crossover and mutation, a maximum entropy calculation was introduced
in [5]. In this work their calculation is also required in order to estimate the
increased correlation within the population under selection. Although the
calculation follows that presented in [5] closely, one of the constraints is
different and the weights come from a uniform distribution rather than a
gaussian.

Define X, the mean value of the alleles at each site within the population,

1 P
Xi= (a)s= 2 Z 25, (C.1)
a=1

The number of ways of arranging PX; bits from P is

1 P
QX;) = oF ( PX, ) ; (C.2)
So one can define an entropy

5(Xi) = log[(X5)]

1 1o
~ Plog | =——"—| + PX;log ’ c3
°g<2(1—X,;)>+ Og( % ) (©3)

where Stirling’s approximation has been used. Lagrange multipliers, z and
y, are used to add constraints on the first cumulant and correlation within
the population:

P N N
22 Py =2z Z Z wzs = ZZPZwiXi (C4)
a=1i=1 i=1
1 P P N
22 P2Q = 2y°— Z Z Zw?(l -2z (1 — 2:10?)
4N a=1 =1 i=1
g2 X
= P22 N" w21 — 2X;)% C.5
2 > ui(1 - 2X) (©5)

One can define a probability distribution for the {X;} configuration that
decouples for each site:

N N
p{X:}) = [1p(X) =[] S P F i (K= 1P /2
=

i=1

© dn; - —
piRg= [ oo (C.6)

where
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To find the maximally likely value of X;, maximize G with respect to Xj.
This leads to the equation

(2X; — 1) = tanh[w;(z + yn:)] (C.8)

where 7, is drawn from a gaussian distribution with unit variance. The
constraints can be used to obtain the values of z and y:

N

o= %’(1 + tanh[w;(z 4+ yn:)]) (C.9)
i=1
1 &L w} 2
Q= ¥ Z Itanh [wi(z + ym:)]. (C.10)
i=1

The bars denote averages over the noise. The averages over noise and weights
have to be done numerically. The numerical root finding required to deter-
mine z and y is simplified by the fact that the functions are fairly smooth
(in fact, the expression for %, is monotonic in z).

Appendix D. Best population member

One can estimate the best population member’s energy assuming that pop-
ulation members are independently selected from a distribution of energies

p(E):
By = P/UoodEp(E)E U: dE’p(E’)] - (D.1)

This is related to the field distribution py(h) through the transformation

p(E) = %\/g (pn(G = VNE) + pu(G + VNE)) . (D.2)

Eventually, the field distribution’s mean is at G. Substituting this expression
into equation (D.1) for the case of a gaussian field distribution one finds

P [ 2 oo
Byt = N"?T_Iiz/o dz erfc? = (z) 2% exp (—22/2Ks). (D.3)

One can approximate this expression by using a flat field distribution with
the same height at the mean. This should not affect the value of the best
population member significantly, since it will always be close to the G, where
the field distribution is locally flat. To include the effect of the higher cu-
mulants, one can use the cumulant expansion for the field distribution given
in appendix A to calculate the distribution’s height. In this case, the height
His

_ 1 K4
H= NoLT (1 + 8’{%) . (D.4)
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The best population member’s energy is therefore:

9 L

Brest 1 /Hdl' 22 (1 - 2H13)P_1
N Jo

TR

TNP+)P+2)(1+ra/85)) (D.5)

This will be a lower bound, because there is a larger probability within the
neighborhood of G than for a gaussian, but it should become exact in the
large P limit. This is the expression used to calculate the theoretical curve
in Figure 3. The assumption in writing equation (D.1) is that the population
members are independent and this breaks down during the later stages of
evolution, when population members become highly correlated.
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