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Abstract. Global cellular automata are introduced as a general-
ization of one-dimensional cellular automata allowing the next state
of a cell to depend on a “regular” global context rather than just
a fixed-size neighborhood. A number of well-known results for one-
dimensional cellular automata are extended to global cellular automata.

1. Introduction

Cellular automata (CA) are models of complex systems in which an infinite
lattice of cells is updated in parallel according to a simple local rule. A
dynamical system on the lattice of cells is a continuous and shift-invariant
function if and only if it can be specified by a CA.

We will generalize one-dimensional CA to provide for a “regular” global
context, while still using simple transition rules specified by a simple finite
transducer called an ww-sequential machine. Our global cellular automata
(GCA) will retain most of the properties of CA and at the same time allow
us to define many noncontinuous transition functions. An important special
case is the possibility of using two or more “classical” CA rules in one dy-
namical system, with one of them selected to be applied for the whole or
a part of the current configuration according to some “regular” conditions.
Any “negative” result valid for one-dimensional CA—for example, any un-
decidability result—is, of course, also valid for GCA. We will not consider
such problems. However, quite surprisingly, most “positive” results can be
extended to GCA. Thanks to some techniques known for finite transducers,
these extended results are proved rather easily. This is not so surprising
when we note that in the simplified proof of the decidability of the injectiv-
ity problem for one-dimensional CA in [4], we actually have implicitly used
GCA.

We assume that the reader is familiar with basic notions of automata
and language theory; see, for example, [11]. In the section 2 we review
the other necessary prerequisites and introduce ww-sequential machines (ww-
SM). They are a special case (length-preserving) of ww-transducers from [9].
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On the other hand, the sequential machines of [5, 7] are a special case of
ww-SM, called simple ww-SM in section 6.

In section 3, we introduce GCA as a generalization of one-dimensional
CA where the global CA function is defined by a single-valued and complete
ww-SM. We show that the definition is effective, and we can test whether
a given ww-SM has the required properties. We also show that GCA are
indeed a generalization of CA; that is, every one-dimensional CA rule can be
implemented by a complete and single-valued ww-SM. We give examples of
GCA that cannot be implemented as CA and show some general techniques
for constructing GCA—for example, by combining several one-dimensional
CA working on disjoint domains of configurations.

In section 4 we study the well-known problems that are decidable for one-
dimensional CA; in particular, injectivity and surjectivity. We extend these
results to GCA.

In section 5 we study the limit sets and limit languages of GCA. Again,
we succeed in extending the best-known results on one-dimensional CA to
GCA.

Finally, in section 6 we consider the simple ww-SM, called sequential
machines in [5, 7). We briefly discuss the one-to-one correspondence between
the simple ww-SM and sets of Wang tiles. We show the simple ww-SM from [5]
that corresponds to the smallest known aperiodic set of 13 Wang tiles.

2. ww-finite automata and ww-sequential machines

First we recall the definition of the classical one-dimensional CA, with the
neighborhood of a cell consisting of the cell itself and its r neighbors to each
side.

A CA is a triple A = (S,r, f), where S is a finite set of states, r specifies
the size of the neighborhood, and f : S*+' — S is the local function, also
called the CA rule.

A configuration c of the CA is a function ¢ : Z — Z that assigns a state
S to each cell of the CA. The set of configurations is denoted S#. The local
function f is extended to the global function

Gy 9% = S2.

By definition, for ¢, d € SZ, G4(c) = d if and only if d(i) = f(c(i —r),
c(i—r+1),...,c(i+r)) forallie Z.

The configuration space SZ is a product of infinitely many finite sets S.
When S is endowed with the discrete topology, the product topology on S%
is compact by Tychonoff’s theorem [13, Theorem 5.13]. A subbasis of open
sets for the product topology consists of all sets of the form

{c€ 57| (i) = a}, (1)

where i € Z and a € S. A subset of SZ is open if and only if it is a union of
finite intersections of sets of the form (1).
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The shift o : SZ — SZ is defined by o(c) = ¢/, where /(i + 1) = (i)
for each ¢ € Z. [14] gives the following characterization of CA as dynamical
systems.

Theorem 1. G : S% — S% s the global function of a CA if and only if it is
shift-invariant and continuous.

