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Abstract. A genet ic algorithm (GA) is a stochastic search and op­
timization algorithm th at works by iterative application of several
evolut ionary operators on populations of solutions. We introduce a
central limit theorem for the populat ion process when populat ion size
grows. The theorem approximates a GA by a continuous gaussian
process. This leads to a numerical method for the examination of the
algorithm. In some simple examples we present applications of the
method.

1. Introduction

A genet ic algorithm (GA) adapts principles of natural evolut ion to combi­
natorial op t imization pr oblems. The concept was introduced in 1975 in [10].
Since that t ime GAs have been applied to a lot of problems [5, 8]. A GA
works by itera tive application of operations such as select ion , crossover , and
mutation. T he aim is to propagate a population of possible solut ions such
that an op timal, or at least a very good, solut ion can grow in an evolutionary
pro cess.

In the first ste p the memb ers of the populat ion , called individ uals, are
reproduced , cont ributing to t he next generation according to their fitness.
For maximizati on tasks the fitness may be the optimizat ion fun cti on value .
For minimization tasks the fitness is calculated by transformations of the
optimization function . Crossover , which is viewed as the most essent ial fac­
tor of GAs, combines individuals by exchanging parts of them . Finally, the
mutation mechan ism changes random par ts of the indi viduals with small
pr obabili ty. T he most inherent feature of GA optimizat-ion lies in its at­
tempt to explore the search space in a global fashi on by studying the ent ire
population.

Although the algorithm is quit e successful in applications, the mathe­
mati cal theory of the operators select ion , mutation , and crossover st ill seems
incomplete. In the past , no sufficient theoretical answers have been found
for quest ions such as the following.
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• How should param et ers be chosen?

• How do the parameters interconnect ?

• What crossover should be used?

Stefan Voget

• How does the po pul ation look afte r finit e many ste ps?

We int roduce an approximation method from the theory of quan ti tative
popul ation genet ics of biomathematics. In section 2 we pr esent notati ons and
a mathematical model that is used for the description of the algorithm . This
mo del is ofte n app roximated by mo dels wit h infinite population size [18, 28].

In [9] and [1 2], a diffusion ap proximation mo del originally introdu ced for
biomathemat ics in [13] is used. They focus on the equilibrium state when
t ime becomes infini te.

We adapt another approach introdu ced in [19 , 20] and employed in [17]
for biomathemati cs. Wi th t his approach we are able to give a diffusion mod el
for finit e populat ion sizes and a finit e number of ste ps .

The main result is describ ed in sect ion 3. It is a central limit t heorem
for when the po pulation size tends to infini te. Using this method, the dis­
crete populati on process can be replaced by a cont inuous gaussian process.
Such processes are widely examined. Some simple applica tions are given in
sect ion 4. T he main problem in the ap plicat ion of the method lies in the
calculatio n of the mean functi on of the gaussian pro cess. The applications
given in this pap er allow the mean fun ction to be calculated analytically.
Numerical an d structural results for the general case are pr esented in an­
other paper [29].

2. Basic algorithm formulation

Let K E IN and :=:k (k = 1, .. . ,K ) be finit e sets . The optimizati on problem
is given with t he search space :=: = nf"=l:=:k and an optimization fun ction
j ::=: ----t IR+ by

arg mC!:.x j (i) .
'E:::.

By N we denote the population size of the GA. A population of size N
is defined by a vecto r .r (N ) = ( x ;N)) iE 3 with the properties

"" x(N) = 1L... , .
iE 3

T he set of all populations of size N is denote d by p (N ) := { x (N )I x(N) pop­
ulati on of size N }. Further, we introduce po pulat ions of infinit e size. A
population wit h infinite size is defined by a vector x = ( Xi ) i E3 with the
propert ies

Xi E [0, 1], L X i = 1.
iE 3
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T he set of all populations of size infini ty is denoted by P := [z] x populati on}.
Notice that p eN) c P for all N E IN. Members of a population are called
individu als. The coordinate of the population vector wit h t he index i deno tes
the relative proport ion of the individual i in the popula tion x . A GA is given
by iterative applicat ion of Steps 1, 2, and 3.

