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Abstract. Conventionally, square error (SE) and/or relative ent ropy
(RE) error functions defined over a training set are adop ted towa rds
optimization of gradient descent learnings in neur al networks. As an
alternative, a set of divergence (or dist ance) measur es can be specified
in the inform ation- theoretic plane that funct iona lly have pragmatic
values similar to (or improved upon) The SE or RE metrics. Kullback­
Leibler (KL) , Jensen (J ), and Jensen-Sh ann on (JS) meas ures are sug­
gested as possible inform ation-theoretic error-met ric candidates that
are defined and derived explicit ly. Both convent ional SE / RE mea­
sures , as well as the prop osed inform ation-theoreti c error-met rics, are
applied to t rain a multilayer perceptron topology. This is done in order
to elucida te t heir relative efficacy in deciding the perform ance of the
network as evidenced from the convergence rat es and tr aining t imes
involved. Pertinent simulation results are present ed and discussed.

1. Introduction

In ty pical learning algorit hms of neural networks (NN s) , an error-me t ric is
usu ally specified and minimized towards the optimization of network per­
formance [1]. T hat is, in patt ern categor izat ion efforts, NN s are t rained
conve nt ionally from exam ples using the analog attributes of t he ac t ivity of
the ou tput units. In the relevant procedure, the analog output (activity)
parameter of a neuron presented wit h an input pattern (sp ecified by a set of
parametric va lues ) , is com pared with the t eacher paramet ers. The resulting
me an square of the error between the va lue (s) is minimized t o achieve the
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network tr aining. T he quadratic erro r-metric and the relative entropy (RE)
err or-met ric are based on t he values of output and tar get parameters and
th eir logarithmic values, respect ively. Network training with such paramet­
ric values is referr ed to in this pap er as a goal-seeking tas k envisaged in a
parametric spread space . Instead of analog values of the par ameters, a proba­
blistic interpertation of the of target act ivit ies can be specified to define erro r
measure(s) for th e gradient descent learni ng in the information-theoreti c do­
main. Such informatic specificat ions are implicitly negative entropy ent it ies,
and the corres ponding erro r-rnetrics developed present ly refer to conditional
informat ion measures. Elu cidation of such cross-ent ropy parameters, based
on the pr inciple of discrim inat ion-inform at ion (or condit ional information),
leads to wha t are known as th e divergence or distan ce measures. The ba­
sis for using such cross-entropy based paradigms (in lieu of th e convent ional
sqare erro r (SE) I RE erro r metrics) refers to deciding the extent of discrim­
inat ion between the informat ion associat ed with the statist ical distribut ions
of the network output and th e t arget being pursued. Relevant underlying
considera t ions are based on the minimum entropy pri nciple inst ead of t he
maximum ent ropy concept buil t on Sha nnon's information measure.

As is well known, a maj or functi on of a neural comp lex is the goal-related,
self-organizing (or self-regulating) effort dictated by an obj ect ive function (or
teacher value) and viewed within a set of bounds. The associated randomness
of disord erliness due to the presence of noise would cause the neural system
parameters (specified by a vector set ) to veer from the syste m obj ective. This
deviatory response in a NN can be quantified by an ensemble of diversion
factors vis-a-vis the neural environment .

Disord erliness in a NN can be defined by measuring the deviation of a
selected variable, say the output Y«, with a specified target standard Yr .
In a geometrical representation such as Figure 1, Y'r can be denoted by
a vector corres ponding to the cente r of a region of orderliness wherein a
st ipulated stochastic extent of orderliness is dictated within certain bo unds .
The disord erliness at the i th realiza tion in th e par ameter sprea d space rl s of
Figure 1 can be writ ten as in [2]:

Y; = [Yi - Yr [- D(Yi) (1)

where IYi - Yrl refers to the magnitude of the error vector and D(Yi) is the
dist ance from the cent er to th e boundary of a quasi-ordered region close to
the targ et or goal. Equivalently, a goal-associated posit ional entropy can be
specified by H yi at the ith elementary subspace in the entropy space rl H .

Elsewhere, say at the j th subspace, let Hyj represent the goal-associated
posit iona l entropy vector perceived . Now, one can seek informati on in the
sample space of Y for discriminat ion in favor of H yi against H yj , or sym­
met rically for discrimination in favor of H yj against H yi . Physically, t hese
conditions represent whet her t he ith realization (respectively) would enable
achieving the goal being sought [2].