The set of bi-infinite words over S is denoted by S““. For ¢ € S% we
denote by ¢ the corresponding bi-infinite word in S““, similarly as for a
set C C S%. If d = o™(c), n > 1, then d“* = ¢“*. Hence any set R C S““ of
bi-infinite words corresponds to a shift-invariant subset of SZ.

Now we define our main tools, namely, the ww-finite automaton
(ww-FA) [9] and the ww-sequential machine (ww-SM). The latter is a spe-
cial case of the ww-transducer of [9] and a generalization of the sequential
machine of [5]. Inputs of an ww-FA are bi-infinite words over an alphabet S
that can be viewed as shift-invariant classes of configurations in S%. A set
X C 8% is said to be shift-invariant if o(X) = X.

Finite automata that recognize sets of bi-infinite words were defined in
[15] and studied in [2, 9, 10]. Here we use the definition from [9].

An ww-FA A is a quintuple (K, S,6, K1, Kg), where

e K is the finite set of states,

e S is the input alphabet,

o §: K x SU{e} — 2% is the transition function,
e K C K is the set of left (accepting) states, and

e Kp C K is the set of right (accepting) states.
An ww-FA A can be represented by a diagram in the usual way, with the left
states indicated by L and the right states by R; see Figure 1.

A bi-infinite word v is said to be recognized by A if there is a mapping
Z — K, that is, a bi-infinite sequence of states

<+39-25,9-1,90,41,92; - - -

and a configuration ¢ in v such that, for all j € Z,

e 6(gj,¢j) = gj1, and

e there exist m,n € Z, m < j < mn, such that ¢, € K and ¢, € Kg.

In other words, v is said to be recognized by A if there is a bi-infinite compu-
tation of A on a configuration c in v such that there is a left state appearing
arbitrarily early, a right state appearing arbitrarily late in the computation.
Such a computation will be called an accepting computation.
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Figure 1: An ww-FA A.

The set of bi-infinite words recognized by A is denoted L(A). We call
L(A) an ww-regular set. Clearly, every ww-regular set over S corresponds to
a shift-invariant subset of S%.

Let w € ¥*. By w* we denote the one-way infinite word (w-word) ob-
tained by the infinite repetition of w. By “w we denote the reverse of (w%)“,
that is, the infinite repetition of w to the left. For example, the bi-infinite
word (ww-word) of infinitely many as followed by infinitely many bs is written
as “ab”. For “aa” we also write “a® or a**.

Example 1. Let A = (K, 5,6, K1, Kg) be an ww-FA, where K = {0,1},
S = {a,b}, K;, = {0}, Kr = {1}, and § is given in Figure 1. The set of
bi-infinite words recognized by A consists of the simple bi-infinite word “ab*.

The sets of finite (one-way), infinite, and bi-infinite words over S are
denoted by S*, S, and S““, respectively. Finite or one-way infinite words
can be considered special cases of bi-infinite words in the following sense: A
special quiescent symbol, usually 0, is specified such that a one-way infinite
word (w-word) is a bi-infinite word with infinitely many consecutive quiescent
symbols on the left end, and a finite word is a bi-infinite word with a finite
consecutive nonquiescent subword.

In an ww-FA, a left (right) state that is not in a cycle can be changed
into a nonleft (nonright) state without affecting the set of bi-infinite words
recognized by the ww-FA. A state that cannot be reached from any left state
or from which no right state can be reached is useless; it does not contribute
to the recognition of any bi-infinite word. We say that an ww-FA is reduced
if it satisfies the following conditions.

e Every left state is in a cycle.

e Every right state is in a cycle.

e Every state can be reached from some left state.
e From every state some right state can be reached.

Obviously, for any given ww-FA we can construct a reduced one that recog-
nizes the same set of bi-infinite words.

An ww-sequential machine (ww-SM) is a 5-tuple M = (K, S,v, K, Kg),
where

e K is the set of states,
e S is the input-output alphabet,
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e v C K x § xS x K is the transition relation,
e K1 C K is the set of left states, and
e Kp C K is the set of right states.

An ww-SM M can be represented by a labeled directed graph with nodes
K; an edge from node ¢ to node p labeled a,b for each transition (q,a,b,p)
in v; the nodes in Ky, indicated by L; and the nodes in Ky indicated by R.

