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Abstract. A genetic algorithm (GA) is a stochastic search and op-
timization algorithm that works by iterative application of several
evolutionary operators on populations of solutions. We introduce a
central limit theorem for the population process when population size
grows. The theorem approximates a GA by a continuous gaussian
process. This leads to a numerical method for the examination of the
algorithm. In some simple examples we present applications of the
method.

1. Introduction

A genetic algorithm (GA) adapts principles of natural evolution to combi-
natorial optimization problems. The concept was introduced in 1975 in [10].
Since that time GAs have been applied to a lot of problems [5, 8. A GA
works by iterative application of operations such as selection, crossover, and
mutation. The aim is to propagate a population of possible solutions such
that an optimal, or at least a very good, solution can grow in an evolutionary
process.

In the first step the members of the population, called individuals, are
reproduced, contributing to the next generation according to their fitness.
For maximization tasks the fitness may be the optimization function value.
For minimization tasks the fitness is calculated by transformations of the
optimization function. Crossover, which is viewed as the most essential fac-
tor of GAs, combines individuals by exchanging parts of them. Finally, the
mutation mechanism changes random parts of the individuals with small
probability. The most inherent feature of GA optimization lies in its at-
tempt to explore the search space in a global fashion by studying the entire
population.

Although the algorithm is quite successful in applications, the mathe-
matical theory of the operators selection, mutation, and crossover still seems
incomplete. In the past, no sufficient theoretical answers have been found
for questions such as the following.
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e How should parameters be chosen?
e How do the parameters interconnect?
e What crossover should be used?

e How does the population look after finite many steps?

We introduce an approximation method from the theory of quantitative
population genetics of biomathematics. In section 2 we present notations and
a mathematical model that is used for the description of the algorithm. This
model is often approximated by models with infinite population size [18, 28].

In [9] and [12], a diffusion approximation model originally introduced for
biomathematics in [13] is used. They focus on the equilibrium state when
time becomes infinite.

We adapt another approach introduced in [19, 20] and employed in [17]
for biomathematics. With this approach we are able to give a diffusion model
for finite population sizes and a finite number of steps.

The main result is described in section 3. It is a central limit theorem
for when the population size tends to infinite. Using this method, the dis-
crete population process can be replaced by a continuous gaussian process.
Such processes are widely examined. Some simple applications are given in
section 4. The main problem in the application of the method lies in the
calculation of the mean function of the gaussian process. The applications
given in this paper allow the mean function to be calculated analytically.
Numerical and structural results for the general case are presented in an-
other paper [29].

2. Basic algorithm formulation

Let K € N and Z; (k= 1,...,K) be finite sets. The optimization problem
is given with the search space = = H,{le Zr and an optimization function
f:E—=IR* by

argmax f(1).
Ee=

By N we denote the population size of the GA. A population of size N
is defined by a vector (™) = (ng)) - with the properties

(™) 1 N-1 } (V)
T; 0 1 g A
5 6{ NN )Y ieaxl

The set of all populations of size N is denoted by P™) := {z(™| () pop-
ulation of size N}. Further, we introduce populations of infinite size. A

population with infinite size is defined by a vector z = (z;),cz With the
properties

senl], Y=L

€S
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The set of all populations of size infinity is denoted by P := {z| z population}.
Notice that P®) ¢ P for all N € IN. Members of a population are called
individuals. The coordinate of the population vector with the index ¢ denotes
the relative proportion of the individual 7 in the population z. A GA is given
by iterative application of Steps 1, 2, and 3.

Step 1: Selection. Given a population z(n) in a generation with number
n € IN, members of the population are selected independently. Individuals
with higher fitness are prefered for the evolution process. Individuals with
low fitness get a lesser chance for selection. The distribution of a randomly
chosen individual I°(n) after selection is given by

- . o(f(i)) * zi(n)
VieE: P(I°n) =i X(n) =z(n) ) = : ,
: X =2)) = & oG o)
with a selection function o : IR — IR*. The selection function is necessary
for a scaling of the fitness function. This kind of selection is usually called

proportional selection. Discussion of this and other kinds of selection can be
found elsewhere [1, 2, 6, 7, 14, 15, 16].

