Complex Systems 9 (1995) 305-327

A Temporal Sequence Processor Based on the
Biological Reaction-diffusion Process

Sylvian R. Ray
Hillol Kargupta
Department of Computer Science,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

Abstract. Temporal sequences are a fundamental form of infor-
mation and communication in both natural and engineered systems.
The biological control process that directs the generation of iterative
structures from undifferentiated tissue is a type of temporal sequen-
tial process. A quantitative explanation of this temporal process is
reaction-diffusion, initially proposed in [1] and later widely studied
and elaborated.

We have adapted the reaction-diffusion mechanism to create a
temporal sequence processor (TSP) composed of cells in a diffusion-
supporting medium that performs storage, associative retrieval, and
prediction for temporal sequences. The TSP has several interesting
attributes: (1) Its achievable depth (or degree) is constrained only by
storage capacity, (2) it tolerates substantial time warp, and (3) it sup-
ports user-specified flexible groupings of stored sequences into coarser
classes at retrieval time. The TSP is also capable of preserving the
time extent of stored symbols, as in a musical melody, and permits
retrieval of both the symbols and their temporal extent. Experimental
verification of the properties of the TSP was performed with Reber
grammar sentences and musical melodies.

1. Introduction: Temporal sequences

Temporal sequences arise naturally when one attempts to process any time
domain signal for the purpose of recognizing or predicting the presence of
features relevant to the particular application. Human speech, biomedical
signals, music, or any function of time originating from a sensor constitutes
a temporal sequence whose meaning or intelligence content depends not only
on the existence of certain features, but also on their particular temporal
order. A time domain signal is most conveniently abstracted as a temporal
sequence of feature vectors, often called a spatiotemporal sequence,

X = {X(tl)}, = 1,2,...,00.

306 Sylvian R. Ray and Hillol Kargupta

where each vector x(¢;) is a feature vector, a condensed but adequately veridi-
cal representation of the signal in the vicinity of time ¢;.

The feature vectors X originating directly from signal applications usu-
ally span a space of high dimensionality, for example, R'®. In many practical
applications, the infinite number of possible feature vectors in a real space
are reduced to a finite number of classes by a clustering operation such as a
self-organizing feature map or k-means clustering. Upon representing each
of K clusters or equivalence classes with a symbol s;,7 =1,..., K, we obtain
a manageable set of K symbols forming the assumed input for the tempo-
ral sequence processor. Abstracted spatiotemporal sequences are therefore
represented as strings such as cjkltprmmbos without significant loss of rep-
resentational power compared with the actual signal information. The basic
sequences can be supplemented with time extent information by minor ex-
tension of the fundamental representation, as we discuss in section 4.7.

Also, the actual cardinality K of the finite alphabet, if too large, can
become a major consideration, but this is a question of scale that we will
ignore.

2. The objectives of temporal sequence processing

There are two distinct sequence processing tasks that we are particularly
interested in pursuing here. These tasks arise in the context of semantic
content discovery in signals [2].

1. Embedded sequence recognition (ESR). A number of short pattern se-
quences, (psi, psa,...) = PS, are stored in the device as shown in Fig-
ure 1. An unbounded argument sequence, ARGSEQ), is compared with
the set, PS, contained in the sequence memory. When a subsequence
of ARGSEQ is found that matches any member of the set PS within
a prespecified accuracy, a successful recognition is indicated. As an
example of this case in speech recognition, PS is some transformed
representation of phonemes or quasiphonemes, and the ARGSEQ is a
similarly preprocessed speech signal.

2. Sequentially addressed sequence memory (SASM). “Long” sequences,
ST, are stored (see Figure 2). Short “address” sequences are compared
with ST for the purpose of locating regions of ST that match the applied
address sequence. If a sufficiently close match is found, we want to rec-
ognize the condition and possibly read out the continuation of ST from
the endpoint of the successful match or, possibly, find the beginning
of ST and read the whole stored sequence. This case is the traditional
CAM problem, modified by the requirement of sequential presentation
of the address and sequential readout from the match point.

Two distinct algorithmic procedures (ESR and SASM) are needed to solve
these two problems.

A TSP Based on the Biological Reaction-diffusion Process 307

EMBEDDED SEQUENCE RECOGNITION TASK

Long external sequence

txyzpettmkdxsmnpr

et t mk d#
nop x s #
r emp #
cnn p#
wXxy z ari

Stored short sequences .

Figure 1: Embedded sequence retrieval is the identification of “short”
stored subsequences within a long or unbounded argument sequence.
It is performed by the guided sequence retrieval algorithm.

SEQUENCE ADDRESSED SEQUENTIAL MEMORY

EXAMPLE ADDRESS SEQUENCE: X T F

LONG STORED SEQUENCES

R|T|K|[C|L|X|T|F |P|[C|Y|W|#

L|P|P|IR|S|T|U|M|N|N|#

B|E|L|OlN| G| O| R| S| Hl Of R| T | #

IXTFlFILLER#

Figure 2: The task defined as sequence-addressed sequential memory
is defined as the location of short sequences within long stored strings,
followed possibly by retrieval of the identified sequence.

e For ESR and for the addressing phase of SASM, an algorithm is used
to guide the comparison of an external address sequence with internal
sequences. We will call this algorithm guided sequence retrieval (GSR).

e For the readout phase of SASM, after a unique stored sequence has
been identified, the algorithm used is free sequence retrieval (FSR). It
depends solely on internal stored states. FSR is also viewed as time-
series prediction.

Thus, our main objectives from an application viewpoint (ESR and SASM)
will be seen to reduce to the two algorithms, GSR and FSR, appropriately
applied. If the effectiveness of GSR and FSR can be demonstrated convinc-

308 Sylvian R. Ray and Hillol Kargupta

ingly, the success of the applications follows. The GSR and FSR algorithms
will be covered later.

