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Abstract . Global cellular automata are intr oduced as a general­
ization of one-dimensional cellular automata allowing the next sta te
of a cell to depend on a "regular" global context rat her than just
a fixed-size neighbor hood. A number of well-known results for one­
dimensional cellular automata are extended to global cellular automata .

1. Introduction

Cellular automata (CA) are models of complex systems in which an infini t e
lat ti ce of cells is updated in par allel acco rding to a simp le local rule. A
dynamical system on the lat t ice of cells is a cont inuous and shift-invariant
function if and only if it can be spec ified by a CA.

We will generalize one-dimensional CA to provide for a "regular" global
conte xt , while st ill using simple t ransit ion rules spec ified by a simple finit e
transducer called an ww-sequential machine. Our global cellula r auto mata
(GCA) will ret ain most of the pr operties of CA and at the same time allow
us to define many noncontinuous transition funct ions. An import ant specia l
case is t he possibility of using two or more "classical" CA rules in one dy­
nam ical system , wit h one of them selecte d to be applied for the whole or
a part of t he current configurat ion acco rding to some "regular" condit ions .
Any "negat ive" result valid for one-d imensional CA- for example, any un­
decidabili ty result- is, of cours e, also valid for GCA. We will not cons ider
such problems. However , quite sur prisingly, most "posit ive" result s can be
exte nded to GC A. Thanks to some techn iqu es kn own for finit e t ra nsd ucers,
these extended result s are proved rather eas ily. T his is not so sur prising
when we note that in the simplified proof of the decidabi lity of the inj ectiv­
ity problem for one-dimens ional CA in [4], we actually have implicitl y used
GCA.

We assume t hat the read er is familiar wit h basic not ions of automata
and language theory; see , for example, [11]. In the sect ion 2 we review
the ot her necessar y pr erequisites and introduce ww-sequent ial machines (ww­
8M) . They are a spec ial case (lengt h-preserving) of ww-t ra nsducers from [9].
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On the ot her hand , the sequent ial machines of [5, 7] are a special case of
ww-SM , called simple ww-SM in sect ion 6.

In sect ion 3, we introduce GCA as a genera lization of one-dimensional
CA where the global CA funct ion is defined by a single-valued and complete
ww-SM. We show that t he definition is effective, and we can test whether
a given ww-SM has th e required properties. We also show th at GCA are
indeed a genera lization of CA; that is, everyone-dimensiona l CA rul e can be
implemented by a comp lete and single-valued ww-SM. We give examples of
GCA that cannot be implemented as CA and show some general techniques
for construct ing GCA- for example, by combining severa l one-dimensional
CA working on disjoint domains of configurat ions.

In sect ion 4 we st udy the well-known pro blems that are decidable for one­
dimensional CA , in par t icular, inject ivity and surjectivity. We extend these
results to GCA .

In sect ion 5 we st udy the limit sets and limit languages of GCA. Again,
we succeed in extending the best -known resul ts on one-dimensional CA to
GCA.

Finally, in section 6 we consider the simple ww-SM , called sequent ial
machines in [5, 7]. We briefly discuss t he one-to -one correspondence between
the simple ww-SM and sets of Wang t iles. We show the simple ww-SM from [5]
that corresponds to the smallest known aperiod ic set of 13 Wang ti les.

2. ww-fin it e automata and ww-seq uent ia l machines

First we recall the definit ion of the classical one-dimensional CA , with the
neighborhood of a cell consist ing of the cell itself and its r neighbors to each
side.

A CA is a tr iple A = (S, r ,1), where S is a finite set of sta tes, r specifies
th e size of th e neighb orhood , and f : S2"+1 -7 S is t he local function, also
called the CA rule.

A configuration c of the CA is a funct ion c : Z -7 Z t ha t assigns a state
S to each cell of the CA . The set of configura t ions is denoted SZ. T he local
function f is exte nded to the global function

GA : SZ -7 SZ

By definition, for c, d E SZ, GA(c) = d if and only if d(i) = f (c(i - r ),
c(i - r + 1), . .. , c(i + r )) for all i E Z .