Step 2: Crossover. After the independent selection of two individuals,
crossover is applied. With a probability p. the two parent vectors are mated
for the production of one offspring. With the complementary probability
1 — p. the individuals are not changed, and one of the two parent vectors
is taken as the offspring. A crossover schema is given by a random vector
U with values in {0,1}%. By @ we denote the bitwise complement of u and
by ® and & we denote the componentwise multiplication and summation.
The kth coordinate of U assigns the parent from which the kth coordinate
is inherited. The distribution of a randomly produced individual I¢(n) is
defined by
P(I(n) =] I*'(n) = j, I**(n) = k)
1= Pc

=T *(l{i=jVi=k})+pc*P((j@U)@(k@U)zi)‘

By 1y we denote the indicator function. Provided that a coordinate of U
takes the value 1, that coordinate of the offspring 7 is taken from the first
selected individual 51 (n) = j. If a coordinate of U takes the value 0, that
coordinate is taken from the other parent vector I°2(n) = k. In this model
two parent vectors produce one offspring. Often two offspring are produced,
but the second offspring depends stochastically on the first. This leads to
another, more complicated model.

Example 1.

1. One-point crossover. This kind of crossover divides a parent string into
two substrings. The substrings of two parents are combined into one
new individual, the offspring. In a mathematical description U has
uniform distribution on the set

{(0,...,0,1),(0,...,0,1,1),(0,...,0,1,1,1),...,(1,1,...,1)},
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that is, the right substring is taken from I°1(n) and the left substring
is taken from I°2(n).

2. Two-point crossover. One block of I°1(n) is inherited and the remain-
der of the coordinates are taken from I°2(n), that is, U is uniformly
distributed on the set

{(07""07071)7(07"‘70707170) '7(1)0707"'70)7
B B 00 o0 Oty B0 e D0 s W 5000,

3. Uniform crossover. Each coordinate is taken independently of the other
coordinates with probability 1/2 from ISi(n). With u € {0,1}¥ and

lu| := K | uy, the counting measure of U is given by
) .

Discussion and further examples of crossover are given elsewhere [3, 4,
11, 21, 22, 24].

Given a population z(n), it is not possible to produce all elements of =
with crossover. Crossover only mixes up the coordinates of individuals. It
is not possible to produce coordinate values not present in x(n). Therefore,
the necessity of another production operator, mutation, is obvious.

Step 3: Mutation. The coordinates of an individual j are altered inde-
pendently with a small probability . By i we denote the kth coordinate
of the individual 4. If mutation occurs in the kth coordinate, the value of
the coordinate is changed to one of the |Z;| — 1 remaining values. Each of
the values is taken with equal probability. The distribution of a randomly
mutated individual I™(n) is given by

K I L ik}
P(IM(n) =i| I°(n H YHai <|H | 1> ;
e S| —

If 45, is not equal to ji, mutation has to occur in the kth coordinate and has
to produce the value 7. Otherwise the coordinate must not be changed.

Step 4: Production of the next generation. The next generation is pro-
duced by reiteration of the first three steps. N individuals are produced
with selection, crossover, and mutation. Because the iteration occurs inde-
pendently, the new population is given by a polynomially distributed random
vector XV (n+1). With the help of the abbreviation pys(n,3) := P(IM(n) =
i| X(n) = z(n) ), the distribution of the next population is given by

Pyox0mtn)] x)y=an) = M (N7 (pM(nai))ieE> : (1)
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3. A central limit theorem

The model of section 2 gives an exact description of a simple GA with selec-
tion, crossover, and mutation. In this section we present an approximation
model in which population size converges to infinity. Three parameters (se-
lection pressure, probability of crossover, and probability of mutation) simul-
taneously converge to zero. This allows control of the connection between
parameters and the population process such that a central limit theorem can
be given. Let (ex)nvew be a sequence of real values fulfilling

ey >0, ey —0 and N x ey — 00 (2)
for N — oco. By dependence of €y the selection function is restricted to
o(t) =1+ en* f(7)

for all 7 € =. The probability of mutation from an individual ¢ to an individual
4 is restricted to

M M o rC . EN * [y J#1
M . p(IM =] I€ = 4) = 7 T
Pjmi ( | 7) { 1 —en * Dpem o Hiok L =]

and the probability of crossover is restricted to

Pec = 6N’.‘pAc

with 0 < p;; <1 and 0 < p. < 1. The parameters should be chosen such
that the probabilities are in the interval [0,1] and o takes values greater
than zero. This is fulfilled if low enough values of (ey)yen are chosen. The
following two lemmas describe changes of the expectation and the covariance
of a population after one step of the GA in the limit N — co. The changes
of the expectation are described by the following definition.