2.1 Desired qualities of a temporal sequence processor

Let us briefly review the qualities we desire for a TSP from an engineering
viewpoint. These qualities will affect how well and how completely the TSP
can achieve GSR and FSR over a range of problems, that is, its versatility.

First, some definitions are needed. A complezx sequence is one constructed
from any number and order of symbols from a permissible alphabet. We
assume only complex sequences in this paper.

The depth or degree of a sequence is the minimum number of symbols
preceding s, required to predict s, accurately. By a system having depth n,
we mean that any symbol s, requiring no more than the preceding n sym-
bols, Sk_n,...,Sk_2,Sk_1, to predict it can be predicted with certainty. For
example, if the system has depth >8, then having learned the two sequences
zabcbaahz and azbcbaahy, the terminal z and y are infallibly predicted.

e Quality 1: Depth. The TSP should be capable of minimum depth
n > 1. n should be a design parameter. Note that the depth n, for
complex sequences, implies the ability to count up to n repetitions of
the same symbol, which is a strong requirement.

e Quality 2: Temporal flexibility. The TSP should tolerate temporal scal-
ing and warp during storage, addressing, and retrieval.! Scaling refers
to the absolute time units; warp is the nonuniformity of intersymbol
spacing. However, it should be possible to retrieve the relative presen-
tation length of the symbols if that information is stored.

o Quality 3: Equivalence class flexibility. The TSP should be capable
of flexibly adjusting the “radius” of the equivalence classes of stored
sequences. Thus, similar sequences, learned as distinct, may be treated
as equivalent without altering the stored data. This quality implicitly
permits limited errors such as missing or added symbols to be either
tolerated or not tolerated, depending on the objective during retrieval.

e Quality 4: Minimum storage. We define the absolute storage require-
ment as the total number of weights needed to store a particular collec-
tion of sequences. The total number of weights required depends on the
number of common subsequences in the data. In the present context,
the required storage capacity is Neym * IV;, where Ngyp, is the number
of symbols in the alphabet and N; is the number of symbol transi-
tions that must be distinguished. Obviously, we want to minimize this
requirement.

e Quality 5: Sequential content addressability. The TSP should provide
for content addressability with a sequentially supplied address.

1The terms retrieval and recognition are used synonymously here.

A TSP Based on the Biological Reaction-diffusion Process 309

2.2 Implications of desired qualities

What exactly are the properties that the desired qualities and our applica-
tions objectives imply about the T'SP or network in general terms? A careful
analysis of this question yields instructive insights on the subject of the T'SP.

First, in order to simplify the addressing algorithm, it is very desirable
to have only one cell (or neuron) per symbol of the alphabet. This choice
defeats the potential problem of having to manage multiple active paths while
searching for a unique responsive sequence.

Second, to be able to distinguish sequences such as c¢bbbh from cbbbbg, each
transition must produce a distinct internal state, for example, the transition
from the second to the third b must result in a different internal state from
that produced by the transition from the third to the fourth b. This implies
that the one cell identified with the symbol b must be able to resolve the
difference, however it may be represented, between v and v + 1 previous
occurrences of the symbol up to some maximum depth, n. (See [3] for a
thorough discussion.) But, third, to satisfy temporal flexibility (quality 2),
the ability of a cell to distinguish between the vth and (v 4+ 1)th previous
occurrences of a symbol must not be rigidly dependent on the absolute or
relative time scale.

Finally, the desire for equivalence class resolution (quality 3) can be sat-
isfied by an acceptance window diameter that is dynamically adjustable at
retrieval time so that the transition from the vth to the (v 4+ 1)th previous
occurrence of a symbol can be either resolved or ignored according to a global
control parameter.

Given these crystallized requirements for the TSP, the merits of various
proposed systems can be judged for breadth of capabilities.

We will show that the TSP proposed here does satisfy all of these require-
ments with some limitations on time flexibility (quality 2) and on addressing
of internal subsequences (quality 5).

2.3 Previous work on sequence recognition by networks

For an excellent summary article on temporal sequence processing see [4] The
conclusion regarding simple recurrent network architectures (SRNs) [5, 6] is
that they are extremely limited in depth, to the degree that they are imprac-
tical for many applications. [7] concludes that there is no straightforward way
for these networks to exhibit the property of counting. Our own experiments
support this conclusion. The limitation on SRNs is centered on the fact that
there is only one vector to represent all past contexts, which severely limits
depth. In addition, there is no known design formula that relates achievable
depth to architecture parameters.

The recurrent cascade correlation network (RCC) in [8] is another inter-
esting approach to TSP that is actively constructive, as is its parent, the
cascade correlation network. It learns a Reber grammar efficiently and pro-
cesses the test set with a very low error rate. A major limitation of RCC is

310 Sylvian R. Ray and Hillol Kargupta

that its time delays are fixed, which limits its usefulness with time-variable
inputs (see quality 2 of section 2.1).

The ability to train for depth and for variable intersymbol delay is af-
forded by the “gamma delay” arrangement explored in detail in [9]. It is
difficult to compare their approach with the present work since the gamma
delay assumes numerical signals, for which algebraic operations are defined,
whereas we are treating the sequences as nominal symbols.

[10] also presents an interesting mechanism for retaining and distributing
the memory of past events in their TEMPO 2 model. They make use of an
adaptive gaussian kernel to capture history by distributing the “trace” of a
symbol in time. The reaction-diffusion method of history retention used here
is essentially a superset of the diffusion idea, since the reaction process adds
to the flexibility which can be exploited.