The entropy space rlH is affinely similar to the parameter spread space
rl s such that each value of Hy in the entropy space could be mapped onto
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F igure 1: Par amet er spread space and ent ropy space of the neur al
complex . OB: locale of the obj ective function ; BPS: boundary of the
quasi-order of par am et er space; BES : boundar y of the qu asi-ordered
region of entropy space .

the param eter spread space on a one-to-one basis. In the ent ropy subspace of
the neur al complex, the probabili ty of encountering the ith cell wherein the
disorgani zation is observed can be denot ed by Pi. With this prescrip tion of a
probabilist ic at t ribute to the goal-related ent ropy, Hy should satisfy cert ain
condit ions st ipulate d by the lemmas presented in the appendix.

Consist ent with the aforesaid descrip ti on of the neur al complex in the
inform ation-theoretic plane, the developm ent of an optimizat ion algorit hm
as done in this pap er refers to the min imization of the erro r-metric est imated
in resp ect to the objective or target value. Such an effort also det ermines
the convergence rat e and the perform an ce aspec ts of t he erro r-metrics in the
training cycles as well as in achieving the stability of the network.

In the relevant pursuit s, the RE measur e versus the SE metric in par a­
met ric spread space has been add ressed in [3]. Further , in [4] a comparison
between SE and RE errors is presented using several optimization algorit hms .
Improvement s towards t he convergence spec ified in te rms of it erat ions re­
quired to reach an acceptable pe rformance (i.e., output being close to the
t arg et value) has been observed with RE measur es. Such improvement s have
been regarded as the realizat ion of an "accelerated learn ing" that results
from the use of the RE metric in lieu of t he SE measur e.

Apart from the convent iona l RE measur e spec ified in the parametric
space, it is also possible to define several dist an ce measur es in the informat ion­
theoreti c plane based on the divergence concept indi cat ed before (e.g ., [5]).
In this pap er, a set of such dist an ce measur es are defined explicit ly and the
corresponding err or-metrics are elucidated . The dist an ce measur es are ap­
plied t o a multi layer perceptron network and simulation results pertinent to
the convergence rate (or the number of iterations warran ted towards conver­
gence), the network stability, and the accuracy of the output are compared
wit h those of the SE and RE based simulations .
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In sect ion 2, explicit definitions of the proposed dist an ce measur es (error­
metrics) are furni shed, relevant expressions are derived and elaborate d . Sec­
tion 3 describ es a multilayer perceptron network imp lemented for th e exper­
iment al simulat ions. Det ails on the initial condtions and the experimental
protocols are given. The results of t he experiments with the defined error­
metrics are present ed in sect ion 4 along with the corres ponding results ob­
tained via SE and RE measur es. Hence, t he relati ve perform an ce aspects are
discussed . Sectio n 5 enumerates the conclusions dr awn from the experimental
result s.

2 . Information-theoretic based divergence measures

2.1 Kullback-Leibler and J ensen measures

T he basic set of elements Y: tha t deviate from t he target value YT (Figur e 1)
have probability measur es Pi that are absolutely cont inuous with respect to
each ot her. T hese prob abilities can be spec ified by generalized probability
densities ! (Yi) such that 0 < !(Yi) < 00 and Pi = J!(Yi)dYi with 0 ::::: Pi ::::: 1.
T he average inform at ion for discrim ination in favor of H yi against H yj can
be writte n in term s of a divergence measur e known as the Kullback-Leibler
(KL) measur e. It is given by

I( i : j ,y) = (l lpi)Jlog[J(Yi)I ! (Yj )]dpi . (2)

Considering also the average inform ation for discrimination in favor of H y j

against Hyi , nam ely I (j: i, y), a symmet rical measure of divergence (known
as the J ensen or J-measur e) can be written as

J(i : i ,y) = I (i ;j,y) + I (j : i , y) = ~(Pi - Pj) log(p;/pj).
Yi

(3)

T his J-divergence repr esent s the divergence of disorgan izat ion assoc iate d
with the subspace regions of the ith realization and that of the jth real­
izat ion [7].

Additionally, each of t he realizations can be weighted with respect to their
probability distribution to specify its individ ual st rength in the goal-seeking
endeavor . Suppose IIi and IIj (IIi, IIj ~ 0 and IIi + IIj = 1) are the weights
of the two probabi liti es Pi and Pj resp ecti vely. Then a generalized divergence
measur e (known as the J ensen-Shannon (JS ) measur e), can be st ipulate d as
follows from [7] :

(4)

This measur e is nonnegative and equa l t o zero when Pi = Pj. It also provides
the upper and lower bounds for the Bayes' probabi lity of error. T he JS
divergence is ideal for describing the variations between the subspaces or the
goal-seeking realizations as in the ent ropy space of the neur al complex (Figure
1). It also measures the dist an ce between the random-graph depictions of
such realizations pertinent to the ent ropy plan e f),H.
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General characterist ics of the distan ce measures are as follows.

