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Abstract. Conventionally, square error (SE) and/or relative entropy
(RE) error functions defined over a training set are adopted towards
optimization of gradient descent learnings in neural networks. As an
alternative, a set of divergence (or distance) measures can be specified
in the information-theoretic plane that functionally have pragmatic
values similar to (or improved upon) The SE or RE metrics. Kullback-
Leibler (KL), Jensen (J), and Jensen-Shannon (JS) measures are sug-
gested as possible information-theoretic error-metric candidates that
are defined and derived explicitly. Both conventional SE/RE mea-
sures, as well as the proposed information-theoretic error-metrics, are
applied to train a multilayer perceptron topology. This is done in order
to elucidate their relative efficacy in deciding the performance of the
network as evidenced from the convergence rates and training times
involved. Pertinent simulation results are presented and discussed.

1. Introduction

In typical learning algorithms of neural networks (NNs), an error-metric is
usually specified and minimized towards the optimization of network per-
formance [1]. That is, in pattern categorization efforts, NNs are trained
conventionally from examples using the analog attributes of the activity of
the output units. In the relevant procedure, the analog output (activity)
parameter of a neuron presented with an input pattern (specified by a set of
parametric values), is compared with the teacher parameters. The resulting
mean square of the error between the value(s) is minimized to achieve the
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network training. The quadratic error-metric and the relative entropy (RE)
error-metric are based on the values of output and target parameters and
their logarithmic values, respectively. Network training with such paramet-
ric values is referred to in this paper as a goal-seeking task envisaged in a
parametric spread space. Instead of analog values of the parameters, a proba-
blistic interpertation of the of target activities can be specified to define error
measure(s) for the gradient descent learning in the information-theoretic do-
main. Such informatic specifications are implicitly negative entropy entities,
and the corresponding error-metrics developed presently refer to conditional
information measures. Elucidation of such cross-entropy parameters, based
on the principle of discrimination-information (or conditional information),
leads to what are known as the divergence or distance measures. The ba-
sis for using such cross-entropy based paradigms (in lieu of the conventional
sqare error (SE)/RE error metrics) refers to deciding the extent of discrim-
ination between the information associated with the statistical distributions
of the network output and the target being pursued. Relevant underlying
considerations are based on the minimum entropy principle instead of the
maximum entropy concept built on Shannon’s information measure.

As is well known, a major function of a neural complex is the goal-related,
self-organizing (or self-regulating) effort dictated by an objective function (or
teacher value) and viewed within a set of bounds. The associated randomness
of disorderliness due to the presence of noise would cause the neural system
parameters (specified by a vector set) to veer from the system objective. This
deviatory response in a NN can be quantified by an ensemble of diversion
factors vis-a-vis the neural environment.

Disorderliness in a NN can be defined by measuring the deviation of a
selected variable, say the output y;, with a specified target standard yr.
In a geometrical representation such as Figure 1, yr can be denoted by
a vector corresponding to the center of a region of orderliness wherein a
stipulated stochastic extent of orderliness is dictated within certain bounds.
The disorderliness at the ith realization in the parameter spread space Qg of
Figure 1 can be written as in [2]:

Y; = |yi — yr| — D(y:) (1)

where |y; — yr| refers to the magnitude of the error vector and D(y;) is the
distance from the center to the boundary of a quasi-ordered region close to
the target or goal. Equivalently, a goal-associated positional entropy can be
specified by H,; at the i¢th elementary subspace in the entropy space {2p.
Elsewhere, say at the jth subspace, let H,; represent the goal-associated
positional entropy vector perceived. Now, one can seek information in the
sample space of y for discrimination in favor of H,i against Hy;, or sym-
metrically for discrimination in favor of H,; against H,;. Physically, these
conditions represent whether the ith realization (respectively) would enable
achieving the goal being sought [2].