Definition 1. Define the population mean function

{P — IRE
m .

= (mi(T))ies

by

mi(z) = x; * (f(i) = f)* my)
JEE
+Pe* > xjkzpx P(IC = i| I9 = §, 1% = k) — p. * z;
7,k
+ Y bk ¥y = B
JEE
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The population mean function m consists of three main parts. Each part
describes the influence of one isolated operator. The first summand arises
from the selection. It consists of a distance of the function value from the
expectation. The part of the second line arises from crossover. It describes
a distance of the expected distribution of an individual after crossover to
the one before crossover. The part of the third line arises from mutation.
It describes the changes from before to after mutation. The name of m is
explained by the following lemma.

Lemma 1. Let n € IN, 7 € E, and (ey)new be a sequence of real values
fulfilling equation (2)

Jim %E (XM +1) = XM )| XD (n) = a(n) ) = mi(a(n) ).

Proof. See the appendix. m
A similar property for the covariance function of the population vector is
given by the following definition.

Definition 2. Let the population covariance function

{P —, IRExE
v

z — vz)
be defined by
'Ui’j(CU) =Tk ((51] — iﬂj),

where §;; stands for the Kronecker delta function,

1 i=j
b _{0 else.

With v we are able to give a limit theorem for the covariance of two
individuals in the population vector after one step of the GA for N — oco.

Lemma 2. Let n € IN and ¢, € Z,
lim N cov (X (n+1), X{M(n+1)] XM (n) = 2(n)) = vij(z(n) ).

N—oo

Proof. See the appendix. m
We also need a measure for the comparison of two stochastic processes.

Definition 3. A sequence (Y(N )(n)) e
asymptotically equally distributed as a sequence (Z™)(n) ), yen (in signs:
Y™ (n) ~ ZWM(n)) of probability variables, if for all bounded continuous
real-valued functions F' and all constants 7' € IN

max | E[F(Y®™(n) )| - E[F(Zz™(n) )] | —0

n<T/en

N of probability variables is called

for N — oo.
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Now we formulate the main result, a central limit theorem for the popu-
lation process defined by a GA.

Theorem 1. Let z(0) € P be a population and z : IR* — P be the unique
solution of the differential equation system

% (1) = m (=(2) ©
with the condition z(0) = z(0). Let a matrix K with z € P be given by
om;
K(z)lys = *(z).
K(@)s = 55 @)
Let (ex) vew be a sequence fulfilling equaiton (2). Withn € IN and ¢ := eyx*n,
the probability vector

ZN(n) = /N % ey * [X(N)(n) - z(t)]

is asymptotically equally distributed as a sequence of multivariate normally
distributed random vectors with mean vector 0 and the covariance matrix

t t + T
o) = | {exp { [ K(z(t”))dt”” % v(=(t) * {exp [ [ KGE)a } dt',
0 Jo t
where v denotes the population covariance function from Lemma 2. In signs

Z™(n) ~ N (0, (n*ex)).

Remark: The theorem says that the stochastic process (X™(n) )nen of
populations can be substituted asymptotically by a continuous gaussian pro-
cess with mean function z(¢) and covariance function ¥(t). The main dif-
ficulty in the application of Theorem 1 lies in the calculation of z(t). The
calculation requires the solution of a differential equation system.

Proof. We give only a sketch of the proof here. A complete proof is given
in [26].
A central limit theorem for stochastic processes is proved in [20]. The
application of the theory in [20] rests on the first three moments of
AXM(n) = XM (n+1) — XD (p).

Lemmas 1 and 2 prove their conditions on the first two moments. To apply
the theory of [20], the following condition on the third moment is left. With

e, = AXM(n) — B (AXD(n)] X (n))

we have to show the existence of a constant L such that

1/3 1\Y/2
B(lel) <1+ () -

This is done by application of the Jensen inequality in [26]. Now the theorem
is a special case of Theorem 3 in [20]. ®m

The following corollary shows that the solution z(t) of the differential
equation system (3) is a population for all ¢t € IR,



274 Stefan Voget

Corollary 1. Let z(0) be a population. z(t) calculated by equation (3) is
also a population for all t € IR*.