Machine M computes a relation p(M), called an ww-SM relation, between
bi-infinite sequences of configurations SZ. Configurations = and y are in
relation p(M) if and only if there is a bi-infinite sequence g of states of M
such that, for every ¢ € Z, there is a transition from ¢;_; to ¢; labeled by
z;,y; and there exist m,n € Z such that m <i <mn, ¢, € K and ¢, € Kg.

We give the closure and decidability results for an ww-regular set, which
will be useful later. The following theorems immediately follow from |9,
Corollary 2.6] and its proof.

Theorem 2. The family of ww-regular sets is effectively closed under boolean
operations.

By modifying the proof for the closure of ww-regular sets under intersection,
we get the following.

Theorem 3. If p is an ww-SM relation and R is an ww-regular set, then the
restriction py = {(u,v) |u € R, (u,v) € p} of p to R is effectively an ww-SM
relation.

Since our ww-SM is a special case of the ww-transducer of [9], we have
the following special case of Theorem 2.2 of [9].

Theorem 4. The family of ww-regular sets is effectively closed under ww-SM
relations.

Theorem 5. Given ww-FA A, B it is decidable whether

(a) L(A) =10
(b) L(4) =57
(c) L(A) = L(B

)
(d) L(4) € L(B)

Proof. Assume A is reduced. Clearly, L(A) # 0 if and only if there is a path
from a state in K7, to a state in Kg, which is easy to test; (b), (c¢), and (d)
follow from (a) and Theorem 2. m

A relation R C S% x SZ is called shift-invariant if (c,d) € R if and only
if (6(c),0(d)) € R; R is called strongly shift-invariant if (¢,d) € R if and
only if (¢%(c),07(d)) € R for all 4,5 € Z. Clearly, every ww-SM defines a



256 Karel Culik IT

shift-invariant relation on SZ. Note, however, that a relation on bi-infinite
words over S corresponds to a strongly shift-invariant relation on S%. Hence,
two ww-SM might be equivalent on bi-infinite words, that is, on S““, without
being equivalent on S%.

The proof of Lemma 2.4 of [9] is constructive. Thus we have the following
representation lemma for ww-regular sets.

Lemma 1. A set of bi-infinite words is ww-regular if and only if it can be
presented by DRF, U DEF, U ---U DEF,,, where Dy, ..., D,, Fy, ..., F, are w-
regular sets and DT denotes the reversal of D. Given an ww-FA A, such a
canonical expression for L(A) can be constructed.

3. Global cellular automata

Now we are ready to introduce our main definition.

Definition 1. A global cellular automaton (GCA) is an ww-SM M = (K, S,
’)’,KL,KR) that is

(a) complete, that is, dom(p(M)) = S#; and
(b) single-valued, that is, p(M) is a function.

Note that for every ww-SM M, p(M) is shift-invariant.

The (global) function defined by GCA M is denoted Gjps. That is, Gy :
S% — 5% Gy(c) = d if and only if (c,d) € p(M). It follows from Theorem 1
that any GCA function that is not a global CA function cannot be continuous.

Now we show that the definition of GCA is effective; that is, given an
ww-SM, we can test whether M is a GCA.

Lemma 2. Given anww-SM M = (K, S,v, K1, Kg), it is decidable whether
M is complete, that is, whether the domain of M is S%.

Proof. The domain of every ww-SM is clearly a shift-invariant subset of SZ,
corresponding to an ww-regular set R. By omitting the outputs of M, we
can easily construct an ww-FA A such that L(A) = R. By Theorem 5 we
can test whether L(A) = S%. m

Using the terminology of L-system theory, we call coding on S* a letter-
to-letter morphism on S*; that is, ¢ : S* — S* such that ¢(a) € S for each
acs.

We recall that ¢ denotes the bi-infinite word over alphabet S corre-
sponding to ¢ € SZ (and to all its shifts). In [9] it has been stated that the
Nivat theorem for finite transducers [3] can be restated for ww-finite trans-
ducers. For ww-SM, we have the following simple Nivat-like representation.

Theorem 6. Let 1 C S““ x S“. There exists an ww-SM M such that
R(M) = = if and only if there effectively exists an ww-regular set R and
codings g, h : S** — S*“ such that m = {(g(w), h(w)) | w € R}.
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As an auxiliary tool we will use a one-way w-SM. An w-SM M has initial
states rather than left states. The definition of the relation p(M) on S¥ is an
obvious modification of the definition of the relation defined by an ww-SM.