Step 1 : Select ion . Given a popula tion x(n) in a generation with nu mber
n E lN, members of the populat ion are selecte d independent ly. Individu als
with higher fitn ess are pr efered for the evolut ion process. Individuals wit h
low fitness get a lesser chance for selection . The distribution of a randomly
chosen ind ividual I S(n) after selection is given by

. ~ s . O"(j (i )) * xi (n)
\;h E .::. : P (I (n) = zl X (n) = x(n) ) := (j ( .)) () '

I:jEs 0" .7 * Xj n

wit h a selection fun ct ion 0" : IR -7 IR+ The select ion function is necessar y
for a scaling of the fitn ess function . T his kind of selection is usually called
proportional select ion . Discussion of this and other kinds of selection can be
foun d elsewhere [1, 2, 6, 7, 14, 15, 16].

Step 2: Cro ssover. After the independent select ion of two individuals,
crossover is applied . Wi th a pr obab ility Pc t he two parent vectors are mated
for the production of one offspring. W ith the complementary probab ility
1 - Pc the individuals are not changed, and one of the two parent vectors
is taken as the offspring. A crossover schema is given by a rand om vecto r
U wit h values in {O, I}K By ii we denote the bitwise complement of u and
by 0 and ffi we denote the compo nentwise multiplicati on and summation .
The kth coordinate of U assigns the parent from which the k th coordinate
is inheri ted . The distribution of a randomly produced individual I C (n) is
defined by

P(IC(n ) = i l I Sl(n ) = j , I S2(n ) = k)

1 - Pc () -
:= -2- * l{i=j v i=k} + Pc* P( (j 0 U) ffi (k 0 U) = i) .

By 1 0 we denote the indicator fun ction. Provided tha t a coordinate of U
t akes t he value 1, that coordinate of the offspring i is taken from the first
selected individual I S l (n ) = j. If a coordinat e of U t akes the value 0, that
coordinat e is taken from the other parent vector I S2(n ) = k . In this mod el
two parent vecto rs produce one offspring. Often two offspring are pro duced ,
but the second offspring dep end s stochas tically on the first . T his leads to
another, mor e complicated model.

Example 1 .
1. One-point crossover. This kind of crossover divides a parent st ring into

two subs trings. T he substrings of two parents are combined into one
new individu al , t he offspring. In a mathematical descrip t ion U has
un iform distribut ion on the set

{(O, .. . , 0, 1), (0, ... ,0, 1,1), (0, . .. ,0, 1, 1, 1), . . . , (1, 1, . .. , I)},
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that is, t he right subst ring is t aken from ] SI(n) and the left substring
is t aken from ] S2(n ).

2. Two-point crossover . One block of ]SI(n) is inherited and the remain­
der of the coordinates are taken from ]S2(n), that is, U is un iformly
distributed on the set

{(O, , 0, 0, 1), (0, , 0, 0, 1, 0), , (1,0 ,0 , , 0),

(0, , 0, 1, 1), (0, , 0, 1, 1, 0), , (1, 1, 0, ,0),

(1, ... , In.

3. Uniform crossover. Each coordinate is taken independently of the other
coordinates with probability 1/2 from ] SI(n ). With U E {O, IV and
lui := ~r:=1 Uk, the count ing measure of U is given by

1
P(U = u) = 2K '

Discussion and further examples of crossover are given elsewhere [3, 4,
11, 21, 22, 24].

Given a population x(n) , it is not possible to produce all elements of 2
wit h crossover. Cro ssover only mixes up t he coordinates of individuals. It
is not pos sible to produce coordinate values not pr esent in x(n). T herefore,
the necessity of another production operator , mutat ion , is obvious.

Step 3: Mutation . The coordinates of an individual j are altered inde­
pendently with a small probability J-L . By ik we denote the kth coordinate
of the individual i. If mut ation occur s in the kth coordinate , the value of
the coordinate is changed to one of the 12k l - 1 remaining values . Each of
the values is taken wit h equal probabi lit y. The distribution of a randomly
mutated ind ividual ]M(n) is given by

If i k is not equal to i». mut at ion has to occur in the kth coordinate and has
to produce the value ik . Ot herwise t he coordinate must not be changed.