Proof. The change of z in time is influenced by m. We show that the sum of
the coordinates is not changed by equation (3) for all populations z € P:

dt Z zi(t Z m;(z)

i€E €S
= mi*(f(i) = ) f(§) * ;)
i€E J€E
+ Pk Y wjkapk P(IC =d| [7 = 5,17 =k) —p.x Yz
1,5,k 12
B Z Hj—i * T —zmi
i,j€E i€E
=Y @ik f@) =D @ Y f() * g
i€E €2 jeE
+pAc*Za:j*mk—ﬁc*in
gk =
+) lxzi— )
jeE i€
= 0.

The last equality follows with }";cz z; = 1. Therefore, the sum of the coor-
dinates is a constant for all ¢ € IR*. The second condition in the definition
of a population is that the coordinates take values in [0,1]. Because z;(t)
is continuous in ¢ € IR¥, it suffices to examine the first derivative in the
boundaries. Let z;(¢) = 0. It is easy to see that

)—pc*Zz] * 2(t) % P(IC(t) = 4| I5:(t) = §,1%2(t) = k)

+ Z,uj—vi * Zj(t) Z 0.
jEE

Let z;(t) = 1. Again, it is easy to see that
mi(2(t)) = pimi —1 < 0.

Therefore, the value z;(t) will never leave the interval. m

4. Simple applications

In this section we present some simple examples for the application of The-
orem 1. For more details refer to [26].
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4.1 Genetic drift

A GA with finite population size N, without selection pressure (f = 0),
without crossover (p. = 0), and without mutation (y;—; = 0) reduces to
simple drawings with replacement. Under these conditions m reduces to

Vi€ =:m;(z) =0.

Let z(0) € P be a population. The solution of equation (3) is a constant,
that is,

vt e RY: 2(t) = x(0).

Since the differential of m subject to x; is zero, the matix K denotes the zero
matrix. The exponential function of a zero matix is the unit matrix. The
covariance matrix can be calculated as

2(t) = v(@(0)) * t = [2:(0) * (85 — 2;(0))]; ; * -

The expectation of the population stays constant. The variance increases
linearly in ¢.

Example 2. Because of the condition Y ;cz #;(0) = 1 the functions reduce
to one-dimensional functions in a search space with |Z| = 2. Let 4; and iy be
the two individuals and let ¢ € IR™*:

z(t) = 24,(0) = B(t) = 2;,(0) * (1 — 2, (0)) * ¢t.
The statement of Theorem 1 reduces to
Z(N)(n) ~ N (0, 2;5(0) % (1 — z;,(0)) * n*ep) .

With the definition of ZU")(n) we get

n
Proog) x@me0 ~ N (2,0, 2,0+ (L =2 @) ¢ ). @

Notice that the sequence (€x)nyew does not appear in the last formula. This
is because no dependent parameter arises in the genetic drift model. For the
values N = 1000, n = 10, and z;, (0) =  one gets the approximation

1 1
PX(looo)(10)| X(IUOO)(0)=% N (57 m) 5
Figure 1 shows the approximation of the density of 1000*Xi(11 000)(0) compared
with simulations. The simulated density is based on 100,000 repetitions of
drawing with replacement. The graph shows good agreement between the
approximated and the simulated densities.
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Figure 1: Density of lOOO*XiIIOOO(lO). Using (4), the calculated density
is compared with results from simulations.

4.2 Search space of dimension |Z| = 2

In this section we consider a search space with two elements, = := {i1,i5}. In
this case it makes no sense to consider crossover. Therefore, we will consider
a model with only selection and mutation.

Because of the condition Y ;c= 2:(t) = 1, the system of differential equa-
tions %(t) = m;(z) reduces to a one-dimensional differential equation z =
m(z). This equation is solvable under several adjustments of parameters.
We will give one example with positive probability of mutation and with
nonzero selection pressure. Further examples for this case are given in [26].

The significance of this application for real-size examples is suggested in
the following three interpretations.