Lemma 3. Given a (one-way) w-SM M, it is decidable whether M is single-
valued (on S%).

Proof. The family of w-SM relations is clearly closed under composition and
inversion. Hence, we can construct an w-SM N such that p(N) = (p(M))™*o
p(M). Clearly, p(N) is a restriction of identity if and only if M is single-
valued. By Lemma 1 there effectively exist an w-FA A and codings g, h such
that p(IV) = {(g(w),h(w)) | w € L(A)}. Clearly, p(N) is a restriction of
identity if and only if g(w) = h(w) for all w € L(A). The latter condition is
easy to test. m

Let M be an ww-SM. Clearly, the single-valuedness of R(M) is a necessary
condition for the single-valuedness of p(M). However, it is not sufficient;
consider, for example, M that defines the union of the identity and shift ¢
on SZ. We will use the w-regular sets (sets of one-way infinite strings) to
test the single-valuedness of ww-SM.

Lemma 4. Given an ww-SM M, it is decidable whether p(M) is single-
valued.

Proof. We will construct a (one-way) w-SM M so that M is single-valued on
(S xS) if and only if M is single-valued on S*“. Let M = (K, S,~, K1, Kg).
We first construct w-SM M’ = (K x K,Sx S,+,I,F), where I = {(q,q)|q €
K7} is the initial set of states, F' = Kpg x K is the set of final (right)
states, and ((p,q), (a,b), (d',¥), (9, ¢")) € + if and only if (p,a,d’,p’) € v
and (¢',b,b,q) € . Clearly, M’ simulates a computation of M on an w-word
with “two tracks” obtained by folding a bi-infinite word over S. However,
M’ tests only the condition for the right states (Kg). In order to test the
condition for the left states (K1), we restrict the relation p(M’) to the w-
regular set R defined by w-FA A = (K x K,S X S,v4,I,Fa4), where I is
as above, right states are defined by Fy = K x K, and the transition re-
lation 4 is as follows: ((p,q),(a,b),(p',¢")) € ~va if and only if for some
a,t €S (pad,p) € vand (¢,bV,q) € v. Similarly, as for bi-infinite
words (Theorem 3), w-SM relations are clearly closed under w-regular sets,
so there effectively exists an w-SM M with the properties described above.
By Lemma 1 we can test whether M is single-valued. m

Corollary 1. Given an ww-SM M, it is decidable whether M is a GCA.

Proof. By Lemmas 2 and 4. &

Example 2. ww-SM M, shown in Figure 2, is not single-valued; starting
from any position & € Z we can map either every odd 1 to 0 and every even
1 to 1 or vice versa, so M; is two-valued.
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Figure 2: An ww-SM M.

Lemma 5. Every one-dimensional CA (with arbitrary neighborhood r) can
be implemented by a complete, single-valued (simple) ww-SM.

Proof. CA A = (s,r, f) can be simulated by ww-SM M with 2r+1 states. For
simplicity we show the construction for r = 1. We construct M = (S x S x
S,8,7,8,8), where (p,q,7),q, f(p,¢,7),(q,7,5)) € v for each p,q,r,s € S.
M is nondeterministic but clearly single-valued, and complete. It is easy to
verify that Gu(c) = Gy(c) for all c € S2.

Note that M is a simple ww-SM according to the terminology introduced
in section 2. m

Theorem 7. The family of the global functions of one-dimensional CA is
properly included in the family of the functions defined by GCA.

Proof. The inclusion follows by Lemma 5. Consider the ww-SM M, shown in
Figure 3. It maps the string 1“* to 0““; otherwise it is an identity. Clearly,
it is complete and single-valued and thus is a GCA. Clearly, G}y, is not the
global function of any CA. ®m

Definition 2. Let M; = (K*, S, Kt, K&, '), i = 1,2 be ww-SM. The union
of My and M, is denoted by M; + M,. Assuming K' N K? = (), we define
M+ M, = (K'UK? S, K} UK}, KL UK?% vt U~?). Clearly, p(M; + M,) =
p(My) U p(My).

Lemma 6. Let My, M,,..., M, be single-valued ww-SM such that U}
dom(M;) = 5%, and dom(M;) Ndom(M;) = @, for i # j; that is, the domains
of My, ..., M, give a partition of S?. Then the ww-SM = My +My+...+ M,
is a GCA.