The entropy space Qg is affinely similar to the parameter spread space
Qg such that each value of H, in the entropy space could be mapped onto
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Figure 1: Parameter spread space and entropy space of the neural
complex. Op: locale of the objective function; BPS: boundary of the
quasi-order of parameter space; BES: boundary of the quasi-ordered
region of entropy space.

the parameter spread space on a one-to-one basis. In the entropy subspace of
the neural complex, the probability of encountering the ith cell wherein the
disorganization is observed can be denoted by p;. With this prescription of a
probabilistic attribute to the goal-related entropy, H, should satisfy certain
conditions stipulated by the lemmas presented in the appendix.

Consistent with the aforesaid description of the neural complex in the
information-theoretic plane, the development of an optimization algorithm
as done in this paper refers to the minimization of the error-metric estimated
in respect to the objective or target value. Such an effort also determines
the convergence rate and the performance aspects of the error-metrics in the
training cycles as well as in achieving the stability of the network.

In the relevant pursuits, the RE measure versus the SE metric in para-
metric spread space has been addressed in [3]. Further, in [4] a comparison
between SE and RE errors is presented using several optimization algorithms.
Improvements towards the convergence specified in terms of iterations re-
quired to reach an acceptable performance (i.e., output being close to the
target value) has been observed with RE measures. Such improvements have
been regarded as the realization of an “accelerated learning” that results
from the use of the RE metric in lieu of the SE measure.

Apart from the conventional RE measure specified in the parametric
space, it is also possible to define several distance measures in the information-
theoretic plane based on the divergence concept indicated before (e.g., [5]).
In this paper, a set of such distance measures are defined explicitly and the
corresponding error-metrics are elucidated. The distance measures are ap-
plied to a multilayer perceptron network and simulation results pertinent to
the convergence rate (or the number of iterations warranted towards conver-
gence), the network stability, and the accuracy of the output are compared
with those of the SE and RE based simulations.
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In section 2, explicit definitions of the proposed distance measures (error-
metrics) are furnished, relevant expressions are derived and elaborated. Sec-
tion 3 describes a multilayer perceptron network implemented for the exper-
imental simulations. Details on the initial condtions and the experimental
protocols are given. The results of the experiments with the defined error-
metrics are presented in section 4 along with the corresponding results ob-
tained via SE and RE measures. Hence, the relative performance aspects are
discussed. Section 5 enumerates the conclusions drawn from the experimental
results.

2. Information-theoretic based divergence measures
2.1 Kullback-Leibler and Jensen measures

The basic set of elements y; that deviate from the target value yr (Figure 1)
have probability measures p; that are absolutely continuous with respect to
each other. These probabilities can be specified by generalized probability
densities f(y;) such that 0 < f(y;) < co and p; = [ f(y;)dy; with 0 < p; < 1.
The average information for discrimination in favor of H,; against H,; can
be written in terms of a divergence measure known as the Kullback-Leibler
(KL) measure. It is given by

10 3,y) = (1/ps) [ o8l (u)/ £ ). @

Considering also the average information for discrimination in favor of Hy;
against Hy;, namely I(j : i,y), a symmetrical measure of divergence (known
as the Jensen or J-measure) can be written as

J(i:g,y) = 1(555,9) + 1( 2 4,9) = D _(ps — py) log(pi/py)- 3)
Yi
This J-divergence represents the divergence of disorganization associated
with the subspace regions of the ith realization and that of the jth real-
ization [7].

Additionally, each of the realizations can be weighted with respect to their
probability distribution to specify its individual strength in the goal-seeking
endeavor. Suppose II; and II; (II;,II; > 0 and II; 4+ II; = 1) are the weights
of the two probabilities p; and p; respectively. Then a generalized divergence
measure (known as the Jensen-Shannon (JS) measure), can be stipulated as
follows from [7]:

JSu(pi : p;) = H(Mip; + IT;) — I H (p;) — IL;H (p;). (4)

This measure is nonnegative and equal to zero when p; = p;. It also provides
the upper and lower bounds for the Bayes’ probability of error. The JS
divergence is ideal for describing the variations between the subspaces or the
goal-seeking realizations as in the entropy space of the neural complex (Figure
1). It also measures the distance between the random-graph depictions of
such realizations pertinent to the entropy plane Q.
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General characteristics of the distance measures are as follows.
1. I(p; : p;) continuous of p; and p;.