1. I (Pi : Pj) cont inuous of Pi and Pj·

2. When I(Pi : Pj) = I(pj : Pi) , the divergence refers to the symmet ric
property of the error-metric.

3. I (Pi : Pj) 2 0 is the nonnegati vity property of the err or-metric. Equal­
ity occurs if and only if Pi = Pj , in which case the correspond ing prop­
erty is known as the identi ty property.

4. I (Pi : Pj) + I (pj : Pk) 2 I (Pi : Pk) is the t riangle inequ ali ty pr op erty.

5. I (Pi : Pj) is a concave fun ct ion of (Pl ,P2, . . . ,Pn)'

6. When Itp , : Pj) is minimized, subject to known linear cons traints, none
of the result ing minimized probab ilit ies should be negative.

Within the framework of the various properties enume ra te d above, the
cross-entropy based distan ce measures can be derived for a NN as indicat ed
in sect ion 3.

3 . D ist an ce measures as error-metrics of a neural network

Considering the NN depicted in Figure 2, let O, represent the output at the
ith cell, t he corresponding tar get sought is spe cified as Ti . Then the following
KL cross-entropy can be writ ten:

N

I (Pi : qi) = L Pi log(p;/qi),
i=l

(5)

where i = 1,2, . .. , N enumerates the number of cells or offers an index
for the output units ; an d Pi is the pr obability of O, which complies wit h the
following hypothesis: In terms of learning, pro babilit ies of a set of hypotheses
are represented by output limits using Pi and qi. That is, for a hyp othesis

Inputs X l

~ ----+___.. I

Output

Fi gure 2: An artificial neuron .
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Fi gur e 3: The sigmoidal Bern ou lli acti vation fun cti on LQ(x) wit h
values of Q = 1/2 , 2, and 10.

(6)

represented by the ith unit , Pi = 0 means definitely false, and Pi = +1 means
definitely true. Similarly, qi refers t o a target set of probabi lities such that
qi = 0 and qi = +1 set the false-t rue limit s of the target value.

Let X i = L WijXj repr esent the weighted sum of the multi-inp ut s { Xj }
wit h Wij being the weight ing fact or across the interconnection between the
ith and jth cells. This summed input is processed by a nonlinear activa­
t ion funct ion Fs to produce the neuron 's output signal O, as depicted in
Figur e 2. That is, each neuron evalua tes its inputs and "squashes" it s per­
missible amplitude range of out put to some finit e value O, = Fs(Xi ) in
a nonlinear fashion . As ind icated in [8], the Bernoulli fun ction Lq(z ) =

a[coth(az)] - b[coth(bz )] (with a = 1 + 1/ 2Q and b = 1/2Q) is a stochas t i­
cally just ifiable sigmoidal function to represent the nonlinea r act ivat ion Fs
of a neuron (Figure 3). Here, Q is a single parameter that controls the slope
of Fs at the origin. Fur ther , LQ(z) is a monotonic funct ion , different iab le
everywhere and squashed between t he limit s -1 and +1. When Q = 1/2 ,
the Bernoulli funct ion becomes t anh(z) , which is t he convent ional sigmoid
adopted in NN algorit hms. Lq( z) can be app roxima ted as :

{

+1 ; z> +(l / a)
Lq( z) = a; - (l/a) < z + (1/a)

- 1; z < -(l/a )

where a = (2a - 1)13 = (2b+ 1)/ 3.
p(Oi) can be deduced in te rms of th e Berno ulli fun ct ion chosen as the

sigmoid as follows. Let t he probability density functi on (J) of the weighted
sum of the input s, namely X i , be uniform (of constant value a/2) over the
interval v-L'c to +l / a . That is, f (X i ) is equal to a/2 in t he interval e-L'o :::;
Xi :::; +II a or zero otherwise. Hence , th e probab ility density funct ion of th e
otuput f (Oi) can be obtained by t he following t ra nsforma t ion:

(7)
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where th e prime denotes th e differentiation with respect to the argument.
With the assumed uniform distribution of X i, f( Oi) redu ces to the following
uniform distribution:

f (O ) - {I; 0::::: o, < 1,
i r >: 0; ot herwise.