The configurat ion space SZ is a produ ct of infinit ely many finite sets S.
When S is endowed wit h th e discrete topology, the product topology on SZ
is compact by Tychonoff 's th eorem [13, T heorem 5.13]. A subbasis of open
sets for the product to pology consists of all sets of the form

{c E SZ Ic(i) = a}, (1)

where i E Z and a E S. A subset of SZ is open if and only if it is a union of
finite intersections of sets of the form (1).
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The shift a : S Z -> S Z is defined by a( c) = c, where cl(i + 1) = c(i )
for each i E Z . [14] gives the following characteriza t ion of CA as dyn ami cal
systems .

Theorem 1. G: SZ -> S Z is the glo bal function of a CA if and only if i t is
shift-invariant and continuous.

T he set of bi-infinite words over S is denot ed by SWW . For c E S Z we
denot e by cWW t he corresponding bi-infinite word in SWW , similarly as for a
set C <;;;; S Z If d = an(c) , n :::: 1, then dWW= cWW. Hence any set R <;;;; sww of
bi-infinite words corresponds to a shift -invariant subset of S Z

Now we define our main tools, nam ely, the ww-finite automaton
(ww-FA) [9] and the ww-sequent ial machine (ww-SM). The lat ter is a spe­
cial case of the ww-transducer of [9] and a generalization of the sequential
machine of [5]. Inputs of an ww-FA are bi-infinite words over an alphabet S
that can be viewed as shift-invariant classes of configurations in Sz. A set
X <;;;; S Z is said to be shift-invariant if a(X) = X.

Finite automata that recognize sets of bi-infinite words were defined in
[15] and st udied in [2, 9, 10]. Here we use the definition from [9].

An ww-FA A is a quintuple (K, S, 15, K L , K R ) , where

• K is the finit e set of states ,

• S is the input alphabe t ,

• 15 : K x S U {E} -> 2K is the tran sition fun ction ,

• K L <;;;; K is the set of left (accepting) states , and

• K R <;;;; K is the set of right (accepting) states .

An ww-FA A can be represented by a diagram in the usual way, wit h the left
states indicated by L and t he right states by R ; see Figure 1.

A bi-infinite word v is said to be recog nized by A if there is a map ping
Z -> K , t hat is, a bi-infinite sequence of states

and a configurat ion c in v such that , for all j E Z ,

• l5 (qj , Cj ) = qj+l, and

• there exist m, n E Z , m ::; j ::; n , such that qm E K L and qn E K R ·

In other words , v is said to be recognized by A if there is a bi-infinite compu­
tation of A on a configur at ion c in v such that there is a left state appearing
arbit rarily early, a right st at e appearing arbit rarily late in the computation .
Such a computat ion will be called an accepting comp utation .
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F igure 1: An ww-FA A.
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The set of bi-infinite words recognized by A is denoted L (A ). We call
L (A ) an ww-regular set. Clearly, every ww-regular set over S corresponds to
a shift- invariant subset of SZ .

Let w E I;* . By W W we denote the one-way infinite word (w-word) ob­
tained by t he infinite repetition of w. By Ww we denote the reverse of (wR)W,
tha t is, the infinite repet it ion of w to the left . For example, the bi-infinite
word (ww-word) of infinit ely many as followed by infinitely many bs is written
as Wab" , For " aa" we also write WaWor aWW.

Example 1. Let A = (K, S , 0, K L , K R ) be an ww-FA , where K = {O, I},
S = {a,b}, K L = {O}, K R = {I} , and 0 is given in Figure 1. The set of
bi-infini te words recognized by A consists of t he simple bi-infini te word "a b",

The sets of finite (one-way), infinite, and bi-infini te words over S are
denoted by S*, SW, and SWW, respect ively. Finite or one-way infinite words
can be considered special cases of bi-infinite words in the following sense : A
special quiescent symbol, usually 0, is spec ified such that a one-way infinite
word (w-word) is a bi-infini te word with infinitely many consecut ive quiescent
symbols on the left end , and a finite word is a bi-infinite word with a finit e
consecut ive nonquiescent subword.