Generalization 1. First, one may divide the search space into two classes of
individuals: the “good” ones and the “bad” ones. The “good” ones may be
the ones with a fitness value above a border. This kind of classification is
known from the theory of simulated annealing [25].

Generalization 2. For a second interpretation one may sign one individual out
of the population. This individual is compared with the “rest of the world.”
Will the individual’s heritage continue over several generations? Will the
individual die because of a low fitness value? The “rest of the world” may be
represented by an expected fitness of the other individuals. If the fitness value
of the signed individual is higher than the expected fitness, this individual will
stay alive; otherwise it will fall into the group that dies out after a few steps.
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Generalization 3. For a third interpretation consider one special locus in an
optimization task of higher problem size. In an optimization task coded in
bit-strings, the question arises of whether the 0 or the 1 dies out on this locus
(compare the diffusion model of [9]). To answer the question, one individual
gets the mean fitness of all individuals with a 0 on this locus. The other
individual gets the mean fitness of all individuals with a 1. How fast will one
value die out? Or will there be an equilibrium distribution?

Let z;,(0) be the relative frequency of individual ¢; in the population
z(0), and let = be a real value. The functions of Theorem 1 are calculated
with

m(x) = Hiy—iy — T * (/l'iz—*h f /‘l’il_'i2) + ok (1 - :II) * (f(zl) - f(ZZ))
and
v(z) =z * (1 —x).

Let z be the solution of

dz
(0) = 24(0) and % (2) = m(z(t)), 5)

The function of variance ¥ is given by

() = /Ot exp (2 ut Brg—iz)(g)dg) *v(z(u))du.

4.2.1 Selection and mutation in a search space of dimension |Z| = 2

To motivate the following model we take a population of many different
individuals and pick out one individual 7; of special interest. For the other
individuals we are interested only in an expected behavior. These individuals
are put into one class. We use i, to denote a typical representative of this
class. This reduces the model Z = {i;} U (E\ {#1}) to Z = {i;} U {i,}.

Let 7; be of higher fitness than the other. The idea of the GA is that this
individual should stay alive over several populations to pass on genes. But
the individual may die out because 4; mutates into another individual, or 7;
is not selected.

On the other hand, the probability for production of this special individ-
ual by mutation may be neglected (p1;,—s, := 0). Under these conditions the
question arises of how the probability of mutation and the pressure of selec-
tion influence the quality of the algorithm. The population mean function
m reduces, in this special case, to

Z(t) = m(z(t))
= 2(8) * piriy +2(8) % (L= 2() * (F (i) — f(32))

from which we are able to calculate z:
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Biy—ip—F(i1)+f(i2)
— f(i1)+f(i2)+ (f(il)—f(i2)+(;¢,<l_.iz—f(il)+f(i2)) ﬁ) e iy —ig =F(11)+F (2))*t
pM—J(i1)+U(i2)
—o(iy)+o(iz)+ (g(il)_a(i2)+(pM —o(i1)+0(iz)) 1;'11(0) ) we(PM = (i1)+o(iz))*n

2(t) =

< z(n) =

with pM = pf‘l”_,iz and the condition t = n*ey. It would take too much space
to present the solution of ¥(n) here. It is given in detail in [26].

Example 3. In Figures 2 and 3, respectively, z and ¥ are given for a pop-
ulation of size N = 1000 after n = 10 steps. The graphs show the values
in dependence of the probability of mutation pﬁ‘f_,iz (front to back) and the
pressure of selection Selpr := o(i1) — o(iz) (right to left). The population
2(0) was chosen with z;, (0) = 0.5. The highest variance occurs in a region in

Figure 2: z(n). The parameter settings are given in the text. From
right to left the pressure of selection increases. From front to back
the probability of mutation increases.

0045

Figure 3: X(n). The parameter settings are given in the text. From
right to left the pressure of selection increases. From front to back
the probability of mutation increases.
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which the change in expectation is high. This region is the interesting one.
In the other regions the individual dies out or dominates the population.
These two situations are not ideal for an examination of the search space
with a GA. Good solutions leave their coordinates to new individuals but do
not reproduce themselves.

The variance given by ¥ can be interpreted as a kind of uncertainty. If
the parameter settings are such that the population process has high vari-
ance, the GA produces solutions of different quality in several repetitions.
If the population process has low variance, repetitions of the GA produce
individuals of the same quality. Because of limited computational resources,
in most cases only one repetition of the GA is performed. For a given mean
it is better to set the parameters in a region with low variance. The figures
show that it is better to set the parameters to high values.