2. When I(p; : pj) = I(p; : ps), the divergence refers to the symmetric
property of the error-metric.

3. I(p; : p;) > 0 is the nonnegativity property of the error-metric. Equal-
ity occurs if and only if p; = p;, in which case the corresponding prop-
erty is known as the identity property.

4. I(p; : p;) + L(pj : pr) > I(p; : px) is the triangle inequality property.
5. I(p; : p;) is a concave function of (p1,ps, ..., Pn)-

6. When I(p; : p;) is minimized, subject to known linear constraints, none
of the resulting minimized probabilities should be negative.

Within the framework of the various properties enumerated above, the
cross-entropy based distance measures can be derived for a NN as indicated
in section 3.

3. Distance measures as error-metrics of a neural network

Considering the NN depicted in Figure 2, let O; represent the output at the
ith cell, the corresponding target sought is specified as T;. Then the following
KL cross-entropy can be written:

N
I(pi : ¢;) = pilog(pi/ i), (5)
i=1
where 7« = 1,2,..., N enumerates the number of cells or offers an index
for the output units; and p; is the probability of O; which complies with the
following hypothesis: In terms of learning, probabilities of a set of hypotheses
are represented by output limits using p; and ¢;. That is, for a hypothesis

A \

wl
W2 X| Ps(x;)
3z = ¥ o
- X
= Output
o /W,, u

Figure 2: An artificial neuron.
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Figure 3: The sigmoidal Bernoulli activation function Lg(z) with
values of @ = 1/2, 2, and 10.

represented by the 7th unit, p; = 0 means definitely false, and p; = +1 means
definitely true. Similarly, ¢; refers to a target set of probabilities such that
¢; = 0 and ¢; = +1 set the false-true limits of the target value.

Let X; = Y> W,;x; represent the weighted sum of the multi-inputs {a:]}
with W;; being the weighting factor across the interconnection between the
ith and jth cells. This summed input is processed by a nonlinear activa-
tion function Fs to produce the neuron’s output signal O; as depicted in
Figure 2. That is, each neuron evaluates its inputs and “squashes” its per-
missible amplitude range of output to some finite value O; = F,(X;) in
a nonlinear fashion. As indicated in [8], the Bernoulli function Lg(z) =
alcoth(az)] — blcoth(bz)] (with @ = 1+ 1/2Q and b = 1/2Q) is a stochasti-
cally justifiable sigmoidal function to represent the nonlinear activation Fg
of a neuron (Figure 3). Here, Q is a single parameter that controls the slope
of Fs at the origin. Further, Lo(z) is a monotonic function, differentiable
everywhere and squashed between the limits —1 and +1. When @ = 1/2,
the Bernoulli function becomes tanh(z), which is the conventional sigmoid
adopted in NN algorithms. Lg(z) can be approximated as:

+1; z>+(1/a)
Lo(2)=1{ o —(1/a) <z+(1/a) (6)
-1; z<—(1/a)

where o = (2a —1)/3 = (2b+1)/3.

p(0;) can be deduced in terms of the Bernoulli function chosen as the
sigmoid as follows. Let the probability density function (f) of the weighted
sum of the inputs, namely X;, be uniform (of constant value a/2) over the
interval —1/a to +1/a. That is, f(X;) is equal to «/2 in the interval —1/a <
X; < 41/« or zero otherwise. Hence, the probability density function of the
otuput f(O;) can be obtained by the following transformation:

F(0:) = [f(X) ) Fo(Xi)l x,=p1 (00 (7)
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where the prime denotes the differentiation with respect to the argument.
With the assumed uniform distribution of X;, f(O;) reduces to the following
uniform distribution:

F(0:) = { 0; otherwise. (8)
Therefore, p;(O;) can be deduced as:
O;
pi(0) = [ f@)de = (1+aXi)/2 9)

which guarantees that p;(0;) = 0 at X; = —1/«, and that p;(0;) = 1 at
Xi = +1/Oé

Assuming that the target T; can be obtained from the following transfor-
mation:

H(T) = K[f(Xy)/G'(Xi) x,=c-1 (1) (10)

where K is a normalization constant required to realize the following identity
on total probability:

K/f(Ti)dTi =1 (11)

Denoting G'(X;)|x,=¢-1(z;) = D1(T3) and Dy(T;) = S dy /[Dy ()], the prob-
ability of T; is obtained as

4(Ti) = [D2(Ti) — D2(0)]/[Da(1) — D2(0)]. (12)
Now, inasmuch as p;(O;) and ¢;(7;) are explicitly known in terms of X

and G(X;), the other distance measures in the informatic plane can be written
as follows.

1. KL Measure:

exr = Y pilog(pi/a)- (13)
2. J Measure:

er = _pilog(pi/a) + D_ ¢ log(a:/pi). (14)
3. JS Measure:

ess =1y pilog(pi/a:) + 2 Y ¢ilog(qi/pi), (15)

where II; and II, are weights such that II; + Il = 1.
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For simulation purposes and to compare results, SE and RE measures of
a NN with O; and T; as the output and target values respectively can be
written as

esp =1/2) (T; — 0;)* (16)
and

ere = (1/2)(1 + @) log[(1 + @)/ (P; + ps)]
+(1/2)(1 — @) log[(1 — g:)/ (P; + pi)] (17)

where P? = a2 + b?*[coth?(bX;) + cosech®(bX;)] — 2ab/ coth(aX;) coth(bX;).

In all of the preceding cases, the sigmoidal function refers to Lg(X;). For
the comparison of the aforesaid error-metrics in dictating the performance
characteristics of a NN each error-metric is applied in training a mulitlayer
perceptron network. Its description is presented in section 4.

4. Computer simulations with a multilayer perceptron network
4.1 Description of the network

A multilayer perceptron is implemented to evaluate the training effectiveness
of backpropagation in the prediction of a sine wave function [sin(mmraz;/2)+
1]/2, where m = (=1)*(2n + 1),n = 0,1,2,... using the various distance
measures specified previously to calculate the synaptic weight modifications.

The test network is depicted schematically in Figure 4 and consists of
nine input units, ten units in the hidden layer, and a single output unit.
The activation functions in the input-to-hidden layer are Bernoulli sigmoids

Figure 4: Test NN topology of the multilayer perceptron.
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Lg(z), and are linear in the output layer. The nine input units are trained at
x values over the interval z;e[—1,1] at increments of 0.25, while the output
unit is evaluated at a z value of z7 = 0.375. The weights and thresholds
are initialized to be uniformly distributed pseudorandom values over [—1,1],
the input and hidden layers have an additional bias unit clamped to —1
which is connected through a trainable weight to each unit in the hidden
and output layers respectively. These bias units provide a trainable offset to
the activation function origins for the units in the hidden and output layers,
thereby enhancing the convergence rate.

The network is sequentially presented seventy-five sine wave training sets
at the nine inputs (z;) during each training epoch. The training sets are spec-
ified by T, = [sin(mmaryz;/2)+1]/2, where 7 is a uniformly distributed pseu-
dorandom variate in the range [—1, 1]. The output of the network specified at
z7 is used in the backpropagation mode with the gradient descent in order to
adjust the weights over 150 training epochs. After the training, the network
is set to compute the values of the sine function [sin(mmwayzr/2) 4+ 1]/2 at
fifty equally spaced points over the interval v € [—1, 1].

4.2 Backpropagation algorithm

The essence of the backpropagation algorithm is that the synaptic weights are
adjusted to minimize the local error of the network with a given knowledge
of the target output 7;. The fundamental quantity used in the determination
of the weight-states is the error, or the distance (e;) of the network output
(O;) of the ith unit from the target value T;.