In an ww-FA, a left (right) state that is not in a cycle can be changed
into a nonleft (nonr ight) state without affecting t he set of bi-infinite words
recognized by the ww-FA . A state that cannot be reached from any left state
or from which no right state can be reached is useless; it does not cont ribute
to the recognit ion of any bi-infinite word. We say t hat an ww-FA is reduced
if it sa tisfies the following condit ions .

• Every left state is in a cycle.

• Every right state is in a cycle.

• Every state can be reached from some left st ate.

• From every state some right state can be reached.

Obviously, for any given ww-FA we can construct a redu ced one that recog­
nizes the same set of bi-infinite words.

An ww -sequential m achine (ww-SM) is a 5-tuple M = (K , S , ry, K L , K R ) ,

where

• K is the set of states,

• S is the inpu t-output alphabet,
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• "1 ~ K x S x S x K is the transit ion relation ,

• K L ~ K is the set of left states , and

• K R ~ K is the set of right states .

255

An ww-SM M can be represented by a lab eled dir ected graph with nod es
K ; an edge from node q to node p lab eled a, b for each transit ion (q,a, b,p)
in "1; the nod es in K L , indi cated by L ; an d the nodes in K R indicated by R.

Machine M computes a relation p(M) , called an ww-SM rela tion, between
bi-infinite sequences of configurat ions S Z Configurations x and y are in
relation p(M ) if an d only if there is a hi-infinite sequence q of states of M
such that, for every i E Z , there is a tran sit ion from qi- l to qi labeled by
Xi,Yi and there exist m , n E Z such that m ::; i ::; n , qm E K L and qn E K R .

We give the closure and decidabili ty res ults for an ww-regular set, which
will be useful lat er. The following theorems immediately follow from [9,
Corolla ry 2.6] and it s pro of.

Theorem 2. The family ofww-regular sets is effectively closed under boolean
op erations.

By modifying the proof for the closure of ww-regular sets under int ersection ,
we get the following.

Theorem 3. If p is an ww-SM relat ion and R is an ww-regular set , th en the
restriction PM = {(u,v) Iu E R, (u,v) E p} of p to R is effectively an ww-SM
relation.

Since our ww-SM is a special case of t he ww-transducer of [9], we have
the following spec ial case of T heorem 2.2 of [9] .

Theorem 4. The family of ww-regul ar sets is effectively closed under ww-SM
relations.

Theorem 5. Given ww-FA A , B it is decidable whether

(a) L(A ) = f/J

(b) L (A ) = S Z

(c) L(A) = L(B)

(d) L( A) ~ L(B)

Proof. Assume A is reduced . Clearly, L(A) =I- f/J if and only if there is a path
from a state in K L to a state in K R , which is easy to tes t ; (b) , (c) , and (d)
follow from (a) and Theorem 2. •

A relation R ~ S Z x S Z is called shift-invariant if (c, d) E R if and only
if (O"( c) , O"(d)) E R ; R is called st rongly shift -invariant if (c, d) E R if and
only if (O"i( c) ,O"j (d)) E R for all i ,j E Z . Clearly, every ww-SM defines a
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shift-invariant relation on SZ. Note, however , that a relati on on bi-infin ite
words over S corresponds to a st rongly shift-invariant relati on on SZ Hence,
two ww-SM might be equivalent on bi-infinite words , that is, on SWW, wit hout
being equivalent on S Z.

T he proof of Lemma 2.4 of [9J is constructive. T hus we have the following
representation lemma for ww-regular sets .

Lemma 1. A set of bi-in fini te words is ww-regular if and only if i t can be
presented by Df Fl u D: F2 u .. . U D;;Fn , where D l , . .. , Dn , Fl , ... , Fn are w­
regular sets and D R denotes the reversal of D . Given an ww-FA A , such a
canonical expression for L(A) can be constructe d.

3. Global ce llular automata

Now we are ready to introdu ce our main definit ion .

Definition 1. A global cellular automaton (GCA) is an ww-SM M = (K, S ,
I, K L , K R ) t hat is

(a) complete, t hat is, dom(p(M) ) = S z ; and

(b) single-valued , that is, p(M ) is a fun ction.