4.3 Crossover in a search space of dimension |Z| =4

In this section we consider the simplest case in which crossover makes sense.
Let 2 = {aa, aA, Aa, AA}, a search space of dimension 4. Let z € P. For
a model with crossover, no pressure of selection (¢ = 1), and no mutation
(pM.,; = 0), m reduces with f. = 1 to

VieZ: my(z) = Z zixapx P(I° =i| I = j, I® = k) — ;.

J,kEE

Again, we may reduce the dimension by application of the condition ) ;g z; =
1. In a search space with four members, the three kinds of crossover intro-
duced in section 2 reduce to two different kinds of crossover. In one-point
crossover and uniform crossover, the two coordinates are taken with prob-
ability 0.5 from different parents and with probability 0.5 from one parent.
In two-point crossover, the two coordinates are taken with certainty from
different parents.

Example 4. In one-point crossover and uniform crossover the mean popu-
lation function is given by

Maa —Zga + Taa * Tag + Taa * Taa + Taa * Taa + Taa * T Aa
MaA (33) =i FZaa — Laa * Tag — Taa * TaAd — Laa * TAg — TaA * TAq
MAa +Zaa — Tag * Tag — Tag * TaAd — Taa * TAa — TaA * TAq

With this m the function z can be calculated by

24(t) = —Zaa(t) + 244(0) + 244(0),
Z4a(t) = —2aa(t) + 244(0) + 2aa(0),
244(0) = 1 — 240(t) — zaa(t) — z44(t),
Zaa(t) = [2a4(0) + Zaa(0)] * [24a(0) + 24a(0)]
+ [22a(0) = [244(0) + 244(0)] * [244(0) + 2aa(0)]] * et
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The first three equations give z for the individuals in dependence of the
individual aa. In the expression for z,,(t), the dependence of the initial pop-
ulation z,,(0) decreases exponentially. In the limit ¢ — oo, the remaining
term may be compared with an independent distribution of the two coor-
dinates. The marginal distribution is the one of the initial population. If
we take as x(0) the uniform distribution on the four points, the covariance
matrix X is given by

[l+2xt—e] [-1+4+€7 [14 e
E(t):i [-1+&7 [l+2*xt—e?] [L—2xt—e7f
[-1+e7 [l—2%xt—e] [L4+2xt—e7]

The terms in the main diagonal increase linearly in ¢. The covariance between
aA and Aa decreases linearly in ¢.

Example 5. For two-point crossover we calculate

2aA(t) = —Zaa(t) + 224(0) + 244(0),

Zaa(t) = _ZAa(t) + 244(0) + 240(0),
2(AA) = 1 — 2aa(t) — 2aa(t) — 2aa(t),

Zaa(t) = [ZaA(O) + Zaa(0)] * [244(0) + 24a(0)]

)
+ [2aa(0) = [204(0) + 2aa(0)] * [244(0) + Zaa(0)]] *

If we take as (0) the uniform distribution on the four points, the covariance
matrix X is given by

l+4xt—e ] [-14e?] [1+ e
() = 5 [=1 4% L+4xt—e [1—-4xt—e %
[—1+4 e [l—dxt—e 2] [1+4xt—e ¥

In two-point crossover, z converges faster (e~*) than in one-point crossover
(e*?). The multiplier in the covariance matrix is lower than the one for
one-point crossover. This shows that in the special situation of only two
coordinates, two-point crossover mixes the coordinates more disorderedly.
One-point crossover preserves some of the parents. In some applications it
may be of benefit to mix the coordinates, and in other applications it may
be of benefit to preserve the parents [27].

5. Summary and discussion

In this paper we have presented a central limit theorem for the population
process of a GA. Some simple examples show how the theorem may be ap-
plied. A more detailed description of the method is presented in [26]. These
examples show the usefulness of the method for the consideration of depen-
dences between parameters. For further dependences between the probability
of mutation and selection pressure, refer to [29)].
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The theory of GAs is divided into models with infinite and finite pop-
ulation sizes. Most mathematical models deal with infinite populations
[18, 23, 28, 30]. Up to now, the strongest results have been given in this
area of the theory. But the approximation leads to a deterministic model.
The infinite model neglects the stochastic nature of the GA.