Step 4: Production of the next generation. T he next generation is pro­
duced by reit eration of the first three st eps . N individuals are produced
wit h select ion , crossover , and mutation . Becau se the iterat ion occur s inde­
pendently, the new population is given by a po lynomially distributed random
vector X (N)(n+ 1). With the help of the abbreviat ion PM(n, i) := P(IM (n) =

il X(n) = x(n) ), the distribution of t he next population is given by

(1)
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3. A central limit theorem
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The model of secti on 2 gives an exact description of a simple GA with selec­
tion , crossover , and mutation . In this sect ion we present an approximation
model in which population size converges t o infinity. Three param eters (se­
lect ion pressur e, probability of crossover , and probabi lity of mutation) simul­
taneously converge to zero . This allows cont rol of the connection between
param eters and the population pro cess such t hat a cent ral limit theorem can
be given. Let ( EN) NElN be a sequence of real values fulfilling

EN > 0, EN ------> 0 and N * EN ------> 00 (2)

for N ----7 00 . By depend ence of EN the select ion fun ction is restricted to

O' (i) = 1 + EN * f( i)

for all i E 2 . The probability of mutation from an indi vidual i to an individual
j is restricted to

and t he probabili ty of crossover is restricted to

Pc= EN *Pc

with 0 < J-Li~j < 1 and 0 <Pc < 1. The par am eters should be chosen such
tha t the prob abiliti es are in the int erval [0 ,1] and 0' takes values greate r
tha n zero . T his is fulfilled if low enough values of ( EN) N ElN are chosen. T he
following two lemmas describ e cha nges of the expectat ion and the covariance
of a population after one step of the GA in the limit N ----7 00 . The cha nges
of the expec tation are describ ed by the following definition.

Definition 1. Define the population mean funct ion

------> IR3

f-> (mi( X))iE3

by

m i( X) := Xi * (f(i) - ~ f(j) *Xj )
JE =.

+Pc* 2:>j* xk * P(IC = il I S' = j,IS2 = k) - Pc* Xi
j ,k

+ 2: J-Lj~i * Xj - Xi·
jE3
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The population mean function m consists of three main part s. Each par t
describes the influence of one isolated operator. The first summand arises
from the select ion. It consists of a distan ce of the funct ion value from the
expectation. The part of th e second line arises from crossover . It describes
a distance of the expected distribu tion of an individual afte r crossover to
the one before crossover. The par t of the third line arises from mut at ion.
It describes the changes from before to after mutation. The name of m is
explained by the following lemma.

Lemma 1. Let n E IN, i E S , and (EN) NEJN be a sequence of real values
fulfilling equation (2)

lim ~E (X t l(n + 1) - x t l(n )I X (Nl(n ) = x (n ) ) = mi(x(n) ).
N--->oo EN

Proof. See the appendix. _
A similar pro perty for th e covariance funct ion of t he populat ion vector is

given by the following definit ion.

Definition 2. Let th e population covariance junction

----> m.3 x 3

V · ·(x)' ,J

be defined by

Vi ,j(X) := Xi * (Oij - Xj),

where Oij stands for th e Kron ecker delta funct ion,

{
I i = j

Oij = 0 else.

With v we are able to give a limit theorem for t he covariance of two
individuals in the popu lation vector after one step of the GA for N -+ 00 .

Le m m a 2. Let n E IN and i, j E S,

lim N * cov (X t l(n + 1), Xt l(n + 1)1X (Nl(n ) = x (n) ) = Vi,j(x( n) ).
N--->oo

Proof. See the appendix. _
We also need a measure for the comparison of two stochastic processes.

Definition 3. A sequence (y (Nl(n )) of pro bab ility variab les is called
n,NE JN

asymptotically equally distribut ed as a sequence (Z (Nl (n) ) n ,N EJN (in signs:
y (Nl(n ) ~ Z(N)(n)) of probabi lity variables, if for all bounded cont inuous
real-valued fun ct ions F and all constants T E IN

for N -+ 00 .
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Now we formul ate the main result , a cent ra l limit theorem for the popu­
lation pr ocess defined by a GA.