Note that for every ww-SM M, p(M ) is shift-invariant.
T he (global) function defined by GCA M is denoted GM . T hat is, GM :

SZ ----7 SZ , GM(c) = d if an d only if (c, d) E p(M) . It follows from Theorem 1
that any GCA fun ct ion that is not a global CA funct ion cannot be cont inuous .

Now we show that the definition of GCA is effect ive; that is, given an
ww-SM, we can t est whether M is a GCA.

Lemma 2. Given an ww-SM M = (K, S , I , K L , K R ) , i t is decidable whether
M is complete, tha t is, whether the dom ain of M is SZ .

Proof. The domain of every ww-SM is clearly a shift-invariant subset of SZ,
correspo nding to an ww-regular set R. By omit t ing the outputs of M , we
can easily construct an ww-FA A such t hat L (A) = R. By Theorem 5 we
can test whether L(A) = S z . •

Using the te rminology of L-system theory, we call coding on S* a let ter­
to-letter morphi sm on S*; that is, c : S* ----7 S* such that c(a) E S for each
a E S.

We recall that C
WW denotes the bi-infinite word over alphabet S corre­

sponding to c E SZ (and to all it s shifts). In [9] it has been st ated that t he
Nivat theorem for finite t ransducers [3] can be restated for ww-finit e t rans­
ducers. For ww-SM, we have the following simple Nivat- like representati on .

Theorem 6. Let 1r ~ sww X S':", T here exists an ww-SM M such that
R (M ) = 1r if and only if there effect ively exists an ww-regular set R and
codings g, h : sww ----7 sww such that 1r = { (g(w ), h(w )) Iw E R} .
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As an aux ilia ry to ol we will use a one-way w-SM. An w-SM M has initi al
stat es rather than left states . The definition of the relation p(M) on S '" is an
obvious modification of the definition of t he relation defined by an ww-SM.

Lemma 3. Given a (one-way) w-SM M , it is decidable wh ether M is single­
valu ed (on SW).

Proof. The fam ily of w-SM relations is clearly closed under compos it ion and
inversion . Hence, we can const ruct an w-SM N such that p(N) = (p(M)) -1 0

p(M) . Clearly, p(N) is a restriction of identi ty if and only if M is single­
valued. By Lemma 1 there effect ively exist an w-FA A and codings g, h such
that p(N) = {(g(w) ,h(w)) I w E L(A)}. Clearly, p(N) is a restriction of
identity if and only if g(w) = h(w) for all w E L(A) . T he lat ter condit ion is
easy to tes t. _

Let M be an ww-SM. Clearly, the single-valuedness of R (M ) is a necessar y
condit ion for t he single-valuedness of p(M) . However , it is not sufficient;
consider , for example, M that defines the un ion of the identi ty and shift (J

on SZ. We will use the w-regular sets (set s of one-way infinite st rings ) to
test the single-valuedness of ww-SM .

Lemma 4. Given an ww-SM M , it is decidable wh ether p(M) is single­
valu ed.

Proof. We will const ruct a (one-way) w-SM M so that M is single-valued on
(S x S) Wif and only if M is single-valued on S?" , Let M = (K, S , I , K L, K R).
We first construct w-SM M' = (K x K ,S x S , I " I , F ), where I = {(q,q) Iq E
K } is the init ial set of states , F = K R X K is the set of fina l (right)
states, and ((p,q), (a, b) , (c' , b'), (pi, q')) E " if and only if (p, a,a', p' ) E I
and (q', b, b', q) E f. Clearly, M ' simulates a computat ion of M on an w-word
wit h "two t racks" obtained by folding a bi-infinit e word over S . However ,
M ' t est s only the condit ion for the right states (KR ) . In order to test t he
condit ion for t he left states (KL ) , we restrict the relat ion p(M') to the w­
regular set R defined by w-FA A = (K x K , S x S , lA, I , FA), where I is
as above, right states are defined by FA = K X K L, and the t ransit ion re­
lati on I A is as follows: ((p,q), (a, b) , (pi , q' )) E I A if and only if for some
ai, b' E S (p,a,a',p') E I and (q', b, b', q) E I ' Similarly, as for bi-infin it e
words (T heorem 3) , w-SM relat ions are clearly closed under w-reg ular sets ,
so there effect ively exists an w-SM M wit h the properties described above.
By Lemma 1 we can t est whet her M is single-valued . _

Corollary 1. Given an ww-SM M , i t is decidable wh ether M is a GCA.