The temporal sequence processing algorithm studied in [11] addresses
many of the same goals as the current effort. They achieve the depth objec-
tive by assuming an element with multiple terminals. Terminal 1 stores the
state of the most recent input to the element, terminal 2 the second most
recent external input to the element, and so on. Thus, by providing an n-
terminal element representing symbol s;, with each terminal corresponding
to a distinct history of the sequence prior to s, a depth of n can be accurately
stored. This design meets all of the desired qualities specified in section 2.1
except, possibly, for some limitations on quality 3. Minor properties of the
design that are less than ideal are the fact that a maximum depth must be
specified in advance and the biological basis for multiple distinct terminals
is not supported. But the design in [11] squarely faces the need for sufficient
storage to represent the complexity required, which is the primary problem
with SRNs and most other attempts. It overcomes or ameliorates its need for
prespecified maximum depth by providing a mechanism for chunking, that is,
grouping subsequences iteratively into higher-level representations. We will
return to a comparative discussion of the present reaction-diffusion method
with the approach of [11] in section 5.

3. The biological basis: Reaction-diffusion

A well-studied biological experiment consists of the surgical removal of an
internal segment of a cockroach tibia followed by regrafting of the distal and
proximal parts, as illustrated in Figure 3 [12]. If the original tibia consisted
of a sequence of similar but not identical segments numbered 123456789, and
the segments 4567 are removed, it is observed that after one or two moults
the internal segment is regenerated in its original order. This experiment im-
plies the existence of memory of the tibia segment sequence and a controlled
growth process. How is this to be explained? A quantitative explanation for
this as well as myriad other pattern growth processes (e.g., zebra stripes, leaf
capillary patterns) was set forth some 40 years ago [1] in the form of a set
of partial differential equations that describe the self-stabilized increase and
decay of growth-stimulating “morphogens” in a reaction-diffusion process.

A TSP Based on the Biological Reaction-diffusion Process 311

Here is an example system.

Reaction-Diffusion Equations

R ——
) =S4 - r(2) + D) @)

where g, represents the concentration of the pth morphogen that excites the
growth of the pth segment of the tibia, r is the concentration of the common
or global reactant, and the coefficients are constants, the Ds being diffusion
coeflicients.

To give a sketch of the biological meaning, assume that segment 8 emits
morphogen g;. If r = 1, 6g;/6t will grow by positive feedback (term 1 of
equation 1) for some time, and the diffusion term (containing D,) will dif-
fuse the chemical into the segment 8-segment 3 interface, stimulating growth
of segment 7 material. At distant locations, the reactant r will diffuse and
suppress growth of segment 7. Segment 7 material at the interface with
segment 3 triggers the emission of gg, which causes segment 6 growth. No-
tice that the reactant concentration is generated in proportion to the sum
of squares of the morphogens present, thus suppressing and stabilizing the
process through the appearance of 7 in the denominator of the first term in
equation 1. Thus the reaction-diffusion equations permit calculation of the
growth, diffusion, and decay of each morphogen in turn, which effectively
carries the history of previous activity forward in time while distributing the
information spatially by diffusion. This is the natural biological process that
we will simulate as the basis for the intercommunication of cells (elements)
and the distribution of sequence information.

Figure 3 illustrates the experiment [13, 14]. A cockroach tibia is originally
constructed as a sequence of similar but not identical segments numbered
123456789 in proximodistal order. If segments 4567 are surgically removed
and the remaining portions of the tibia grafted together to form the sequence
12389, after one or two moults (M) the missing elements are found to re-
generate. Further experimental evidence shows that growth morphogens are
emitted sequentially starting from the distal segment, 8, inducing growth in
the order 7654.

The existence of this biological sequence reproduction, being a form of se-
quential memory, attracted our interest in using an analogous process in the
storage and retrieval of symbol sequences. The reaction-diffusion temporal
sequence processor (ReDi TSP) emerged from this observation. The primary
benefit of this starting point is a well-defined, stable system for communicat-
ing conditions from one cell by a means other than discrete conductive paths
(e.g., axons or wires).

312 Sylvian R. Ray and Hillol Kargupta

—

WA W

Figure 3: An experiment that demonstrates the regeneration of
sequential segments of cockroach tibia. Correctly ordered regener-
ation of segments is explained by the reaction-diffusion model. (From

12},

3.1 The computational model

Architecturally, the ReDi TSP model consists of cells randomly distributed
in two- or three-dimensional space (Figure 4). We will assume a two-dimen-
sional geometry, without loss of generality, for presentation simplicity. Cells
(Figure 4, upper left) are fixed in position. Each of the N cells is uniquely
labeled G;, i=1,..., N, which is also the label of the output that the cell
emits when activated.

The cells are interconnected through a diffusion-supporting medium. At
any time ¢, and at any position (z,y), the internal “signal” is a vector

G(xvyvt) = (GlaGZ)"-7Gk1"'7GK)

where K is the total number of distinct symbols,? G is the symbol concentra-
tion vector at location (x,y), and Gy, is the concentration of the kth symbol
at (z,y).

Each cell has a number of weight registers V;, ¢ = 1,..., P. The length
of each V register is K real numbers.

A cell can be activated by two means. First, the cell may act as a radial
basis function cell in response to the local value of the G vector. If

P
AC = min IV; — G(z,y)|| < o
s

the cell is internally excited by level AC. The excited cells form a competi-
tive network resulting in a single winner, namely, the cell j*, which satisfies
min}’, (AC;), being the most strongly excited cell.

Second, a cell Cy; may also be excited by the external input directly, by
having

Zy=S;

2 Analogous to morphogens in the biological tissue growth model.

A TSP Based on the Biological Reaction-diffusion Process 313

éAc ti &/ LABEL
Wi OUTPUT

SINGLE CELL

Re-Di TEMPORAL SEQUENCE PROCESSOR

Figure 4: Architecture of the ReDi TSP. Identical cells are distributed
randomly in a three-dimensional (or two-dimensional) volume sup-
porting diffusion.

where S; is the input symbol and Zj, is the external input weight vector of
cell M. In this case we are assuming nominal (as opposed to linear) input
symbols so that the input symbols are an orthogonal set.

The single winning cell, Cj,, emits a unit impulse of its label symbol, G,
after which the symbols react and diffpse according to the reaction-diffusion
equations.