Theorem 1. Let x( O) E P be a population an d z : lR+ -+ P be th e unique
solution of the differential equation sys tem

dz
dt (t) = m (z( t) ) (3)

with th e condit ion z (O) = x( O) . Let a matrix K with x E P be given by

am
[K (x )kj := ox(j) (x) .

Let (EN ) N EJN be a sequence fulfilling equaiton (2). With n E IN and t := ENm,
the probability vector

ZN (n) := VN* EN * [X(N) (n ) - z( t)]

is asymptotically equally distributed as a sequence of multivariate normally
distributed random vectors with m ean vector 0 and the covariance m atrix

~(t ) := l {exp [l K(z(tll))dtll]} * v (z (t' )) * {exp [l K (z(t"))dt"]}T dt' ,

where v denotes the population covariance function from Lemma 2. In signs

Z(N)(n ) rv N (0, ~(n * EN )) .

Remark: The theorem says that the stochastic pro cess (X (N)(n ) )nEJN of
popul ations can be substituted asymptotically by a cont inuous gaussian pro­
cess with mean function z( t ) and covariance function ~(t) . The main dif­
ficult y in the applicat ion of Theorem 1 lies in th e calcu lation of z (t ). The
calculat ion requires the solut ion of a differential equation system .

Proof. We give only a sketch of the proof here. A comp lete proof is given
in [26].

A central limit th eorem for stochastic pro cesses is proved in [20]. The
applicat ion of th e theory in [20] rests on the first three moment s of

ll.X(N)(n) := X (N)(n + 1) - X(N)(n ).

Lemmas 1 and 2 pr ove their condit ions on the first two moments. To apply
the theory of [20], the following condit ion on the third mom ent is left . With

ef,n := ll.X(N)(n) - E (ll.X(N)(n) 1X (N)(n))

we have to show the existence of a constant L such tha t

E (1 Ief,nWt
3

< L * (~r/2
T his is done by applicat ion of the Jensen inequality in [26] . Now th e theorem
is a special case of Theorem 3 in [20]. •

The following corollary shows that the solution z (t ) of the differential
equa t ion syste m (3) is a popu lation for all t E lR+.
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Corollary 1. Let x (O) be a p opulation. z (t ) calculated by equation (3) is
also a pop ulat ion for all t E JR.+

Proof. The change of Z in t ime is influenced by m. We show that the sum of
the coordinates is not changed by equat ion (3) for all populations x E P :

d
dt "L Xi(t ) = "L mi(X)

iE 3 i E3

= "L Xi * (j (i ) - "L f (j ) * Xj)
i E3 jE3

, ~ P (IC - '1l S' - . I S2 - k) , ~+ Pc * L.- Xj * Xk * - i - J , - - Pc * L.- Xi
i ,j ,k i E3

+ "L /-lj~i *Xj - "L Xi
ijE'2 i EB

= "L Xi * f (i ) - "L Xi "L f (j ) *Xj
i E3 iE 3 jE3

+ Pc*"L Xj *Xk - Pc*"L Xi
j ,k i E2

+ "L 1 * Xj - "L Xi
j E3 iE 3

= O.

The last equality follows wit h I:i E3 Xi = 1. Therefore, the sum of the coor­
din ates is a constant for all t E JR.+. The second condit ion in the definit ion
of a populat ion is that the coordinates take values in [O , l J. Because Zi(t)
is continuous in t E JR.+, it suffices to examine the first derivat ive in the
bound aries. Let Zi(t) = O. It is easy to see that

mi(z(t )) = Pc*"L Zj(t ) *Zk(t ) *P(IC(t ) = il I SI(t ) = i ,I S2(t ) = k)
j,k

+ "L /-lj~ i *Zj(t ) ;:::: O.
jE3

Let Zj (t) = 1. Again , it is easy to see that

mi(z(t )) = /-li~i - 1 -:::; O.

Therefore, the value Zi(t ) will never leave the interval. _

4 . Simple applications

In this sect ion we present some simple examples for the application of The­
orem 1. For more details refer to [26J.
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4.1 Genetic drift
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A GA with finit e population size N , without selection pressur e (j == 0) ,
without crossover (Pc = 0), and without mutation (f-ii ..... j == 0) redu ces to
simple dr awings with replacement. Under these condit ions m reduces to

Vi E 2 : mi(x) == O.