Proof. By Lemmas 2 and 4. _

Example 2. ww-SM M 1 , shown in Figur e 2, is not single-valued; start ing
from any posit ion k E Z we can map either every odd 1 to 0 and every even
1 to 1 or vice versa , so M 1 is two-valued.
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Figure 2: An ww-SM M 1 .
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Lemma 5. Every one-dimensional CA (with arbitrary neighb orhood 1') can
be implemented by a complete , single-valued (simple) ww-SM .

Proof. CA A = (s , 1', J) can be simulate d by ww-SM M with 21' + 1 states. For
simplicity we show t he const ruc tion for r = 1. We const ruct M = (S x S x
S ,S, -y,S,S) , where (p,q,r) ,q,.f(p,q,r) , (q,r,s )) E -y for each p,q,r, s E S .
M is nondeterminist ic but clearly single-valued, and complete. It is easy to
verify that GM(c) = Gf (c) for all c E SZ

Not e that M is a simple ww-SM according to t he terminology introduced
in sect ion 2. •

Theorem 7. The family of the global functions of one-dim ensional CA is
prop erly included in the family of th e functions defined by GCA.

Proof. The inclusion follows by Lemma 5. Consider the ww-SM Mz shown in
Figure 3. It maps the st ring 1WW to OWw; otherwise it is an ident ity. Clearly,
it is complete and sing le-valued an d thus is a GCA. Clearl y, GM 2 is not the
global fun ction of any CA. •

D efi nition 2. Let Mi = (K i
, S , Kl, K k , -yi), i = 1,2 be ww-SM. The union

of M1 and Mz is denoted by M1 + Mz. Assuming K 1 n K Z = 0, we define
M 1 + Mz = (K1U KZ, S , Klu KI ,K hu Kk,-y1 u-yZ). Clearly, p(M1+ Mz) =
p(M1 ) U p(Mz).

Lem m a 6. Let M1 , Mz, · .. , Mn be single-valued ww-SM such tha t U~l

dom(Mi ) = S Z, and dom(Mi ) ndom(Mj ) = 0, for i =I- j ; that is, the domains
of M1 , ... , Mn give a partit ion of S Z. Th en the ww-SM = M1 + Mz+ . . .+ Mn

is a GCA.

1,0

n
\ !

~
Figure 3: An ww-SM u;

0,0 0,0
1,1 1,1n n
~
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Proof. T he first property of the partition ensures that the uni on machine is
complete, and the second one that it is single-valued. _

Example 3. ww-SM M3 shown in Figure 4 has the domain WO(O+I)*.(O+
1)w. Using the binary represe ntat ion of rational numbers with the decimal
point dividing the integer and the fra ctional part and with an infinite number
oflead ing zeros, M3 mu ltiplies (syntacti cally correct ) input by 3 and produces
the output in the same notation (in p(MI ) the decimal point remains in the
same position) . We use . to show the decim al point in the diagrams.

ww-SM M4 shown in Figure 4 acce pts any input with exac t ly one decim al
point and infinite number of Is to the left of the decim al point . It always
pr oduces W1.0Was a representation of 00.

ww-SM M« shown in Figure 4 accepts any input with less or more than
one decimal point and pr odu ces W.W (an error message) .

Clearly, M 3 + M 4 + M« is a GCA .

Corollary 2. Let R I , . . . , R n <;;;; SWw be p airwise disjoint ww-reg ular se ts,
an d let M I , . .. , M n +1 be single-valued ww-SM su ch th at R; <;;;; domWW(Mi )

for i = 1, . .. , n an d Rn+1 = RI u· · · u Rn <;;;; domWW(M
n +1 )' Let Mi be th e

restriction of M, to R; for i = 1, ... , n + 1. Then MI + M2 + ... + Mn+I is a
GCA.