Let us briefly touch on the principal aspects of operation of the TSP.
In general terms, the external input path with weights Zj; provides the
means for learning the sequences originally and for guiding the sequence of
activations in guided sequence retrieval operation.

The weights, Vjy,;, specify the P different internal conditions when cell
Cjy corresponds to the next sequential input symbol. The V registers, after
training, contain the memory of all learned transitions, including context,
back to a depth determined by o,. Setting o, = 0 produces theoretically
infinite depth or eidetic memory, limited only by P, the number of V' registers,
since every unique context of a symbol is learned. As o, grows, similar
sequence contexts are treated as equivalent, which reduces depth but also
reduces the storage capacity required. The states stored in the V registers
are the sole source of sequential operation during free sequence retrieval. The
fuller discussion of how the desired qualities of the TSP are achieved will be
presented after the complete algorithms are described.

314 Sylvian R. Ray and Hillol Kargupta

4. Sequence storage and recognition
4.1 Training the ReDi TSP to store sequences

A training or storage sequence $;5,53 . .. is presented at integral time points.3
The input symbols are maximally sparse and therefore form an orthogonal
set.

The number of cells is N > K, where K is the number of distinct symbols
in the input symbol alphabet. P is the number of V registers per cell. The V'
registers are the weight vectors that can respond to internal symbol vectors
in the diffusion-supporting medium.

Initially all V registers are in an unassigned state. In order to simplify
the algorithm statement, without loss of generality, assume cells are uniquely
assigned to each symbol of the alphabet and labeled Cj,. The cell assignment
is accomplished by setting the external weight vector, Z; = s;.

The Storage (Training) Algorithm

1. Seti=1.

2. Apply s;. The winning (and active) cell will be Cj,, abbre-
viated AC (active cell).

3. For the AC,
It
P
min [V; - G(z,)] < o,

the current transition (from s;_; to s;) is already known.

Else recruit an unused V register, V;, in cell C,; and set
(one-shot learn)

V; = G(z,y).
4. Emit a unit impulse of symbol Gj,.

5. Evaluate the reaction-diffusion equations for one symbol step,
growing and diffusing all extant symbol concentrations. (A
constant number of integration steps are used per symbol
step depending on the dimensions of the cell array.)

6. Increment 7 and go to step 1 (until input sequence ends).

During storage, each symbol in the applied sequence causes the emission
of a “symbol fluid,” which diffuses spatially. The successive symbols build a
vector G, which varies with both time and space. History of the sequence

3The time points can be set by the appearance of input symbols or treated as absolute
time units.

A TSP Based on the Biological Reaction-diffusion Process 315

ab cd e f ab cd e ab cd e f
e bl Y be b I N
1 Vi Vi
--_-_.j_\,,B b Ve Ve
Vs Va C Va
P e B = mHE
Vi Vi Vi
e ®m), cm mml,, "
Vs Vs V3

Figure 5: How the TSP works. Nine cells with three V' registers
are shown. Bar graphs represent the symbol concentration after the
sequence addefeais learned. An activated cell traps the current symbol
concentration in one of its V' registers. For example, the first d traps
only some G, in its Vj register. Each register represents one vector
that can activate (fire) the cell.

is distributed throughout the volume, where it can be associated to the suc-
cessor symbols. Later, during testing to detect the existence of a stored se-
quence, the sequence of emission and reaction-diffusion* that occurred during
training will be recapitulated, exactly or approximately (depending on o),
by guided sequence retrieval.

4.2 An example of the training algorithm in use

An example of the stored V' vectors that would exist after a sequence is stored
is shown in Figure 5. The sequence addefea. . ., is stored.

When a first occurs, the environment is blank, so a activates Cell “a”
(through the external Z inputs, not shown), which records 0Os, the current
loeal symbol concentration, in its first V' register.

When the first d occurs, the symbol a has diffused to the vicinity of cell
“d,” which becomes activated from the external inputs through its Z weight
vector. Being the AC, it stores the local symbol vector, G, in its V] register,
consisting only of some a symbol concentration.

When the second d occurs, cell “d” is reactivated and again stores the
local G, which contains some a and some d symbol concentrations. Cell “d”
then emits a unit impulse of d symbol.

Upon reaching the second occurrence of a in the input sequence, the
current symbol concentration at the x,y position of cell “a” is stored in the
second V register of the cell, which then retains the state. The second V
register of cell “a” shows the successively smaller values for e, f, d, and
a, which are approximately proportional (in this case) to the recency of
occurrence of the symbols in the input sequence.

4Note that symbol concentrations may grow as well as decay, depending on values of
the free parameters in equations (1) and (2). This allows more degrees of freedom than
diffusion alone.

316 Sylvian R. Ray and Hillol Kargupta

The actual magnitudes of the symbols in the symbol vector, G(z,y),
depend on the relative position of cells in the volume as well as on the
constants used in the reaction-diffusion equations. The magnitudes of symbol
concentrations do not even have to decay monotonically; it is essential only
that the same subsequence produce the same concentrations on repeated
appearance.

Storage with o, = 0 is analogous to eidetic memory and requires a dif-
ferent V register for every unique symbol transition. This condition is very
profligate with memory usage. For increasing o,, however, an increasing
number of transitions are treated as equivalent by using an existing V' vector
that is close enough to a subsequence already seen. In this case, a new V
vector is not required, and this reduces storage space.

We have chosen to use a one-shot training algorithm here. Incremental
training, typically used in neural networks, could be used to average out
variations in timing of the symbols, but we will not pursue that avenue in
the current investigation.

4.3 Demonstration of depth and counting quality

The depth and counting ability of the TSP, referred to in section 2.1, was
demonstrated in a simple experiment simulating only the storage algorithm.
This property was demonstrated by monitoring the growth of V' register usage
while storing a sequence with repetitions of a single symbol. The experiment
consisted of storing the sequence ddddddd. .. and noting the symbol number,
n, where the storage algorithm first did not invoke a new V' register to store
the state. This would correspond to a depth of n — 1 as well as the ability
to predict the different successor symbol for the sequences cd" e and cd™f,
for example.