Therefore, Pi(Oi) can be dedu ced as :

Pi(Oi) = fa° i f (x )dx = (1+ CtX i)/2

(8)

(9)

which guara ntees that Pi(Oi) = 0 at X i = - l/Ct , and that Pi(Oi) = 1 at
X i = +l/ Ct.

Assuming that the target Ti can be obtained from the following t ra nsfor­
mation:

(10)

where K is a norm alization constant required to realize the following identity
on total probability:

K Jf(Ti)dTi == 1. (11)

Denoting G'(Xi) lxi=C- 1(T;) = Dl(Ti) and D2 (Ti) = J;{i dy/ [Dl (Yi)], the prob­
ability of T; is obtained as

(12)

Now, inasmuch as Pi(Oi) and qi(Ti) are explicit ly known in terms of X i
and G(Xi ) , the other dist ance measures in the informatic plane can be writ ten
as follows.

1. KL Measure :

(13)

2. J Measure:

(14)

3. JS Measure:

(15)

where II I and lI z are weight s such that II I + lI z = 1.
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For simulation purposes and to compare result s, SE and RE measures of
a NN with O, and T; as the output and target values respectively can be
written as

and

ES E = 1/2 l:)Ti - oy

ER E = (1/2)(1 + qi) log[(l + qi)/(Pi + Pi)]

+ (1/ 2)(1 - qi) log[(l - qi)/(Pi + Pi)]

(16)

(17)

where P? = a2 + b2 [coth" (bXi) + cosech2 (bX i)] - 2ab/ coth(aX i) coth( bXi) .
In all of the pr eceding cases, the sigmoidal fun ct ion refers to LdXi) . For

the comparison of the aforesaid error-metrics in dict at ing the performance
characteristics of a NN each error-met ric is applied in t raining a mulit layer
perceptron network. Its description is pr esent ed in sect ion 4.

4 . C omputer simulations with a multilayer perceptr on networ k

4.1 Description of the network

A multi layer perceptron is implemented to evaluate the training effect iveness
of backpropagat ion in the prediction of a sine wave function [sin (m 7r Ctx;/2) +
1]/2, where m = (- 1)n(2n + 1), n = 0, 1, 2, . . . using the various distance
measures sp ecified pr eviously to calculate the synapt ic weight modifications.

T he test network is depicted schemat ically in Figure 4 and consists of
nine input units, ten units in the hidden layer , and a single output un it .
T he act ivat ion fun ct ions in the input- to-hidden layer ar e Bernoulli sigmoids

OJ Output

Hidden Layer

Fs=LQ(Xjl

Weights: W I 1

Input Layer

Figur e 4: Test NN topology of the multil ayer perceptron.
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LQ(x) , and are linear in the output layer. T he nine input uni ts are trained at
x values over the interval xiE[- I, 1] at increment s of 0.25, whi le the output
un it is evaluate d at a x value of XT = 0.375. The weights and thre sholds
are init ialized to be uniformly distributed pseud orandom values over [-1 ,1]'
t he input and hidden layers have an addit ional bias unit clampe d to - 1
which is connecte d through a trainable weight to each uni t in the hidden
and output layers respectively. T hese bias units provid e a trainable offset to
the act ivat ion function orig ins for the un its in the hidden and output layers,
thereby enhancing the convergence rat e.

T he network is sequent ially pre sented seventy-five sine wave training set s
at the nine inputs (Xi) during each training epoch . T he training set s are spec­
ified by T; = [sin(m7rcwyxi/2)+1]/2, where, is a un iformly distributed pseu­
dorandom variate in the rang e [- 1, 1]. The output of the network spec ified at
XT is used in the backpropagation mode wit h the gradient descent in orde r to
adjust the weights over 150 training epochs . Aft er the training, the network
is set to compute the values of the sine functi on [sin (m7riY, xT/ 2) + 1]/2 at
fifty equ ally spaced po ints over the interval , E [-1 , 1].

4.2 Backpropagation algorithm

The essence of the backpropagation algorit hm is tha t the synapt ic weight s are
adjust ed to minimize the local error of the network wit h a given kn owledge
of the target output Ts: The fundament al quantity used in t he determination
of the weight -st ates is the err or, or the distance (ci) of the network output
(Oi) of the ith un it from the t arget value Ti .