Proof. By Theorem 2, Rn+1 is an ww-regular set. Hence, the result follows
by Lemma 6. _

Since by Lemma 5 every CA can be implemented by a single-valued ww­
SM , we can always combine several CA working on different domains into
one GC A.

There are other ways to combine two or more CA into one GCA. Consider ,
for example, two CA Al and A2 over alphabet (states) {a,b}. Then we can
eas ily implement a GCA M over alphabe t {O, 1, a,b} that pr eserves 0 and 1,
simulates CA Al on every subconfiguration in {a,b}* between two Os (with
the neighb orhood exte nded, e.g ., cyclica lly) , and simulate s CA A2 on the
other sub configurations in {a,b}*, that is, b etween 0 and 1, 1 and 0, or 1
and 1.

4. Decision problems

We considered some decision problems abo ut ww-SM in section 3. Now we
will st udy decision problems abo ut GCA. Clea rly, every problem that is un ­
decidable for one-dimensional CA is also undecid ab le for GCA. So we will
consider only those problems that are decidab le for CA.

T he (one-st ep) equivalence problem for global CA fun ctions is t rivially
decidable; they are equivalent if and only if t hey are identical. T his is not
the case for GCA ; however , the problem is st ill decidab le.

Theorem 8 . The equivalence problem for GCA is decidable.
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Proof. Given two GCA , th at is, two complete and single-valued ww-SM M
and N, we want to te st whether GM(c) = GN(c) for all c E S Z Note th at the
equivalence of M and N on s ww does not imply the equivalence of GM and
GN on S z ; for example, the identi ty and shift ar e equivalent on SWWbut not
on S Z To prevent shift ing we will replace M and N by (one-way) w-SM iiI
and ii, respectively, as in the proof of Lemma 4. Clearly, GM == GN on SZ if
and only if iiI == iI on (S x S )w. The equivalence problem of single-valued w­

t ra nsducer is shown to be decidab le in [8]; iiI and iI are (length-preserving)
w-t ra nsducers. _

Injectivity an d surjectiv ity are well-known decidable problems for one­
dimensional CA (see [1, 4]); we will extend these results to GCA . Not e that
because of the shift invariance, the injectivity of GCA M on SZ clearly
implies the inject ivity of GM on SWW. The converse is less obvious but holds,
too . The case k :2: 1, c i- o-k(C), GM(c) = GM(o-k(c)) = d seems to violate
th e injectivity on SZ but not on S':", However, since GM is shift- invariant ,
we have (o-k(c) , o-k(d)) E p(M ), and t he single-valuedness of M implies that
o-k(d) = d. Thus, GM on SWW maps a st ring that does not have a period of
length k to one that does and therefore cannot be injective.

For GCA neither inject ivity implies surjectivity nor does surject ivity im­
ply injectivity. To show th e former , consider G defined on the ww-words in
wQ1 *Ow by the ww-SM M f from Figur e 5 and ot herwise as identi ty. Clearly,
G is injective and not surjective: OWW is not in the range of G. To show
th e latt er , consider G defined on st rings from WQ1 -o- by the inverse (in­
terchanged inputs and out puts) Mi l of ww-SM Mf from Figure 5, and
aga in as identity elsewhere . Clearly, Mt is surjective but not inject ive since
G;}f (W OlOw) = G~ (w Ow) = -o- .

Following the terminology for one-dimensional CA (see e.g., [6]), we call
a GCA M reversible if an "inverse" GCA N exists such that GM(c) = d if
and only if GN(d) = c for all c, dE S Z

The following theorems extend a well-known result for one-dimensional
CA , (see, e.g., [6, Theorem 33]).

T heorem 9 . A GCA M is reversible if and only if GM is bijective.

Proof. Assum e that GM is bijective. Let M': ' be obtained by int erchanging
input and output symbols at every transit ion . Since GM is biject ive, M - l is

~
\ !

Fi gure 5: An ww-SM Mf .

1,1

n
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single-valued and complete, so it is a GCA. Clearly, M_1 defines the inverse
ofGM .

The converse is obvious. •

Theorem 10 . Given a GCA M, it is decidable whether GM is injective
(on S Z).