The population after a finite number of steps is a random variable. Dif-
fusion models with finite population sizes address this fact. The diffusion
models given in [9] and [12] make only a few limitations on the parameters.
But the approach is mainly applicable when the number of steps is infinite.

The model presented in this paper describes a useful approximation for
a finite population size and a finite number of steps. This is reached at the
expense of some limitations on the parameters. Further, Theorem 1 gives
a connection of the theory of GAs with the theory of differential equation
systems. Therefore, the theorem offers a wide field for research in the future.

Appendix

Proof of Lemma 1. The proof is divided into several steps. Each step considers
the influence of one operator.

Proposition 1. The changes of the population that are based on selection
are given by

lim — (P(IS(n) =i| XM(n) = x(n)) — 2:(n))

N—oco EN

= z;(n) ( Zf s x;(n )

Proof of Proposition 1.
lim — (P(I°(n) = i| XM (n) = 2(n) ) — z:(n))

. [ a(i)*xi(n)( )_xi(n)]

ZjeEU(j)*xj n
1 [(1 +en * (i) * mi(n) — zi(n) Ejes(1 + en * f(5)) * z(n)
Yjez(l+en * f(4)) x z5(n)
[f(i) * zi(n) — zi(n) Ties f(7) * fﬂj(”)]
L+ en * Ljez f( )*IJ(”)
= f(i) * zi(n) — zs(n) Y F(§) *xz;(n

JEE

I
=

|
3

Proposition 2. The changes that are based on crossover are given by

lim ] (P(Ic(n) =i XM (n) =2z(n) ) - xz(n))

N—ooo EN
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= z;(n) * (f(i) =Y F) * wj(n))

+ Pe * j;cxj(niefzk(n) * P(I°(n) = i| IS'(n) = j, I52(n) = k) — p. * zi(n).
Proof of Proposition .
Jim = (PI°() = 1| X™(n) = 2(n) ) - a:(n)
ot 2 R
*P(I¢(n) = i| I®*(n) = j, I(n) = k)

+ (1—enxpo) + P (I°(n) =il X () = 2(n) ) - xiw]

=pox > zj(n) *zx(n) * P(I°(n) = i| I%(n) = 5, I%*(n) = k) — P, * z:(n)

j,keE

+ lim % [PIS(n) = il X (n) = z(n) ) — z(n)]

N—oo EN

(1
= zi(n) (f(i) = f() wj(n))

+ Pk Y. x;(n) * zp(n) * P(I%(n) = i| I9(n) = §,I%(n) = k) — pc * z5(n).

kes
The equality [1] follows from Proposition 1.

Proof of the lemma.

lim — B (XM +1) - XM (0)] X (n) = 2(n)

Jim — [P () = i) X®m) = a(n) ) = a:(m)]
X e Jim PUC) =51 XO0) = ()
+im (== 3 )« PI%W) =] XO0) = o) - = wailr)
JEE, j#i N
> ik zi(n) —zi(n) Do piog
JEE, j#i JEE, j#i
+ lim % [PUC() = il XM)(n) = a(n)) — 2:(n)]

The assertion follows from Proposition 2. m

Proof of Lemma 2. This proof is analogous to the one for Lemma 1. There-
fore, we give only a sketch. Because of the polynomial distribution of X (),
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the covariance follows with ¢ # j:

lim N # cov(X{" (n+1), XM (n + 1)] XM (n) = 2(n))

N—oco

= lim %COV(N*XW(nH), N+ XM (0 + 1)) X0 () = 2(n))

= — Jim P(1"(n) = i X®(n) = a(n)) * PU*(n) = j| XD(n) = a(n)
~ Jim P(I%(n) = il X™(n) = a(n)) * PI°(n) = §| X*(n) = o(n))
— Jim P(I5(n) = il X®(n) = x(n)) x PU(n) = j| X™(n) = a(n)

—z;(n) * z;(n).

The proof for the terms in the diagonal is analogous with

lim N+ V(X (n+ 1) XD (n) = 2(n))

= lim P(I"(n) = il X" (n) = 2(n))
« (1= P(IM(n) = j| XM (n) = 2(n))) . m
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