This experiment was performed with various values of tolerance, o,. The
results are tabulated below. Unless otherwise noted, experiments were run
with D, = 0.3, D, = 0.3, « = 3 = 0.3, ¢ = 0.2, and v = 0.1 in equations 1
and 2.

Counting Test
o, n (largest depth)

0.05 3
0.04 4
0.02 6
0.01 10
0 00

When the recognition (or retrieval) algorithm, discussed later, uses the
same value of o, the storage process is recapitulated deterministically, so we
can conclude that the depth during retrieval will be the same as that found
by this experiment.

A TSP Based on the Biological Reaction-diffusion Process 317

Metaphorically, larger values of o correspond to paying less attention to
the precise count. As the needed count or depth increases, the penalty is
an increase in the required storage capacity, the total number of occupied V'
registers in the TSP.

4.4 The network in the embedded sequence recognition mode

Suppose many short sequences are stored in a ReDi TSP (as in Figure 1). Let
a long argument sequence be presented beginning at its kth symbol, s, for
the purpose of detecting whether the argument subsequence is stored in the
network. This is guided sequence retrieval, we are using the known external
sequence to guide the search for its stored equivalent.

It is assumed that (1) we want to search for the entire stored (short) string
and (2) the period of symbol presentation is the same as during the storage
operation. o7 is the tolerance measure during test operations, setting the
radius of acceptance of matches between the stored and argument sequences.

The algorithm is as follows.

Guided Sequence Retrieval

1. Set the argument string pointer, & = 1. Clear all symbol
concentrations, G(z,vy), to zero.

2. Using the external input s, activate cell C,, (whose label is
G,). If none, terminate with failure.
If there exists a V' register of C, such that

Z | (Gi(z,y) = Vi) S or

then Cj, becomes the new AC and the transition s_; — s;
in the argument sequence is a known (previously encoun-
tered) transition. Emit one unit of s;, at the location of C,,
and perform one symbol step of the reaction-diffusion equa-
tions. Else, if no cell satisfies inequality 2, then the external
sequence is known only from s; to s,_;. Terminate the test
with unknown sequence.

3. If a known transition occurred, increment k and return to
step 2, iterating until an end mark of the stored sequence is
encountered, implying a known sequence.

The foregoing algorithm of the test phase recapitulates the training steps
in the sense that the symbol conditions present at storage are revivified dur-
ing the successful matching of the argument sequence to an originally stored
sequence. Notice, however, that we are permitting a different activation tol-
erance measure, op, than we used during training. As oy rises from 0, we
are requiring increasingly less strict matching of the symbol concentrations
with the original conditions during storage of the sequence. The interesting
feature here is that the precision of matching the external sequence to the
internal sequence is controllable during recognition.

318 Sylvian R. Ray and Hillol Kargupta

REBER
T

P REBER P
GRAMMAR

TRANSITION DIAGRAM FOR EMBEDDED REBER
REBER GRAMMAR GRAMMAR

Q
i
3
<
&

Figure 6: Embedded reber grammar. Only the penultimate symbol is
predictable, given the second symbol.

4.5 An embedded sequence recognition experiment

Embedded sequence recognition provides a testbed to demonstrate how equiv-
alence class flexibility and storage efficiency are traded off.

A finite-state Reber grammar has been strengthened as a test for depth
and time-series prediction in recurrent neural nets. The generated sequences
all have the second and penultimate symbols in deterministic relationship,
generating sequences such as BTXPSSTTTXTE or BPVTPSPE (Figure 6)
[8]. All interior sequence positions, other than the penultimate, correspond
to transitions having equal probability of either of two symbols.

The average sentence length generated is about 10 symbols, with the
maximum of about 30 symbols in a sample of 500 sentences.

A ReDi TSP with 25 cells in a 5 x 5 grid was defined. Five hundred
strings were generated and applied tp the TSP in the training or storage
mode. Since the grammar uses only 7 symbols, there were 18 unused cells.

Varying the storage tolerance measure, o,, demonstrates the range of
generalization possible during storage. In the limit as o, — 0, every transi-
tion with a unique history is stored as a unique transition, consuming one
V register. The first appearance of a distinct transition is signaled as an
unknown transition, which requires recruitment of a V register. As o, in-
creases, some transitions are treated as equivalent by the system. For exam-
ple, when o = 0.05, bpptttvupe is stored as equivalent to bppttvupe. Higher
values of o, result in generalization or enlargement of equivalence class, even-
tually to the point that every transition is context-free.

Similarly, increased values of activation tolerance during retrieval, or,
permit more tolerance in the affirmative decision that a particular transition
with its (possibly) extensive history is permissible.

The accuracy as a function of o7 is plotted in Figure 7 for o, fixed at
0.0001. Cases where os > o7 have relatively little meaning.

A TSP Based on the Biological Reaction-diffusion Process 319

99 T T T T T T T T T

98 |- -

95 - -1

% Accy

94 - -

93 - -

92 - -

91 1 1 | 1 1 1 1 1

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
sigma T !

Figure 7: Accuracy of predicting embedded Reber grammar sentences
as a function of o7, the test phase tolerance (o5 = 0.0001).

600 B
[m]
Number 500 -+
of
V-Regis. 400 T~
Used
300 + o
[m]
200 +
[m}
100 + o
0 + + + 1
.001 005 .01 .05 A
Sigma

(storage activation tolerance)

Figure 8: Number of activation condition registers (V registers) used
as a function of o,. Symbol transitions totaled 4492.

To retrieve a sequence, a randomly generated Reber sentence is presented
symbol-sequentially, and matching is attempted by the guided sequence re-
trieval algorithm. The retrieval is counted as accurate only if the penultimate
symbol transition in the sentence is found to be a known transition.® The
number of activation condition registers (V' registers) required as a function
of o, is displayed in Figure 8. This number is a function only of storage
tolerance, o, not retrieval tolerance.