Let x(O) E P be a population. T he solut ion of equa tion (3) is a constant,
that is,

Vt E IR+: z(t ) = x(O).

Since the differential of m subject to Xj is zero , the matix K denotes the zero
matrix. The exponential function of a zero matix is the unit matrix. The
covariance matrix can be calculated as

I;(t) = v(x(O)) * t = [Xi (O) * (Oij - xJ(O))] . * t.',J

The expec tation of the population stays const ant . The variance increases
linearl y in t .

Example 2. Because of the condition L iE:::: Xi (O) = 1 the functions redu ce
to one-dimensional fun ctions in a sear ch space with 121 = 2. Let i 1 and i 2 be
the two individuals and let t E IR+:

The statement of Theorem 1 reduces to

With the definit ion of Z(Nl(n) we get

Not ice that the sequence (EN)NEIN does not appear in the last formul a. This
is because no dependent par amet er ari ses in the genetic drift model. For the
values N = 1000, n = 10, and Xi , (0) = ~ one gets the approxim ation

P X (IOOO)(lOll X(lOOO)(Ol= ~ ~ N (~, 4~0)'

Figure 1 shows the approximat ion of the density of 1000*X2oool(0) compared
with simulations. The simulate d density is bas ed on 100,000 repetitions of
dr awing with replacement. The graph shows good agreement between the
approximated and the simulated densities.
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F igur e 1: Density of lOoo*Xl,OOO (lO). Using (4) , t he calculate d density
is compared with resul ts from simulat ions .

4 .2 Search sp ace of dimension 131= 2

In this sect ion we consider a search space with two elements , 3 := {ii , i 2 } . In
this case it makes no sense to consider crossover . Therefore, we will consider
a model with only select ion and mutation.

Because of the condit ion I:i ES Zi(t) = 1, the system of differential equa­
tions Zi (t) = mi(z) reduces to a one-dimensional differenti al equat ion Z =

m(z). This equat ion is solvable und er several adjustments of parameters.
We will give one example with posit ive prob ability of mut at ion and with
nonzero select ion pressure. Fur ther examples for this case are given in [26].

The significance of this applicat ion for real-size examples is suggested in
the following three interpretations.

Generalization 1. First , one may divide the search space into two classes of
ind ividu als: the "good" ones and the "bad" ones . The "good" ones may be
the ones with a fitness value above a border . T his kind of classification is
known from the theory of simulated annealing [25].

Generalization 2. For a second int erp ret ati on one may sign one individual out
of t he population . T his indi vidu al is comp ar ed with t he "rest of t he world ."
Will the individual 's herit age cont inue over severa l generations? Will t he
individual die because of a low fitness value? The "rest of the world " may be
represented by an expected fitness of the ot her individuals. If the fitn ess value
of the signed ind ividual is higher than the expected fitness, this individual will
stay alive; otherwise it will fall into the group that dies out after a few ste ps.
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Generalization 3. For a third interpret ation consider one spec ial locus in an
optimization tas k of higher problem size. In an optimization task coded in
bit-strings, the question arises of whether the 0 or th e 1 dies out on th is locus
(compare th e diffusion model of [9]). To answer the question , one individual
gets the mean fitn ess of all individuals with a 0 on this locus. The ot her
individual gets the mean fitn ess of all individuals with a 1. How fast will one
value die out? Or will there be an equilibrium dist ribut ion?

Let Xi, (0) be the relative frequency of ind ividual i 1 in the population
x(O), and let X be a real value . The functions of T heorem 1 are calculated
with

and

v(x) =x* (1-x) .

Let z be th e solut ion of

dz
z(O) = Xi, (0) and dt (t ) = m( z(t )).

The funct ion of variance I; is given by

(5)

4.2.1 Selection and m utation in a search space of d imension 121 = 2

To motivate the following model we take a population of many different
indi vidu als and pick out one indi vidual i 1 of special interest . For the ot her
individuals we are interested only in an expected behavior. These individuals
are pu t into one class. We use i 2 to denot e a typical representative of this
class. This redu ces the model 2 = {id U (2 \ {id) to 2 = {id U {i2 } .