T he basic pr escription to adjust the weight s at the nth training st ep
follows the well-known W idrow-Hoff algorit hm , nam ely, Wij(n) = Wij (n ­

1) +D.Wi j where D.Wi j = 7)Dj O, and Wi j is the weight from unit i to i , 7) is the
learn ing rate, and Dj is the effect ive gra dient . The effective gradient has two
distinct definit ions dep ending on whether or not a target value is availab le
for a par t icular un it .

In the case of network output un it s for which a target is known, Dj is
defined as the deviation of the jth unit multiplied by the derivative of the
activat ion function evaluate d at the output value of the ith uni t . T hat is,
Dj = (oOj / o(Jj )Cj , where (Jj represents the summed input to the act ivation
function , or OJ = F S((Jj) .

When the unit reside s in a hidden or input layer , the target value is not
availab le for the computat ion of th e effect ive gradient . T herefore , a modifi ed
definit ion in which the product of cumulative effect ive gradients with the
int erconnect ion weight s are back-propagated to these units via the relati on
specified as Dj = (oOj / o(Jj) 2:j {jjWij . In t he case of the convent ional SE met­
ric, the sign of Dis decided by the simple arit hmetic difference between the
target and output . The direction of gradient descent is cont rolled by the feed­
back obtained from the comparison of target versus output difference. The
cross-entropy metrics involvin g logarithmic funct ions are, however , st rict ly
nonnegat ive; and t herefore would not allow for {j to change its sign in re-
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sponse to th e targe t versus output differences resulting in a loss of feedb ack
control in the weight changing algorithm. To remedy th is situat ion, th e cal­
culat ion of effective gradient while using the cross-entropy error-metrics is
multiplied by ± 1, depending upon the sign of t he target-output difference.
That is, the value of delta is specified by Oi = Oi signumff] - Oi) '

In regions of the error surface where large gradients exist , the 0 terms
may become inordinately lar ge. The resul ting weight modifica tions will also
be extensive, leading to large oscillations of the output , byp assing the t rue
error minimum. The learning coefficient can be set to an extremely small
value to counteract this tende ncy; however , this would drastically increase
the t raining time. To avoid this problem, the weight modification can be
given a memory so that it will no longer be subject to abrupt changes. That
is, th e weight-change algorithm is convent ionally specified by tlwij (n ) =
TJOjOi + A[tlwij (n - 1)], where A is known as the momentum par ameter. If
A is set to a value close to 1, the search in the par ameter space will be
determined by th e grad ient accumulated over severa l epochs instead of a
single iteration , thereby imp roving the stability of th e network towards the
convergence .

5. R esults an d discussions

The multilayer perceptron describ ed in sect ion 3 was implemented to predict
values of the targe t function at fifty equally space d points over the interval
[- l ,lJ using the five err or-met rics defined by equat ions (13) throug h (17).
The value of the network par ameter Q is adjusted to control the tra ining
effectiveness and stability of the networ k. Further , th e value of th e learni ng
coefficient TJ can also be altered to influence the convergence rates and th e
ult imate accur acy of the performan ce of the network. To assay th e conse­
quences of varying TJ and Q in deciding network perform ance, each of the
distan ce measures (namely KL, J , and JS) was implemented in training th e
network with values of TJ ranging from 0.0001 to 0.2 and for Q values of 1/2 ,
2, and 10. The same random initializations of the interconnection weights
for each set of TJ and Q was used.

After train ing, the root mean-square (rms) deviation of the functional
prediction over the fifty points Xn was record ed. Table 1 lists the result s for
the set of par ameters (Q = 1/2 , m = 2), (Q = 2, m = 4) , and (Q = 10,
m = 8) . When the error-met ric magnitude exceeded 104 during t raining ,
the network was considered to have diverged and the result is indicated in
Tab le 1 as DIV.

Relevant to these test studies, the highlight ed vales present ed in Ta­
ble l (c) represent the minimum rms errors at the network output for the
var ious test erro r-metrics under consideration with Q = 10 and indicate the
corres ponding TJ values to be used for t raining . Examination of Table 1 re­
veals that for all of the error-metrics considered (and in par t icular for the RE
measure) , increasing the value of Q enhances the tolerance of the network
optimization to larger learni ng rat es. It is also observed that for each error-
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Table 1: Ro ot mean-squar e (rms ) deviation of t he netw ork output
for the SE, RE, KL , J , and J S distance measures versus the learn ing
coefficient 7/. (a) : (Q = 1/ 2, m = 2). (b ): (Q = 2, m = 4). (c) :
(Q = 10, m = 8) .