The basic prescription to adjust the weights at the nth training step
follows the well-known Widrow-Hoff algorithm, namely, w;;(n) = w;;(n —
1) + Aw;; where Aw;; = 16;0; and w,; is the weight from unit i to 7, n is the
learning rate, and 6, is the effective gradient. The effective gradient has two
distinct definitions depending on whether or not a target value is available
for a particular unit.

In the case of network output units for which a target is known, ¢; is
defined as the deviation of the jth unit multiplied by the derivative of the
activation function evaluated at the output value of the sth unit. That is,
8; = (00;/00})e;, where o; represents the summed input to the activation
function, or O; = Fs(0;).

When the unit resides in a hidden or input layer, the target value is not
available for the computation of the effective gradient. Therefore, a modified
definition in which the product of cumulative effective gradients with the
interconnection weights are back-propagated to these units via the relation
specified as 6; = (00;/90;) 3=, 6;wg;. In the case of the conventional SE met-
ric, the sign of 6 is decided by the simple arithmetic difference between the
target and output. The direction of gradient descent is controlled by the feed-
back obtained from the comparison of target versus output difference. The
cross-entropy metrics involving logarithmic functions are, however, strictly
nonnegative; and therefore would not allow for § to change its sign in re-
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sponse to the target versus output differences resulting in a loss of feedback
control in the weight changing algorithm. To remedy this situation, the cal-
culation of effective gradient while using the cross-entropy error-metrics is
multiplied by +1, depending upon the sign of the target-output difference.
That is, the value of delta is specified by 6; = é; signum(7; — O;).

In regions of the error surface where large gradients exist, the ¢ terms
may become inordinately large. The resulting weight modifications will also
be extensive, leading to large oscillations of the output, bypassing the true
error minimum. The learning coefficient can be set to an extremely small
value to counteract this tendency; however, this would drastically increase
the training time. To avoid this problem, the weight modification can be
given a memory so that it will no longer be subject to abrupt changes. That
is, the weight-change algorithm is conventionally specified by Aw;;(n) =
16;0; + A[Aw;j(n — 1)], where X is known as the momentum parameter. If
A is set to a value close to 1, the search in the parameter space will be
determined by the gradient accumulated over several epochs instead of a
single iteration, thereby improving the stability of the network towards the
convergence.

5. Results and discussions

The multilayer perceptron described in section 3 was implemented to predict
values of the target function at fifty equally spaced points over the interval
[—1,1] using the five error-metrics defined by equations (13) through (17).
The value of the network parameter @ is adjusted to control the training
effectiveness and stability of the network. Further, the value of the learning
coefficient 7 can also be altered to influence the convergence rates and the
ultimate accuracy of the performance of the network. To assay the conse-
quences of varying n and @ in deciding network performance, each of the
distance measures (namely KL, J, and JS) was implemented in training the
network with values of 7 ranging from 0.0001 to 0.2 and for @ values of 1/2,
2, and 10. The same random initializations of the interconnection weights
for each set of 7 and ) was used.

After training, the root mean-square (rms) deviation of the functional
prediction over the fifty points z, was recorded. Table 1 lists the results for
the set of parameters (Q = 1/2, m = 2), (Q = 2, m = 4), and (Q = 10,
m = 8). When the error-metric magnitude exceeded 10* during training,
the network was considered to have diverged and the result is indicated in
Table 1 as DIV.

Relevant to these test studies, the highlighted vales presented in Ta-
ble 1(c) represent the minimum rms errors at the network output for the
various test error-metrics under consideration with @ = 10 and indicate the
corresponding 7 values to be used for training. Examination of Table 1 re-
veals that for all of the error-metrics considered (and in particular for the RE
measure), increasing the value of @) enhances the tolerance of the network
optimization to larger learning rates. It is also observed that for each error-
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Table 1: Root mean-square (rms) deviation of the network output
for the SE, RE, KL, J, and JS distance measures versus the learning
coefficient 7. (a): (Q = 1/2, m = 2). (b): (Q =2, m = 4). (c):
(Q =10, m = 8).