Let i 1 be of higher fitn ess than the other. The idea of th e GA is tha t this
individual should stay alive over severa l populations to pass on genes . But
th e individu al may die out because i 1 mutates into another ind ividu al, or i 1

is not selected .
On t he other hand , the probab ility for product ion of this special indi vid­

ual by mutation may be neglected (J.li 2->i ' := 0) . Under th ese condit ions t he
quest ion arises of how t he probability of mutation and the pressure of selec­
tion influence the quality of th e algorithm. The populat ion mean function
m redu ces, in this special case, to

i (t ) = m (z(t))

= z(t) * J.li , ->i2 + z( t ) * (1 - z (t)) * (J (i1 ) - f( i2 ) )

from which we are able to calculate z:
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I'i -i - !(i,)+!(i2 )

!(i,) - !(i2)+(I"' - '2 - ! (i,)+! (i2») Xi ,'<O) _e(I" ' -'2- f(i, )+f(i2))0'

pM -(7' i 1)+cr i2

(7(i ,)-(7(i2)+(pM -(7(i,)+(7(i2»-'- _e(pM-u(i,)+u(' 2» on
x i I (0)

z(t ) = -----,- --'--'-'----=:L---'---'-''-'--'-'-''--=-'--_--.,-- __

- !(i,)+! (i2)+

{:} z(n) = ---;_---"----=-"-'.1-=--:.="-'---,------

-(7(i,)+(7(i2)+

with pM := Pt[.....i2 and the condit ion t = n H N. It would take too much space
to pr esent the solut ion of ~(n) here. It is given in detail in [26] .

Example 3. In Figures 2 and 3, resp ectively, z and ~ are given for a pop­
ulation of size N = 1000 afte r n = 10 steps. The graphs show the values
in dependence of the probab ility of mut at ion Pt[.....i2 (front to back) and the
pressure of select ion S elpr := (J(i 1) - (J(iz) (right to left ) . T he population
x(O) was chosen wit h Xi, (0) = 0.5. T he highest var ian ce occurs in a region in

1

0.•1 ~

F igure 2: z(n) . The paramet er settings are given in the text. Fro m
righ t to left t he pressure of select ion increases. From fro nt to back
the pr obability of muta tion increases.

Fig ur e 3: L;(n). T he paramet er settings ar e given in the text . Fro m
right to left t he pressure of select ion increases. From front to back
the pr obabili ty of mutation increases.
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which the change in expectat ion is high. This region is th e interesting one.
In the other regions the individual dies out or dominates the popul ation.
These two situa t ions are not ideal for an examinat ion of the search space
with a GA. Goo d solutions leave their coordinat es to new indi vidu als but do
not reproduce th emselves.

The variance given by ~ can be interpreted as a kind of uncer tain ty. If
the parameter set t ings are such that the populat ion process has high vari­
ance, the GA produces solut ions of different quality in severa l repet itions.
If the population pro cess has low varian ce, repet itions of the GA produce
indi vidu als of the same quality . Because of limited computational resources,
in most cases only one repetit ion of the GA is performed . For a given mean
it is bet ter to set the parameters in a region with low variance. The figures
show that it is bet t er to set the parameters to high values.

4 .3 Crossover in a search space of dimension 131 = 4

In this section we consider the simplest case in which crossover makes sense .
Let 3 = {aa, aA, Aa, A A} , a search space of dimension 4. Let x E P. For
a model with crossover , no pressure of select ion ((j == 1), and no mutation
(pt!..j = 0), m redu ces with Pc= 1 to

Vi E 3 : m i ( x ) = L X j * Xk * P (I c = il I S, = j , I S
2 = k) - X i.

j ,kE S

Again , we may reduce the dimension by applicat ion of t he condit ion L:i ES X i =
1. In a search space wit h four memb ers, th e three kinds of crossover int ro­
duced in sect ion 2 redu ce to two different kinds of crossover. In one-point
crossover and uniform crossover , the two coordina tes are taken with prob­
ability 0.5 from different parent s and with probability 0.5 from one parent.
In two-p oint crossover , the two coordinates are taken with certainty from
different parents.