5The a priori probability is 0.50.

320 Sylvian R. Ray and Hillol Kargupta

Table 1: False positive rate (percent) for recognition of embedded
Reber grammar sentences.

O [or = 0.0001 o7 =0.001 o7 =0.005

0.0001 16.4 25.8 75.6
0.001 15.8 25.8 75.6
0.005 8.0 7.0 71.0

Under the condition that practically every distinct transition in the train-
ing set is known (o, = 0.0001), the retrieval accuracy for 500 newly generated
strings was found to vary from 91 percent with o7 = 0.001 to 98.6 percent
with o = 0.008, a relatively relaxed matching requirement.

The storage efficiency is suggested by the fact that for the total 4501
symbol transitions in the 500 stored sequences, the required number of V'
registers ranged from 872 with o = 0.0001 to 476 with o, = 0.005.

To study the ability of the TSP to reject false sentences, we trained the
TSP as before, storing embedded Reber sentences containing the 7-7" and
P-P deterministic correlation between the second and penultimate symbols.
For the GSR or recognition stage, however, the embedded Reber grammar
source was reversed in the penultimate symbol only, guaranteeing that none
of the test sequences had been seen completely during training but that all
sequences were grammatically identical up to the penultimate symbol.

Upon performing the experiment with this modification, all recognized
sentences (false knowns) corresponded to false positives as indicated in Ta-
ble 1.

When o7 is small, the narrow acceptance window during retrieval easily
blocks acceptance of most nonstored cases, lowering the false-positive rate
to the 8 to 16 percent range. With a wider acceptance window, however,
the false-positive rate soars. These results suggest a good compromise in the
vicinity of o, = o7 = 0.001, although this choice would interact with the free
constants used in the reaction-diffusion equations.

4.6 Demonstration of tolerance to warp

In the preceding tests, one step per symbol was used during both storage and
testing. This condition permits the symbol concentrations appearing during
GSR steps to reproduce exactly the same sequence of symbol concentrations,
G(t), as the network experienced during storage, assuming the tolerances o
and op are equal. The desirability of tolerating intersymbol time variations
or warp (noted as quality 2 in section 2) is obvious, particularly if the original
source of the symbols is a biological one with its typical random property.
Consider the effects of warp in the ReDi TSP system. Let the spacing
between symbol s, and s,+1 be At during training. Next consider the intro-
duction of 50 percent warp during recognition by GSR. After matching s,,
the test for s,,1 occurs at 1.5A¢ seconds later. The additional 0.5At seconds

A TSP Based on the Biological Reaction-diffusion Process 321

Table 2: Percentage accuracy in predicting the penultimate symbol
in an embedded Reber sentence when warp is introduced before the
critical symbol. All sentences were stored with o5 = 0.0001. o7 is
the test (or retrieval) tolerance. The term 100% warp means that the
time between the test symbol and its predecessor is twice as long as
during storage. When retrieval is attempted at wider tolerances, for
example, o7 > 0.005, the accuracy is still excellent up to 200% warp.

or No Warp 100% Warp 200% Warp

0.001 91.0 69.6 47.8
0.003 92.8 77.6 63.6
0.005 96.4 95.0 93.2
0.008 98.6 98.8 99.0
0.01 99.6 99.6 99.8

will result in a difference of AG, between the current G and the value stored
for the transition s, — $,41 in the same context. The magnitude of the error
AG will depend on the free parameters in the reaction-diffusion equations,
which are not linear. But [|[AG]|| will increase, in general, with warp. When
|AG|| > o, the warp will have exceeded the ability of the TSP to recognize
the transition s, — s,41 as valid.

An experiment was conducted to measure the relationship of the error to
warp. The sequences generated by the embedded Reber grammar generator
were stored using one step per symbol.® During retrieval, however, two or
three times as many symbol steps were applied for the transition to the
penultimate symbol, effecting a warp of 100 to 200 percent between the
(n—2)th and (n—1)th symbols. The correct or incorrect recognition (known
or unknown) of the (n — 1)th symbol was the error criterion. The retrieval
error rate was measured as a function of the tolerance, or (see Table 2). As
or increases, we are permitting an increasing tolerance for acceptance of the
comparison of a stored sequence with the external sequence.

The results show the error to be rather high when the retrieval tolerance
is tight (o7 < 0.001). Relaxation of op largely overcomes the warp but
decreases depth and the corresponding resolution of sentence distinctions.
Somewhat greater warp tolerance might be obtained with the use of slower
learning rather than one-shot learning. This is one of many trade-offs that
can be juggled by the choice of storage and test tolerances.

4.7 Sequentially addressed sequence memory

We defined the SASM mode in section 2 as the case in which the stored
sequences are relatively long and the content address is sequentially pre-
sented. The responsive sequence(s) are then retrieved. Addressing follows

SFour integrations per symbol step were used. This permitted each symbol’s effect to
reach anywhere in a 5 x 5 array of cells.

322 Sylvian R. Ray and Hillol Kargupta

the guided sequence retrieval (GSR) algorithm, leading the TSP to recapit-
ulate the training steps and set up the symbol concentrations that occurred
during training. Subsequent retrieval of the responsive sequence is performed
by free sequence retrieval (FSR).

In FSR, there is no external symbol input. At the end of GSR (the ad-
dressing operation), the symbol concentration, G(z,y), has been established
and the processor then follows FSR, which is a sequence of cell activations
determined solely by global-maximum activation (global WTA), analogous
to a falling domino pattern.

The FSR algorithm follows. Its basic simplicity is complicated by the
rather stringent demands we will place on it by choice of task, which will be
discussed shortly.

Free Sequence Retrieval Algorithm

1. Find the winning cell (most highly activated globally), C; e C,
corresponding to

N
VC : min([[(Vi — G(z,y)ll) = MIN

where k extends over all V registers in all cells and MIN is
the global minimum.