(a)

(b)

(c)

T) SE RE KL J JS II= O.5

0.0001 0.0924 0.5205 1.5708 0.3700 0.4584
Q = 1/2 0.0010 0.0366 0.2467 3.3927 0.1402 0.2189
m =2 0.0100 DIY 0.0289 6.6301 0.2629 0.1436

0.1000 DIY DIY 95.4445 57.5541 46.5342
0.2000 DIY DIY 105.7281 53.0585 57.5541

T) SE RE KL J JS II= O.5

0.0001 0.0531 0.4572 1.13710 0.4242 0.4964
Q =2 0.0010 0.0295 0.0868 6.2400 0.0935 0.0886
m =4 0.0100 0.0254 0.0579 16.1989 0.2538 0.0945

0.1000 DIY 0.0985 25.9595 83.3622 187.5787
.2000 DIY 2.0794 110.5492 91.9989 83.3622

T) SE RE KL J JS II= O.5

0.0001 0.1372 0.5135 0.7664 0.4766 0.4993
Q = 10 0.0010 0.0240 0.2182 5.3636 0.0508 0.1654
m = 8 0.0100 0.0181 0.0275 28.606 5 0.0980 0.0677

0.1000 DIY 0.2005 150.1648 16.2894 0.1195
0.2000 DIY 0.3980 73.8275 49.4355 16.2894

metric, the minimum nTIS err or in predicting the target function is achieved
at Q = 10.

For the performan ce comparison of the err or met rics, the values of the
learning rate T) corres ponding to these minimum values of the rm s err or (at
the output) are considered in realizing t he network output (optimized to­
wards the t arget function) in each case of the error-metric under discussion.
Figur e 5 pr esent s the network convergence dat a and the output for the SE
error-met ric pr edict ed wit h the value of T) decided by the minimum rm s error
of the output indicated in Ta ble l (c) . The left plot (a) is the magnitude of
the SE versus t raining epoch , normalized wit h respect to the maximum erro r
value . The right plot (b) depicts the target and network output values of the
sine function. Convergence is achieved by the 80th training epoch . It can
be noted that the error in the pr edicti on of the sine function is appreciably
small over the ent ire interval.

The results for the RE erro r-met ric are shown in Figur e 6. Again , the T)

value used corresponds to the minimum rm s err or in the output (as in Tab le
1(c)). In this case, the network converges afte r 60 training epochs to an
almos t const ant value. The err or in pr edict ing the sine function is negligibly
small , as in the SE case, over the int erval [- 1, 1].
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F igure 5: Network t raining and pr edicti on of the target fun ction with
the SE error-met ric (Q = 10, TJ = 0.01). (a) Dist an ce measure ESE

versus t raining epoch. (b) Tar get and pr edicted values of the sine
fun ct ion .
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F igure 6: Network t raining and predict ion of t he target fun ction wit h
the RE error-metric (Q = 10, TJ = 0.01). (a) Distance measure ERE

vers us training epoch. (b) Tar get and predict ed values of the sine
function .

The KL error-met ric performan ce is shown in Figur e 7, where it is ob­
served that the distance measure does not reach an equilibrium; hence, net­
work convergence appears to be unstable with respect to the t ra ining epochs.
Network performance under the cont rol of the J-measure is presented in Fig­
ure 8, with Q = 10 and TJ dicta ted by the minimum rms error of the out put
as given in Table 1(c). It can be seen th at the convergence occurs after ap­
proximately 50 epochs and the network out put is comparable to the target
objective over the prediction interval.

Figures 9, 10, and 11 depict the effect iveness of the JS-measure in tr ain ing
the network under similar conditions of Q and TJ (as per Tab le l(c)) . T he
functional output is predicted for the weight ing values of III = 0.25, 0.5, and
0.75 respectively, with II2 = (1 - III) ' In Figures 9, 10, and 11 th e only
stable configura tion pert inent to th ese dat a is observed only in the case of
symmet rical weight ing, namely, III = II2 = 0.5, where network performance
is seen acceptable over t he ent ire interval.