Example 4. In one-point crossover and uniform crossover the m ean popu­
lation fun ction is given by

With this m the funct ion Z can be calculated by

ZaA(t) = - zaa(t ) + ZaA(O) + zaa(O),
ZAa(t) = - zaa(t ) + ZAa(O) + zaa(O) ,

ZAA(O) = 1 - zaa(t) - ZaA(t ) - ZAa(t ),
zaa(t) = [ZaA(O) + zaa(O)]* [ZAa(O) + zaa(O)J

+ [zaa(O) - [ZaA(O ) + zaa (O)]* [ZAa(O ) + zaa(O)]] * e- t
/
2.
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The first three equat ions give Z for th e indi viduals in depend ence of the
individual aa. In the expression for zaa(t), the dependence of the initial pop­
ulation zaa(O) decreases exponentially. In the limit t ---+ 00 , the remaining
term may be compared with an independent dist ribut ion of the two coor­
dinates. The marginal dist ribution is th e one of the initial populat ion. If
we take as x(O) the uniform distribu tion on the four points, the covariance
matrix I; is given by

The t erms in the main diagonal increase linearly in t . The covar iance between
aA and Aa decreases linearly in t .

Example 5. For two-po int crossover we calculate

ZaA(t ) = - zaa(t) + ZaA (O) + zaa(O) ,
ZAa(t) = - ZAa(t) + ZAa(O) + zaa(O) ,

zt(AA) = 1 - zaa (t) - ZaA (t ) - ZAa(t ),
zaa(t ) = [ZaA(O) + zaa(O)] * [ZAa(O) + zaa(O) ]

+ [zaa(O) - [ZaA(O) + zaa(O)J* [ZAa( O) + zaa(O)JJ * «:'.

If we take as x(O) the uniform distribu tion on the four points , the covariance
matrix I; is given by

In two-po int crossover, Z converges fas ter (e- t ) than in one-point crossover
(e-t/ 2

) . The multi plier in the covariance matrix is lower than the one for
one-point crossover. This shows that in the special situat ion of only two
coordina tes , two-point crossover mixes the coordinates more disorderedly.
One-point crossover preserves some of t he parents. In some applicat ions it
may be of benefit to mix the coordina tes, and in other ap plications it may
be of benefit to preserve the parent s [27] .

5. Summary and discussion

In t his paper we have present ed a central limit theorem for the population
process of a GA. Some simple examples show how the theorem may be ap­
plied . A more detailed description of th e method is pr esent ed in [26J. T hese
examples show the usefulness of the method for the considerat ion of depen­
dences between para meters . For further dependences between t he probability
of mut ation and select ion pressure, refer to [29J.
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T he theory of GAs is divided into models with infini te and finite pop­
ulat ion sizes. Most mathematical models deal with infinite populations
[18, 23, 28, 30]. Up to now, the st rongest result s have been given in this
area of t he th eory. But the ap proximation leads to a determini sti c model.
The infinite model neglects the st ochastic nat ure of the GA.

The populat ion after a finite numb er of ste ps is a random var iab le. Dif­
fusion models with finit e popu lation sizes address this fact. The diffusion
models given in [9] and [12J make only a few limit ations on the para meters .
But the approach is main ly applicable when the number of steps is infinite.

The model presented in this paper describes a useful approximation for
a finit e popu lat ion size and a finit e numb er of ste ps. This is reached at the
expense of some limit ations on t he par ameters. Further , Theorem 1 gives
a connect ion of th e theory of GAs with the theory of differential equa t ion
systems. Therefore, the theorem offers a wide field for research in the future.

A ppendix

Proofof Lemma 1. The proof is divided into several steps . Each ste p considers
the influence of one operator.