2. Tentative path A: Emit a unit of symbol s¢, at (z,y) and
Diffuse one symbol step. Find the most highly activated cell,
Cja, and the corresponding minimum activation, MIN,.

3. Tentative path B: Diffuse one step (without an Emit). Find
the most highly activated cell, Cj;, and the corresponding
minimum activation, MINg.

4. Select path A if MIN, < MINg and MIN, < op.
Otherwise, select path B if MINg < MIN4 and MINg <
or. Otherwise, terminate with no path.

5. Actualize the steps of the winning path, that is:
Designate Cj, or Cj, as the AC. If path A, actualize the
Emit + Diffuse one step; else actualize only the Diffuse step.

6. Return to step 1.

4.7.1 Selection of a data type

There are several questions which deserve to be distinguished because they
present different problems.

e Addressing: Can addressing utilize either initial or internal subsequences?

e Sequence complezity: Is symbol duration stored and can it be retrieved?
Does the presence of substrings that are common within stored strings
cause any difficulty for retrieval?

A TSP Based on the Biological Reaction-diffusion Process 323

THE ERIE CANAL

O

A2 D D) P PP G G At

Figure 9: Example of musical melody encoding. A superscript
represents time length in eighth notes. F2F? is an example of a
“reattacked” note. One eighth note corresponds to a fixed number
of integration steps (usually four) of the reaction-diffusion equations.

To study all of these questions, we looked for a data type for which all cases
can appear. Such a data type is the musical score of simple melodies.

First, a system for encoding a single melody of a music score was devised
(see Figure 9). The music unit time was chosen to be an eighth note of the
reaction-diffusion equations. For each eighth note, four integration steps of
the reaction-diffusion equations were performed. Four steps ensures that an
emitted pulse of symbol will travel to every location in the TSP structure
so that any next symbol can link with its predecessor. The appearance of a
base symbol (e.g., C, D, F'#) was coded as an activation of the single cell of
the corresponding symbol (e.g., A, B, C#). Relative time length in eighth
notes is denoted by a superscript.”

To distinguish held notes from reattacked notes notationally, we will write
C2C to represent a C quarternote followed by a C eighthnote, and C? rep-
resents a dotted quarternote or, more precisely, a C tone held for 3 units of
time.

At the storage/training algorithm, level, the two sequences C2C and C®
are interpreted differently. The former means “Emit C and Diffuse two steps,
then Emit C and Diffuse one step,” whereas the latter means “Emit C and
Diffuse three steps.” “Diffuse one step” corresponds to four integrations of
the reaction-diffusion equations in the following experiments.

An example of a music score to notation mapping is shown in Figure 9.

4.8 Experiments with SASM

Test 1: Distinguishing s* from sss---s (k times)

For the first test the following strings were stored using oy = 0.0001. The
parameters used were Dy = 0.4, D, = 0.3, « = 0.3, f# = 0.3, e = 0.2, and
¥ =0d.

«Q

Q@ M e
W w w
QaQQ
O oo

oTQ
W T w
o>

"For a single eighth note, superscript 1 defaults to blank.

324 Sylvian R. Ray and Hillol Kargupta

The sequences were addressed (by GSR) up to the |, and the remainder of
the sequences were retrieved by the FSR algorithm. The objective was to
test the ability of the TSP to distinguish the F'FF case from the F? case
based on the initial symbol of the address, F or G.

The retrieved strings were exactly as stored. The sequence of G vectors
experienced during retrieval was exactly the same as occurred during storage
since o was small enough to give a depth of more than 4, the distance from
the last unique symbol to the point where the sequences diverge.

In this case, not only does the difference among the initial four symbols of
each sequence predict the fifth symbol correctly, but the more difficult task
of distinguishing FF'F from F*® is achieved.

Note that there is no problem due to the common (BCD) subsequences
here or, in general, as long as the effect of the first symbol is not confounded
by the depth being too small (i.e., by o, being too small).

Test 2: Variable length symbols in the address

Suppose the same number of appearances of a symbol occurs in two ad-
dresses, but the time lengths of symbol appearance are different. Can the
TSP avoid confusion? To test this, we store the following two sequences.

ABCFF2F|EDC
ABEFFFF|GFE

Again, using o, = 0.0001, which is small enough to ensure that the context
of each transition is uniquely represented, there was no problem at all in
retrieving the correct sequence following the | by FSR. All parameters were
as in test 1 except that Dy = 0.3 proved to be a better choice.

Test 3: Sequences with long common subsequences

Finally, we stored sequences having common subsequences to test the
ability of the TSP to avoid confounding the sequence during retrieval. The
stored sequences, with the address sections shown, are

D"5

| BDEFGBC
| EF G A3 B™4
| DEF G A2 B3

t\)
k=g
Q

"3E2DEF | ¢
"3E2DEC4 | B
"3E2DEC2 | E°

rPMOJ
=

The common subsequences were in the free retrieved section in some
cases and in the address section in other cases. Using the same parameters
as before, with the exception that D, = 0.2, all sequences could be retrieved
exactly—meaning both the symbols (tones) and their duration.

4.8.1 Comments on the FSR algorithm

We can now appropriately discuss the complication in the FSR algorithm
involving the need to test two possible actions at each step (see steps 2 and 3

A TSP Based on the Biological Reaction-diffusion Process 325

in the FSR algorithm, section 4.7). If one permitted only sentences having a
single symbol per step, the simple rule of the emission of a unit of a symbol
on each transition would be adequate. The need for the test arises from the
fact that we want to distinguish cases of “held” notes versus “reattacked”
notes. For example, in the subsequences ... BC*B ... and ... BCC?*CB. ..,
each step through the region of Cs requires testing whether the active cell
supports a path corresponding to (Emit + Diffuse) = “reattacked note” or
a path corresponding to (Diffuse only) = “held note.” If the sequences were
restricted to only an “attacked note” for each symbol transition, the test
of alternative possibilities seen in the FSR algorithm would be unnecessary.
But with the allowance of successive appearances of the same symbol either
held or reattacked, the way to distinguish the preferred path is by testing the
two possibilities corresponding to path A and path B in the FSR algorithm.
Also note that the TSP does not support addressing that begins at an
internal subsequence of a stored string. The reason for this limitation is that
an approximate value of the G vector at the internal symbol where addressing
begins would have to be known in order to continue the FSR correctly. For
addressing with an initial substring, the addressing always begins with G = 0
and the GSR develops the complex distribution of symbol concentrations.