To demonstrate the utili ty of the Bernoulli act ivation fun ction par ameter
Q in desensit izing the err or-met ric oscillations dur ing training, as well as in-
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Figure 7: Network t raining and pr ediction of t he tar get fun cti on with
the KL error-met ric (Q = 10, 1) = 0.0001) . (a) Dist an ce measure EK L

versus train ing epoch. (b) Tar get and predict ed values of the sine
funct ion .
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Figure 8: Network t ra ining and predict ion ofthe target fun ction with
th e J err or-metric (Q = 10, T) = 0.00 1). (a) Dist ance measure EJ

versus training epoch . (b) Target an d pr edict ed values of the sine
fun ction.
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Figure 9: Network training and pr edict ion of the tar get fun ction with
the JS err or-metric (Ill = 0.25 , Il 2 = 0.75, Q = 2, 1) = 0.001 ).
(a) Distance measure e JS versus t raining epoch. (b) Tar get and pre­
dicted values of the sine fun ction.
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F igure 10: Network tr aining and pr ed ict ion of the target fun ction
with the J S err or-metric (II I = 0.5, II 2 = 0.5, Q = 10, 'T/ = 0.01).
(a) Dist ance meas ur e eJS versus training epo ch . (b) Target and pr e­
dict ed values of the sine functi on .
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F igure 11: Network t raining and pr ediction of the target function
wit h the JS err or-metric (III = 0.75, II 2 = 0.25, Q = 10, 'T/ = 0.0001).
(a) Distan ce measure eJS vers us t raining epoch. (b) Tar get and pre­
dicted values of t he sine fun cti on.
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Figur e 12: Network t raining and predict ion of the t arget funct ion
with the JS error-met ric (II I = 0.5, II 2 = 0.5, Q = 2, 'T/ = 0.01).
(a ) Dist ance measure eJS versus t raining epoch . (b) Target and pr e­
dicted values of the sine fun ct ion .
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F igure 13: Network training and pr ediction of the tar get function
wit h the JS err or-metric (II I = 0.5, II 2 = 0.5, Q = 1/2 , 77 = 0.01) .
(a) Dist an ce measur e c J S versus t raining epoch. (b) Ta rget and pr e­
dict ed values of the sine fun ction.
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F igure 14: Network training and pr ediction ofthe t ar get function with
the J error-me tric (Q = 2, 77 = 0.001) . (a ) Dist an ce measu re CJ versus
training epoch . (b) Tar get and pr edict ed values of the sine fun cti on .
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F igure 15: Network t raining and prediction of t he target fun cti on
with the J error-me tric (Q = 1/2, 77 = 0.001). (a) Dist an ce measure
CJ versus tr aining epoch. (b) Tar get and pr edict ed values of the sine
func tion .
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creasing the ult imate predictio n accuracy of the network , Figures 12 through
15 are pr esent ed . T hey depict t he pr edicti ons for the J S and J measures
wit h values of TJ fixed (corresponding to the minimum rm s error condit ions
of Tab le l (c)) while decreasing t he value of Q . Figures 12 and 13 are results
for the symme tric JS measure with TJ = 0.01 and Q = 2 and 1/2 resp ecti vely.
In comparison to the result of F igur e 10 (with Q = 10) , it is clear that as Q
decreases, the magni tude of the err or-met ric oscilla tions increases, thereby
jeopordizing the stability of train ing opt imizat ion , as well as simultaneously
decreasing the accuracy of t arget pr edicti on . Figur es 14 and 15 depict the
results relevant to the J measure of F igure 8 with TJ = 0.001 and values of
Q equal to 2 an d 1/2, respect ively. Again it is observed that decreasing the
value of Q increases t he error-met ric oscillat ions and degrad es the accur acy
of the fun ct ional pr edict ion.

6 . Conclusions

T he pr esent st udy indicates the feasibility of pr escribing an error measure
for the NN optimization algorithms in terms of the divergence asso ciate d
wit h t he stat ist ical dist ributions of the network 's output and the target val­
ues. Such a divergence measure spec ifies impli citly th e condit ional ent ropy
pert inent to the stat ist ics involved.

In specifying a divergence measur e based on information- theoreti c consid­
erat ions, t hr ee erro r-met rics, nam ely the Kullback-Leibler (KL), t he J ensen
(J) , and the Jensen-Shannon (JS) measures are defined and their relative
efficacies are elucidated in reference to a mult ilayer perceptron t rained via
a backpropagat ion algor it hm . Com puter simulat ions indicat e t hat not all
such error-me trics (defined on the basis of the condit ional entropy) are how­
ever , useful. Specifically, the KL measur e poses convergence pr oblems during
training and exhibits significant deviation of the network end-results versus
the target values. However , balan ced (symmetric) measures defined by J­
and/ or J S-me t rics offer both rapid convergence during training and network
out put deviat ions from the target that are comparable to those of conven­
tional square-error and relati ve-ent ropy measures. Bu t , before using the J
and/ or JS measures, the choice of the network parameter Q and the learning
coefficient TJ have to be pr eevaluated such that the pair of the values (Q and
TJ) corr espond to the minimum rm s output err or of the network.