Proof. Clearly, a GCA M is inject ive if and only if it s inverse M- 1 is single­
valued. T he latt er is decidab le by Lemma 4. •

Theorem 11. Given a GCA M , it is decidable whether GM is surjective
(on S Z).

Proof. By Theorem 4 we can const ruct an ww-FA that accepts GM(S Z).
Clearly, GM is surject ive if and only if GM(S Z) = S Z, which is decidab le by
Theorem 5. •

In the theory of CA , computat ion on (pseudo) finite configur at ions is
frequently considered . Now we will st udy GCA working on (pseudo) finite
configurations. Let us reserve 0 for t he so-ca lled quiescent symbo l. A con­
figurati on c in SZ is called pseudo-fini te if there are m , n such that c = 0 for
all i :::; m an d all i ?: n . The ww-reg ular set wOS*Ow is the set of bi-infin ite
words corresponding to (pseudo) finit e configurat ions , We say that ww-SM
M = (K , S , K L , K R , 'Y) is a O-GCA if 0 E S , M is single-valued , GM is defined
on all (pseudo ) finite configurat ions (i.e., dom (pWW(M )) ~ wOS*OW) , and GM
preserves (pseudo) finite configurat ions (i.e., G'M(wOS*OW) ~ wOS*OW ).

Lem ma 7. It is decidable whether a given ww-SM is a O-GCA.

Proof. The proof follows from T heorems 2 and 4 and Lemma 4. •
Using a simple modificati on of the proofs of Theorems 10 and 11, we have

the following.

Theorem 12 . Given a O-GCA M , it is decidable whether M is (a) injecti ve
and (b) surj ecnve on (pseudo) finit e config urations.

5. Limit sets

We can now extend to GCAs a number of result s about the limit sets. First we
rev iew or int roduce som e notations . We pr esent all result s here in term s of bi­
infini te sets of words that corre spond to shift-invariant set s of configurat ions .
Given a GCA M , we denote

[20 = SWW,

[2k+ l = GM([2k) for all k ?: o.
Clearly, [2k+l ~ [2k for all k E O. The limi t set [2M of a GCA M is the
intersection of all forward images of SWW , that is,

co
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Clearly,

Slo :2 Sll :2 ... :2 SlK :2 . . . :2 SlM·

In terms of chaos theory, SlM is t he at t ractor of the dynamica l system spe c­
ified by GM .

For C ~ S WW, we denot e as L(C ) t he set of all finit e substrings of bi­
infinit e word s in C , t hat is, L(C ) = {w E S * IuRwv E C for some u ,v E S W} .
T he following well-known result for one-dimensional CA can b e exte nded t o
GCA .

Theorem 13. For any G CA M an d every k 2: 0, Slk is an ww-regular se t
an d L (Slk) is a regular se t .

Proo f. Since S WW is ww-regula r, t he first par t immediately follows from
T heorem 4. Obviously, t he subst rings of any ww-regular set form a regu­
lar set .•

Un like the case for one-dimensional CA , t he set Dk need not be closed ;
actually, we have the following.

Lem m a 8. Every ww-regu lar set R th at con tains WaW for some a E S can
be ob tain ed as D1 = G M(SWW) for some GCA M .

Proof. It is easy to const ruct a GC A M such that GM is t he identity on R
and GM(W) = WaW for each W in the complement of R, which is ww-reg ula r
by T heorem 2. •

On the other hand , we have t he following result , as for CA.

Lemm a 9. For each GCA M , for every Slk' k 2: 1, an d for SlM th ere ex ist
ak, b E S such th at wa'k E Slk an d wbw E SlM.

Proof. Since GM is single-va lued and shift-invariant , the image of any periodic
bi-infinit e word must be again pe riodic wit h the same p eriod. So for each
a E S t here is b E S such that GM (WaW ) = " Ir' , since WaW E s ww " lr' E Slb
and by induction there exists ak for each k 2: 1 such that waF: E SlK. Since
S is fini t e, t here must be a cycle of length at most IS I all of whose elements
are in SlM. •

The limit language of GCA M is t he set of all finit e substrings of the
bi-infini te st rings in the limit set SlM. An ot her result (see [6, T heorem 24])
that clearl y extends to GC As is the following.