0,
1,0 1,

() 0

® G0

Figure 3: An ww-SM Ms.

0 0,0
1
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Proof. The first property of the partition ensures that the union machine is
complete, and the second one that it is single-valued. m

Example 3. ww-SM Mj; shown in Figure 4 has the domain “0(0+1)*.(0+
1)¥. Using the binary representation of rational numbers with the decimal
point dividing the integer and the fractional part and with an infinite number
of leading zeros, M3 multiplies (syntactically correct) input by 3 and produces
the output in the same notation (in p(M;) the decimal point remains in the
same position). We use e to show the decimal point in the diagrams.

ww-SM M, shown in Figure 4 accepts any input with exactly one decimal
point and infinite number of 1s to the left of the decimal point. It always
produces “1.0“ as a representation of co.

ww-SM My shown in Figure 4 accepts any input with less or more than
one decimal point and produces “.“ (an error message).

Clearly, M3 + M4+ Msy is a GCA.

Corollary 2. Let Ry,...,R, C S“ be pairwise disjoint ww-regular sets,
and let My, ..., M,41 be single-valued ww-SM such that R; C dom*“(M;)
fori=1,...,n and Rpy1 = Ry U---UR, C dom™ (M,41). Let M, be the
restriction of M; to R; fori=1,...,n+ 1. Then Ml + Mz +...+ Mn+1 is a
GCA.

Proof. By Theorem 2, R, is an ww-regular set. Hence, the result follows
by Lemma 6. m

Since by Lemma 5 every CA can be implemented by a single-valued ww-
SM, we can always combine several CA working on different domains into
one GCA.

There are other ways to combine two or more CA into one GCA. Consider,
for example, two CA A; and A, over alphabet (states) {a,b}. Then we can
easily implement a GCA M over alphabet {0,1, a,b} that preserves 0 and 1,
simulates CA A; on every subconfiguration in {a, b}* between two Os (with
the neighborhood extended, e.g., cyclically), and simulates CA A, on the
other subconfigurations in {a, b}*, that is, between 0 and 1, 1 and 0, or 1
and 1.

4. Decision problems

We considered some decision problems about ww-SM in section 3. Now we
will study decision problems about GCA. Clearly, every problem that is un-
decidable for one-dimensional CA is also undecidable for GCA. So we will
consider only those problems that are decidable for CA.

The (one-step) equivalence problem for global CA functions is trivially
decidable; they are equivalent if and only if they are identical. This is not
the case for GCA; however, the problem is still decidable.

Theorem 8. The equivalence problem for GCA is decidable.
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Figure 4: GCA M3 + My + Ms.
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Proof. Given two GCA, that is, two complete and single-valued ww-SM M
and N, we want to test whether Gy/(c) = G (c) for all ¢ € SZ. Note that the
equivalence of M and N on S““ does not imply the equivalence of Gp; and
Gy on S%; for example, the identity and shift are equivalent on S““ but not
on SZ. To prevent shifting we will replace M and N by (one-way) w-SM M
and N , respectively, as in the proof of Lemma 4. Clearly, Gy = Gy on S Z if
and only if M = N on (S x S)¥. The equivalence problem of single-valued w-
transducer is shown to be decidable in [8]; M and N are (length-preserving)
w-transducers. B

Injectivity and surjectivity are well-known decidable problems for one-
dimensional CA (see [1, 4]); we will extend these results to GCA. Note that
because of the shift invariance, the injectivity of GCA M on SZ clearly
implies the injectivity of G on S““. The converse is less obvious but holds,
too. The case k > 1,¢ # o*(c),Gu(c) = Gp(o"(c)) = d seems to violate
the injectivity on SZ but not on S““. However, since Gy is shift-invariant,
we have (0%(c),0*(d)) € p(M), and the single-valuedness of M implies that
o*(d) = d. Thus, Gy on S“* maps a string that does not have a period of
length & to one that does and therefore cannot be injective.