In the case of an asy mmet ric (unbalan ced) err or-met ric such as the KL
measure, the err or deviations (cKL) are one-sided as can be seen in Figure
7(a) along the training epo chs. In symmetric (balanced) err or-met rics (such
as J-measure or JS measur e wit h III = Il 2 = 0.5) , the resp ective error devi­
at ions CJ and CJS (in Figures 8 and 10) are symmetric abo ut the converged
value specified at the terminal epochs. Aga in, when the JS measure becomes
asy mmet ric (wit h III ¥- Ih) , the performance of the network deteriorates, as
can be seen in F igur es 11 and 12. Further , the criterion of using the pair of
values of Q and TJ (which correspond to the minimum rm s output error as
in Table 1(c) is rat her essent ial to obtain acceptable network performan ce,
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even if the symmetric err or-m etrics are adopted . A degrad at ion in the per­
forman ce predict ion is imminent as can be observed from the resul ts shown
in Figures 13 through 15.

Also indicated in this paper is the significance of using a single parameter
sigmo idal activat ion fun ction (known as the Bernoulli function) in t raining
the network. The relevan t controlling par am eter (designated as Q) has an
influence on network performance towards convergence by suppress ing the
magnitude of the allowable neur onal state-transitions, thereby desensitizing
the oscillations of the network output to increased lear ning rates.

To conclude, this paper pr esents a new st rategy of NN optimizat ion under
the const raint of condit ional ent ropy err or-metrics. Apart from the thr ee dis­
tance measures indi cated here, there are also ot her measures such as Csiszer 's
family of dir ected divergence [5] which can be exploited in the NN vis-a-vis
t he condit ional entropy error-met rics on the basis of similar considerat ions
outlined in this work.

Appendix

Lemma 1.

Hy = 0, if all !Yi - YT! :::; D (Yi) or if

Pi = 0 for all IYi - YTI - D(Yi) > o.
Lemma 2.

(A.1)

Hy~ 0 for the ensemble Pi > 0, if IYi - YTI - D (Yi) ~ 0, and

Hy~ 00, if IYi - YTI - D (yJ ~ 00 . (A.2)

Lemma 3. With Pi = 1/ K"

"
Hy = - (1/ K,) L log{I / [JYi - YT! - D(YT)]} + e"

i=l
where

"
e; = (1/K,) L log{[ IYi - YTI - D(y )]/[JYi - YTI - D (y) + I ]}

i=l
and

e" ~ 0, if IYi - YT! - D (y) » 1.

(A.3)

(A.4)

Lemma 4. Sum of two entropies satisfying the conditions of independence
and summa tion in the spread space of the sta te vector leads to:

Hy(l,2) = log Hy1[!Y1 - YTI - D (Yi)

+Hy2[JY2 - YTI - D (Yi) + E(l,2)

where

e(l,2) = log{[Hy, (Y1) + HY2(T2)]/ [HYl(Y1) + Hy2(Y2) + I]} ~ 0 for Hy(Y;) >> 1

with Y; = !Yi - YT\' (i = 1, 2) .
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Lemmas 1 and 2 represent the intuitive concept of neural disorgan ization
in the st ate of being cont rolled towards the goal. If an ideal control is per­
ceived, it st rikes the well-ordered target domain in all realizati ons specified
by Hy = O. Diversions from the ideali ty of the ensemble with an increasing
or decreasing t rend enable H y to increase or decrease resp ectively.

Lemma 3 st ipulates that , in the event of equiprobable diversions, t he
relation between the spr ead space of the state vect or and the entropy space
is logari thmic wit h an err e",~ 0 for IYi! « 1.

Ent ropy associate d wit h target seeking is not addit ive. That is, goal­
associa ted ent ropies cannot be added or subt ract ed dir ectly in the entropy
space. However , t hese superpo sit ion operations can be performed in the
par amet er spread space and the consequent effect s can be translated to t he
entropy space.

Lemma 4 sp ecifies the rule of addit ivity in the parameter spread space
p ertaining to independent goal-associat ed po sition entropies with an accu­
racy set by e(1,2) ~ 0 with H y(Yl ,2) » 1.
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