(a) m SE | RE KL J T80z
0.0001 | 0.0924 | 0.5205 | 1.5708 | 0.3700 | 0.4584

Q@ =1/2 [0.0010 | 0.0366 | 0.2467 | 3.3927 | 0.1402 | 0.2189
m=2 [00100| DIV |0.0289| 6.6301| 02629 0.1436
0.1000 | DIV | DIV | 95.4445 | 57.5541 | 46.5342

0.2000 | DIV | DIV |105.7281 | 53.0585 | 57.5541

(b) n SE | RE KL J Brns
0.0001 | 0.0531 | 0.4572 | 1.13710 | 0.4242 | 0.4964

Q=2 [0.0010 | 0.0205 | 0.0868 | 6.2400 | 0.0035 | 0.0836
m=4 [0.0100 | 0.0254 | 0.0579 | 16.1989 | 0.2538 | 0.0945
0.1000 | DIV | 0.0985 | 25.9595 | 83.3622 | 187.5787

2000 | DIV | 2.0794 | 1105492 | 91.9989 | 83.3622

(c) 7 SE | RE KL J Tom0s
0.0001 | 0.1372 | 0.56135 | 0.7664 | 0.4766 | 0.4993

Q=10 [0.0010 | 0.0240 | 0.2182 | 5.3636 | 0.0508 | 0.1654

m =28 [0.0100 | 0.0181 | 0.0275 | 28.6065 | 0.0980 | 0.0677
0.1000 | DIV | 0.2005 | 150.1648 | 16.2894 | 0.1195

0.2000 | DIV | 0.3980 | 73.8275 | 49.4355 | 16.2894

metric, the minimum rms error in predicting the target function is achieved
at @ = 10.

For the performance comparison of the error metrics, the values of the
learning rate 7 corresponding to these minimum values of the rms error (at
the output) are considered in realizing the network output (optimized to-
wards the target function) in each case of the error-metric under discussion.
Figure 5 presents the network convergence data and the output for the SE
error-metric predicted with the value of 1 decided by the minimum rms error
of the output indicated in Table 1(c). The left plot (a) is the magnitude of
the SE versus training epoch, normalized with respect to the maximum error
value. The right plot (b) depicts the target and network output values of the
sine function. Convergence is achieved by the 80th training epoch. It can
be noted that the error in the prediction of the sine function is appreciably
small over the entire interval.

The results for the RE error-metric are shown in Figure 6. Again, the n
value used corresponds to the minimum rms error in the output (as in Table
1(c)). In this case, the network converges after 60 training epochs to an
almost constant value. The error in predicting the sine function is negligibly
small, as in the SE case, over the interval [—1,1].
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Figure 5: Network training and prediction of the target function with
the SE error-metric (Q = 10, n = 0.01). (a) Distance measure esp
versus training epoch. (b) Target and predicted values of the sine

function.
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Figure 6: Network training and prediction of the target function with
the RE error-metric (Q = 10, n = 0.01). (a) Distance measure erg
versus training epoch. (b) Target and predicted values of the sine
function.

The KL error-metric performance is shown in Figure 7, where it is ob-
served that the distance measure does not reach an equilibrium; hence, net-
work convergence appears to be unstable with respect to the training epochs.
Network performance under the control of the J-measure is presented in Fig-
ure 8, with @ = 10 and 7 dictated by the minimum rms error of the output
as given in Table 1(c). It can be seen that the convergence occurs after ap-
proximately 50 epochs and the network output is comparable to the target
objective over the prediction interval.

Figures 9, 10, and 11 depict the effectiveness of the JS-measure in training
the network under similar conditions of @ and n (as per Table 1(c)). The
functional output is predicted for the weighting values of IT; = 0.25, 0.5, and
0.75 respectively, with Il = (1 — II;). In Figures 9, 10, and 11 the only
stable configuration pertinent to these data is observed only in the case of
symmetrical weighting, namely, IT; = II, = 0.5, where network performance
is seen acceptable over the entire interval.