For GCA neither injectivity implies surjectivity nor does surjectivity im-
ply injectivity. To show the former, consider G defined on the ww-words in
“01*0“ by the ww-SM My from Figure 5 and otherwise as identity. Clearly,
G is injective and not surjective: 0 is not in the range of G. To show
the latter, consider G defined on strings from “0170“ by the inverse (in-
terchanged inputs and outputs) M ! of ww-SM M; from Figure 5, and
again as identity elsewhere. Clearly, M ! is surjective but not injective since
G, (V010¥) = Gy, (¥0%) = 0¥

Following the terminology for one-dimensional CA (see e.g., [6]), we call
a GCA M reversible if an “inverse” GCA N exists such that Gy(c) = d if
and only if Gy(d) = c for all ¢,d € SZ.

The following theorems extend a well-known result for one-dimensional
CA, (see, e.g., [6, Theorem 33]).

Theorem 9. A GCA M is reversible if and only if Gy, is bijective.

Proof. Assume that Gy is bijective. Let M~! be obtained by interchanging
input and output symbols at every transition. Since Gy is bijective, M ! is

0,0 i 0,0

OO

Figure 5: An ww-SM My.
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single-valued and complete, so it is a GCA. Clearly, M_; defines the inverse
of GM
The converse is obvious. B

Theorem 10. Given a GCA M, it is decidable whether Gj; is injective
(on S%).

Proof. Clearly, a GCA M is injective if and only if its inverse M ! is single-
valued. The latter is decidable by Lemma 4. =

Theorem 11. Given a GCA M, it is decidable whether G is surjective
(on S%).

Proof. By Theorem 4 we can construct an ww-FA that accepts G(S%).
Clearly, Gy is surjective if and only if G (S?) = SZ, which is decidable by
Theorem 5. m

In the theory of CA, computation on (pseudo) finite configurations is
frequently considered. Now we will study GCA working on (pseudo) finite
configurations. Let us reserve 0 for the so-called quiescent symbol. A con-
figuration c in SZ is called pseudo-finite if there are m,n such that ¢ = 0 for
all # < m and all ¢ > n. The ww-regular set “05*0“ is the set of bi-infinite
words corresponding to (pseudo) finite configurations, We say that ww-SM
M= (K,S,K,Kg,v)isa0-GCAif0 € S, M is single-valued, G}y is defined
on all (pseudo) finite configurations (i.e., dom(p“*(M)) C “05*0%), and G
preserves (pseudo) finite configurations (i.e., G%¢(“05*0%) C “05*0%).

Lemma 7. It is decidable whether a given ww-SM is a 0-GCA.

Proof. The proof follows from Theorems 2 and 4 and Lemma 4. =
Using a simple modification of the proofs of Theorems 10 and 11, we have
the following.

Theorem 12. Given a 0-GCA M, it is decidable whether M is (a) injective
and (b) surjective on (pseudo) finite configurations.

5. Limit sets

We can now extend to GCAs a number of results about the limit sets. First we
review or introduce some notations. We present all results here in terms of bi-
infinite sets of words that correspond to shift-invariant sets of configurations.
Given a GCA M, we denote
Qo = S,
Q1 = G () for all £k > 0.

Clearly, Q41 C Q for all k& € 0. The limit set Qp of a GCA M is the
intersection of all forward images of S““, that is,

Q=) L.

k=1
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Clearly,
Q2202202 2Qy.

In terms of chaos theory, £, is the attractor of the dynamical system spec-
ified by G-

For C C S5““, we denote as L(C) the set of all finite substrings of bi-
infinite words in C, that is, L(C) = {w € S* |ufwv € C for some u,v € S“}.
The following well-known result for one-dimensional CA can be extended to
GCA.

Theorem 13. For any GCA M and every k > 0, Q;, is an ww-regular set
and L(Qy,) Is a regular set.

Proof. Since S““ is ww-regular, the first part immediately follows from
Theorem 4. Obviously, the substrings of any ww-regular set form a regu-
lar set. m

Unlike the case for one-dimensional CA, the set € need not be closed;
actually, we have the following.

Lemma 8. Every ww-regular set R that contains “a* for some a € S can
be obtained as y = G (S*?) for some GCA M.

Proof. It is easy to construct a GCA M such that G, is the identity on R
and Gy (w) = “a* for each w in the complement of R, which is ww-regular
by Theorem 2. =

On the other hand, we have the following result, as for CA.

Lemma 9. For each GCA M, for every Q,k > 1, and for Q) there exist
ax,b € S such that “af € Qy and “b* € Q.