T h eorem 14 . For every GCA M th e com plemen t of th e limit language,
S * - L(SlM), is recursively en umera ble .

T he limi t lan guage it self might not be recursively enumerable (see [6,
Corollary 6]) . However , unlike t he case for one-dimensional CA, we have the
following.

C or oll ar y 3. I f for some GCA M , th e limit set DM is ww-regular, then th ere
ex is ts another G CA N such that DM = GN (S Z); th at is, i t is prod uced in
on e step by N.

Proof. By Lemma 9 t here is b E S such that wbw E SlM. Hence, t he claim
follows by Lemma 8. •
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6. T ilings and ww-seq uent ia l mach ines

It is well known that til ings of the infinite plane ar e closely related to the
computat ion of CA. Here, following [5, 7, 12], we give an exact characteri­
zat ion of Wang tilings of th e infinite plane in terms of t he computat ion of
ww-SAs. There is act ually a one-to-one correspondence between the set of
Wang t iles and simple ww-SMs.

We say that ww-SM M = (K , 5, I , K L , K R) is simple if and only if K L =
K R = K , that is, if all the states are left and right states. We can specify a
simple ww-SM as a triple M = (K, 5, , ) and indi cat e no L , R in its diagram .

Wang tiles are uni t square t iles with colored edges. A tile whose left ,
right , top , and bottom edges have colors p , q, r , and s , respect ively, is denoted
by t he 4-t uple (p, q,r, s) . A tile set is a finite set of Wang tiles. Tilings of the
infinite euclidean plane are considered using arb itrar ily many copies of th e
tiles in the given tile set . The t iles are placed on the integer lat t ice points of
th e plane with their edges orient ed hor izont ally and vertically. The tiles may
not be rotat ed . A t iling is valid if everywhere the cont iguous edges have the
same color.

Let T be a finit e tile set , and f : 71. 2
-7 T a t iling. Tiling f is periodic

with period (a,b) E 71.2
- {(a ,a)} if and only if f (x , y ) = f( x + a, y + b) for

every (x,y) E 71.2
. If there exists a periodic valid til ing with t iles of T , then

th ere exists a doubly periodic valid t iling, t hat is, a t iling f such tha t , for
some a, b > 0, f (x , y) = f (x + a, y) = f (x , y + b) for all (x , y ) E 71.2 A t ile
set T is called aperiodic if and only if (1) a valid ti ling exists , and (2) no
periodic valid tilings exist .

There is a one-to -one corresponde nce between the ti le sets and sequential
machines. This t ranslates the properties of t ile sets to the properties of
computations of sequent ial machines. A finite t ile set T over a set of colors
CEW on east-west edges and a set of colors CNS on north- south edges is
repr esented by a sequent ial machine M = (CEW , CNS , I ), where (s, a,b,t ) E I
if and only if t here is a tile (s ,a,b, t ) in T ; see Figure 6.

Obviously, bi-infini te words x and y are in the relation p(M ) if and only
if there exists a row of ti les, with matching vertical edges, whose upp er
edges form sequence x and lower edges sequence y. So there is a one-to-one
corres pondence between valid tilings of th e plane and bi-infinite iterations of
the sequential machine on bi-infinite sequences .

The two condit ions for T being aperiodic can be translated to cond itions
on computations of M . Clearly, set T is aperiodic if (1) there exists a bi-

Figure 6: The tile (8, a , b, t) corresponding to the transition 8~ t.
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F igur e 7: ww-SM M 13 .

0 ' ,0

infinit e comp utat ion of M and (2) there is no bi-infinite word w over CNS

such tha t (w,w) E [p(M ) ]+, where p+ denotes t he t ransitive closure of p.
In [5] it is shown that the simple ww-SM M 13 depicted in Figure 7 corre­

sponds to an aperiodic set of t iles. This set consists of 13 ti les, corres ponding
to the edges of M 13 , and it is th e smallest ape riodic set known.

Note that if a simple ww-SM is a GCA, t hen for the reasons discussed in
sect ion 5, the corres ponding set of Wang t iles allows rather simple period ic
til ings.
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