To demonstrate the utility of the Bernoulli activation function parameter
Q@ in desensitizing the error-metric oscillations during training, as well as in-
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Figure 7: Network training and prediction of the target function with
the KL error-metric (Q = 10, n = 0.0001). (a) Distance measure exf,

versus training epoch. (b) Target and predicted values of the sine

function.
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Figure 8: Network training and prediction of the target function with

the J error-metric (Q = 10, n = 0.001). (a) Distance measure e

versus training epoch. (b) Target and predicted values of the sine

function.
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Figure 9: Network training and prediction of the target function with
the JS error-metric (II; = 0.25, II; = 0.75, @ = 2, n = 0.001).
(a) Distance measure 35 versus training epoch. (b) Target and pre-
dicted values of the sine function.
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Figure 10: Network training and prediction of the target function
with the JS error-metric (II; = 0.5, II, = 0.5, Q@ = 10, n = 0.01).
(a) Distance measure £5g versus training epoch. (b) Target and pre-
dicted values of the sine function.
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Figure 11: Network training and prediction of the target function
with the JS error-metric (II; = 0.75, II, = 0.25, @ = 10, n = 0.0001).
(a) Distance measure €55 versus training epoch. (b) Target and pre-
dicted values of the sine function.
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Figure 12: Network training and prediction of the target function
with the JS error-metric (II; = 0.5, II, = 0.5, Q@ = 2, n = 0.01).
(a) Distance measure ejg versus training epoch. (b) Target and pre-
dicted values of the sine function.
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Figure 13: Network training and prediction of the target function
with the JS error-metric (Il; = 0.5, II; = 0.5, Q = 1/2, n = 0.01).
(a) Distance measure ejg versus training epoch. (b) Target and pre-
dicted values of the sine function.
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Figure 14: Network training and prediction of the target function with
the J error-metric (Q = 2, n = 0.001). (a) Distance measure €3 versus
training epoch. (b) Target and predicted values of the sine function.
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Figure 15: Network training and prediction of the target function
with the J error-metric (Q = 1/2, n = 0.001). (a) Distance measure
ey versus training epoch. (b) Target and predicted values of the sine
function.
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creasing the ultimate prediction accuracy of the network, Figures 12 through
15 are presented. They depict the predictions for the JS and J measures
with values of 7 fixed (corresponding to the minimum rms error conditions
of Table 1(c¢)) while decreasing the value of Q. Figures 12 and 13 are results
for the symmetric JS measure with = 0.01 and @ = 2 and 1/2 respectively.
In comparison to the result of Figure 10 (with @ = 10), it is clear that as Q
decreases, the magnitude of the error-metric oscillations increases, thereby
jeopordizing the stability of training optimization, as well as simultaneously
decreasing the accuracy of target prediction. Figures 14 and 15 depict the
results relevant to the J measure of Figure 8 with n = 0.001 and values of
@ equal to 2 and 1/2, respectively. Again it is observed that decreasing the
value of @ increases the error-metric oscillations and degrades the accuracy
of the functional prediction.

6. Conclusions

The present study indicates the feasibility of prescribing an error measure
for the NN optimization algorithms in terms of the divergence associated
with the statistical distributions of the network’s output and the target val-
ues. Such a divergence measure specifies implicitly the conditional entropy
pertinent to the statistics involved.

In specifying a divergence measure based on information-theoretic consid-
erations, three error-metrics, namely the Kullback-Leibler (KL), the Jensen
(J), and the Jensen-Shannon (JS) measures are defined and their relative
efficacies are elucidated in reference to a multilayer perceptron trained via
a backpropagation algorithm. Computer simulations indicate that not all
such error-metrics (defined on the basis of the conditional entropy) are how-
ever, useful. Specifically, the KL measure poses convergence problems during
training and exhibits significant deviation of the network end-results versus
the target values. However, balanced (symmetric) measures defined by J-
and/or JS-metrics offer both rapid convergence during training and network
output deviations from the target that are comparable to those of conven-
tional square-error and relative-entropy measures. But, before using the J
and/or JS measures, the choice of the network parameter @ and the learning
coefficient n have to be preevaluated such that the pair of the values (Q and
n) correspond to the minimum rms output error of the network.