Proposi tion 1. The changes of the population that are based on select ion
are given by

lim ~ (P(IS(n) = i l XCN)(n) "= x(n)) - xi(n) )
N--->oo EN

= Xi(n) * (f (i) - ~ f (j ) * Xj(n)) .
J E=-

Proof of Proposition 1.

lim ~ (P(IS(n ) = il X CN)(n ) = x(n) ) - Xi(n))
N--->oo EN

= lim .'. [ o- (i ) * Xi(n) _ Xi(n)]
N--->oo EN L jE3 o-(j ) * Xj(n)

= lim ~ [(1 + EN * f (i)) * xi(n ) - xi(n) L jE3(1+ EN * f(j)) *Xj(n) ]
N---> oo EN LjE3(1 + EN * f (j)) * Xj(n)

= lim [f (i ) * Xi(n) - Xi(n ) L jE3 f(j ) *Xj(n)]
N--->oo 1 + EN * L jE3 f(j ) * xj(n)

= f (i ) * xi(n) - xi(n) L f (j ) * xj(n) .
jE3

Proposition 2. The changes t ha t are based on crossover are given by

lim ~ (P(I C(n ) = il X CN)(n) = x(n) ) - Xi(n) )
N--->oo EN
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= xi(n) * ( f (i ) - ~ f( j) *Xj(n))
JE::.

+ Pc* L xj( n) * xk(n) * p (]C(n) = il ] Sl (n) = i , ] S2(n) = k) - Pc* xi(n).
j ,kE=-

Proof of Propo sition 2.

lim ~ (P(IC(n) = il X CNl(n) = x(n) ) - xi(n) )
N-coEN

_ 1. 1 [ A "" IJ(j ) * Xj(n) * IJ (k) * Xk(n)
- 1m - EN *Pc * L-.

N_co EN j,kE=- (LIE=- IJ (l ) * xI(n))2

*P(Ic (n) = i l ] Sl (n) = j , ] S2(n) = k)

+ (1 - EN *Pc) *P (IS(n) = il X CNl (n) = x(n) ) - Xi(n)]

= Pc* L xj (n) * xk(n) * P(IC(n) = i l ] Sl (n) = i, ] S2(n) = k) - Pc* xi(n)
j,kE =-

+ lim ~ [P(IS(n) = il X CNl(n ) = x(n) ) - xi(n)]
N_co EN

~ Xi(n) * ( f (i ) - ~ f (j ) * xj(n))

+ Pc* L xj (n) * xk(n) * P(IC(n) = i l ] Sl (n) = j,IS2(n) = k) - Pc* xi(n) .
j ,kE=-

The equality [1] follows from Proposit ion 1.

Proof of the lem ma.

lim ~E (x t l (n + 1) - x t l (n)1X CNl(n) = x(n))
N_co EN

lim ~ [p (]M(n) = il X CNl (n) = x(n) ) - Xi(n) ]
N-co EN

L f.tj - i lim P(IC(n) = jl X CNl(n) = x(n))
j E=-, j#i N -ee co

+ lim [(~ - L f.ti-j ) * P(IC(n) = il X CNl(n) = x(n)) - ~ * Xi(n)]
N_co EN jE=-, j,pi EN

L f.tj - i *Xj(n) - Xi (n) L f.ti- j
jE=-, j#i jE=- , j,pi

+ lim ~ [p (]C(n) = i l X CNl (n) = x(n)) - Xi(n)]
N_co EN

The assert ion follows from Proposition 2. •

Proof of Lemma 2. This proof is analogous to the one for Lemma 1. There­
fore, we give only a sketch. Because of the polynomial distribu t ion of X~Nl ,
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the covariance follo ws with i =I j:

283

lim N * cov(Xi(N)(n + 1),Xt )(n + 1)1X (Nl(n) = x(n))
N~oo

= lim ~cov(N *Xt) (n + 1), N * Xtl(n + 1)1X (N)(n) = x(n))
N~oo N

= - lim p(IM(n) = il X(Nl(n) = x(n) ) *p(IM (n) = j l X (Nl(n) = x(n))
N~oo

= - lim P(IC(n) = i l X(Nl(n) = x(n)) * P(IC(n) = j l X (Nl(n) = x(n))
N~oo

- lim P(IS(n) = il X (Nl(n) = x(n)) *P(IS(n) = j l X (Nl(n) = x(n))
N~oo

- xi(n) *xj (n).

The proof for the terms in the d iagonal is analog ous wit h

lim N *V(Xi(Nl(n + 1)1 X (Nl(n) = x(n))
N~oo

= lim P(IM(n) = i l X (Nl(n) = x(n))
N~oo

* (1 - P(IM(n) = j l X (Nl(n) = x(n))) .•
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