Proof. Since Gy is single-valued and shift-invariant, the image of any periodic
bi-infinite word must be again periodic with the same period. So for each
a € S there is b € S such that Gy (¥a®) = “b, since “a® € S “b* € Qy,
and by induction there exists aj for each & > 1 such that “a% € Qg. Since
S is finite, there must be a cycle of length at most | S| all of whose elements
arein . ®

The limit language of GCA M is the set of all finite substrings of the
bi-infinite strings in the limit set £j. Another result (see [6, Theorem 24])
that clearly extends to GCAs is the following.

Theorem 14. For every GCA M the complement of the limit language,
S* — L(Qur), Is recursively enumerable.

The limit language itself might not be recursively enumerable (see [6,
Corollary 6]). However, unlike the case for one-dimensional CA, we have the
following.

Corollary 3. If for some GCA M, the limit set )y is ww-regular, then there
exists another GCA N such that Qy = Gn(S?); that is, it is produced in
one step by N.

Proof. By Lemma 9 there is b € S such that “b0* € Q). Hence, the claim
follows by Lemma 8. m
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6. Tilings and ww-sequential machines

It is well known that tilings of the infinite plane are closely related to the
computation of CA. Here, following [5, 7, 12], we give an exact characteri-
zation of Wang tilings of the infinite plane in terms of the computation of
ww-SAs. There is actually a one-to-one correspondence between the set of
Wang tiles and simple ww-SMs.

We say that ww-SM M = (K, S,~, K, Kg) is simple if and only if K, =
Kgr = K, that is, if all the states are left and right states. We can specify a
simple ww-SM as a triple M = (K, S, ) and indicate no L, R in its diagram.

Wang tiles are unit square tiles with colored edges. A tile whose left,
right, top, and bottom edges have colors p, g, 7, and s, respectively, is denoted
by the 4-tuple (p,q,r,s). A tile set is a finite set of Wang tiles. Tilings of the
infinite euclidean plane are considered using arbitrarily many copies of the
tiles in the given tile set. The tiles are placed on the integer lattice points of
the plane with their edges oriented horizontally and vertically. The tiles may
not be rotated. A tiling is valid if everywhere the contiguous edges have the
same color.

Let T be a finite tile set, and f : Z* — T a tiling. Tiling f is periodic
with period (a,b) € Z* — {(0,0)} if and only if f(z,y) = f(z + a,y + b) for
every (z,y) € Z*. If there exists a periodic valid tiling with tiles of 7', then
there exists a doubly periodic valid tiling, that is, a tiling f such that, for
some a,b > 0, f(z,y) = f(z + a,y) = f(z,y+b) for all (z,y) € Z>. A tile
set T is called aperiodic if and only if (1) a valid tiling exists, and (2) no
periodic valid tilings exist.

There is a one-to-one correspondence between the tile sets and sequential
machines. This translates the properties of tile sets to the properties of
computations of sequential machines. A finite tile set T" over a set of colors
Crw on east-west edges and a set of colors Cys on north-south edges is
represented by a sequential machine M = (Cgw, Cs, Y), where (s, a,b,t) € v
if and only if there is a tile (s,a,b,t) in T’ see Figure 6.

Obviously, bi-infinite words z and y are in the relation p(M) if and only
if there exists a row of tiles, with matching vertical edges, whose upper
edges form sequence x and lower edges sequence y. So there is a one-to-one
correspondence between valid tilings of the plane and bi-infinite iterations of
the sequential machine on bi-infinite sequences.

The two conditions for T' being aperiodic can be translated to conditions
on computations of M. Clearly, set T' is aperiodic if (1) there exists a bi-

b

" . . SuE b
Figure 6: The tile (s,a,b,t) corresponding to the transition s 25 ¢,
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0,2

0,0 0,0
Figure 7: ww-SM M;s.

infinite computation of M and (2) there is no bi-infinite word w over Cyg
such that (w,w) € [p(M) |, where pT denotes the transitive closure of p.

In [5] it is shown that the simple ww-SM M;3 depicted in Figure 7 corre-
sponds to an aperiodic set of tiles. This set consists of 13 tiles, corresponding
to the edges of M3, and it is the smallest aperiodic set known.

Note that if a simple ww-SM is a GCA, then for the reasons discussed in
section 5, the corresponding set of Wang tiles allows rather simple periodic
tilings.
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