In the case of an asymmetric (unbalanced) error-metric such as the KL
measure, the error deviations (exy,) are one-sided as can be seen in Figure
7(a) along the training epochs. In symmetric (balanced) error-metrics (such
as J-measure or JS measure with IT; = II, = 0.5), the respective error devi-
ations 5 and ;5 (in Figures 8 and 10) are symmetric about the converged
value specified at the terminal epochs. Again, when the JS measure becomes
asymmetric (with II; # II,), the performance of the network deteriorates, as
can be seen in Figures 11 and 12. Further, the criterion of using the pair of
values of @ and 7 (which correspond to the minimum rms output error as
in Table 1(c) is rather essential to obtain acceptable network performance,
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even if the symmetric error-metrics are adopted. A degradation in the per-
formance prediction is imminent as can be observed from the results shown
in Figures 13 through 15.

Also indicated in this paper is the significance of using a single parameter
sigmoidal activation function (known as the Bernoulli function) in training
the network. The relevant controlling parameter (designated as @) has an
influence on network performance towards convergence by suppressing the
magnitude of the allowable neuronal state-transitions, thereby desensitizing
the oscillations of the network output to increased learning rates.

To conclude, this paper presents a new strategy of NN optimization under
the constraint of conditional entropy error-metrics. Apart from the three dis-
tance measures indicated here, there are also other measures such as Csiszer’s
family of directed divergence [5] which can be exploited in the NN vis-a-vis
the conditional entropy error-metrics on the basis of similar considerations
outlined in this work.

Appendix
Lemma 1.

H, =0, ifallly; —yr| < D(y;) or if

p; =0 for all ly; — yr| — D(y;) > 0. (A1)
Lemma 2.

H, — 0 for the ensemble p; > 0, if |y; — yr| — D(y;) — 0, and

H, - o0, if i —yr| — D) = oo. (42)
Lemma 3. With p; = 1/k,
Hy = —(1/x) Y log{1/[ly: — yr| — D(yr)]} + ex (A3)
i=1
where

ew = (1) 3ol — vrl = D)/l — vl — D) + 11}

and
e, — 0, if |y; — yr| — D(y) > 1.

Lemma 4. Sum of two entropies satisfying the conditions of independence
and summation in the spread space of the state vector leads to:

Hya,2) = log Hy[ly: — yr| — D(y:)
+Hylly2 — yr| — D(y:) + £(1,2) (A4)
where
eq,2) = log{[H,, (Y1) + Hy,(T2)|/[Hy, (Y1) + Hy, (Y2) + 1]} — 0 for H,(Y;) > 1
with Y; = |y; — yr|, (0 = 1,2).
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Lemmas 1 and 2 represent the intuitive concept of neural disorganization
in the state of being controlled towards the goal. If an ideal control is per-
ceived, it strikes the well-ordered target domain in all realizations specified
by H, = 0. Diversions from the ideality of the ensemble with an increasing
or decreasing trend enable H,, to increase or decrease respectively.

Lemma 3 stipulates that, in the event of equiprobable diversions, the
relation between the spread space of the state vector and the entropy space
is logarithmic with an err e, — 0 for |y;| < 1.

Entropy associated with target seeking is not additive. That is, goal-
associated entropies cannot be added or subtracted directly in the entropy
space. However, these superposition operations can be performed in the
parameter spread space and the consequent effects can be translated to the
entropy space.

Lemma 4 specifies the rule of additivity in the parameter spread space
pertaining to independent goal-associated position entropies with an accu-
racy set by eq 2 — 0 with Hy (Y1) > 1.
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