5. Discussion

We have proposed and studied a temporal sequence processing system that
uses the reaction-diffusion process to provide interconnection of all cells and
convey memory of past events.

The cells are provided with a multiplicity of inputs that are capable of
activation due to the symbol concentration at the location of the cell, pro-
ducing a cell like a multi-input radial basis function cell. Reaction-diffusion
provides for controlled growth and decay processes, rather than just decay
and diffusion, for the concentrations, which adds another dimension of possi-
bilities to the sequence representations contained in the TSP and is a unique
feature. Other designs having similar objectives [10, 11] limit themselves to
monotonic decay of memory of past events.

The experimental study of the ReDi TSP was keyed to five qualities,
which are, briefly, depth, flexibility of equivalence class representation, warp
tolerance, minimum storage, and content addressability. Various combina-
tions of these qualities are preferred for various applications.

The present system permits any depth desired but at an increasing cost
in storage capacity for increasing depth. A unique feature of the system is
that it allows flexible class equivalence at retrieval time. Once the sequences
are stored with a specific degree of uniqueness of the transitions, they may
be retrieved (or recognized) using the same or a lesser degree of stringency
in symbol matching.

Storage efficiency, in relative terms, is controllable by a single parame-
ter, os, which sets the radius in symbol concentration space within which
sequence transitions are recognized and stored as unique. Thus, storage

326 Sylvian R. Ray and Hillol Kargupta

efficiency and its inverse, depth, are easily controlled by selection of the pa-
rameter 0.

The system shows a moderate amount of warp tolerance, but this is
achieved at the cost of accuracy in identifying the stored sequence.

Two principal tasks were examined for the purpose of evaluation of the
system: embedded sequence recognition (ESR) and sequentially addressed
sequential memory (SASM). In ESR, stored short sequences are examined for
their occurrence in a longer argument string. Both tasks are accomplished by
combinations of the more fundamental algorithms, guided and free sequence
retrieval (GSR and FSR).

For the ESR problem, the external sequence guides the inquiry (address-
ing), which is, operationally, guided sequence retrieval. This algorithm was
tested using an embedded Reber grammar to generate short sequences for
storage. Other sequences were applied as arguments that, although not nec-
essarily physically longer, provided an equivalent test to the case of an ex-
tensive argument string. Successful events were those that correctly reached
and predicted the penultimate symbol. This test was fully successful, reach-
ing accuracies up to 98 percent for particular values of o, and or. A test of
false-positive responses showed that the accuracies attributed to true-positive
cases were largely valid.

For the SASM problem, the external sequences are short and the internal
sequences are long. The external sequence is used as an address, applied
by the GSR algorithm, and the remainder of the internally stored string is
retrieved by FSR in a method analogous to following the lowest energy path
from the point where the address ends. We confined ourselves to addressing
from the initial subsequences of the stored sequences only; addressing begin-
ning internal to the stored sequences is not possible, in general, with the
TSP2

The TSP has no problem at all performing the SASM problem for ordi-
nary complex sequences that are stored and retrieved with one symbol per
time step. In order to demonstrate the greater capabilities of the system, we
introduced and stored simple melody-like sequences requiring that both the
symbols and their time duration be correctly retrieved. This experiment was
also fully successful, although it required an unwanted complication in the
FSR algorithm in the form of a test-and-choose procedure to correctly iden-
tify the “held” versus the “reattacked” case when the same symbol recurs.

Comparing the TSP to the method presented in [11], their approach ap-
pears to be more tolerant to warp than ours. Their approach requires pre-
liminary knowledge of the necessary depth before commencing storage of
sequences. The feature of the TSP method that allows adjustment of recog-
nition tolerance during the recognition phase is not supported, as far as we
can determine, in the method in [11]. The important property of “chunk-
ing,” however, is one we have not yet addressed, although we do not see any
inherent difficulty in extending the T'SP to perform chunking.

8 A modified system that permits addressing from internal sequences has been studied
by us and will be presented elsewhere.

A TSP Based on the Biological Reaction-diffusion Process 327

References

(1]

(2]

[6]

(7]

[0

[10]

[12

[13]

[14]

Turing, Alan, “The Chemical Basis of Morphogenesis,” Phil. Trans. of the
Royal Soc. of London, Ser. B, 237 (1952) 37-72.

Ray, S.R. & Gyaw, T.A., “Universal Multichannel Signal Interpretation Using
Connectionist Architecture,” in Proceedings of Artificial Neural Networks in
Engineering Conf., V.4, (ASME Press, New York, 1994).

Cleeremans, Axel, Mechanisms of Implicit Learning (MIT Press, Cambridge,
MA, 1993).

Mozer, Michael C., “Neural Net Architectures for Temporal Sequence Pro-
cessing,” in Predicting the Future and Understanding the Past, edited by A.
Weigend & N. Gershenfeld (Addison-Wesley, Redwood City, CA, 1993).

Elman, Jeffrey, “Finding Structure in Time,” Cognitive Science, 14 (1990)
179-211.

Jordan, M.L., “Attractor Dynamics and Parallelism in a Connectionist Se-
quential Machine,” in Proceedings of 8th Annual Conference of the Cognitive
Science Society, 1987, 531-546.

Cummings, F., “Representation of Temporal Patterns in Recurrent Neural
Networks,” in Proceedings of the 15th Annual Conference of the Cognitive
Science Society, 1993, 377-382.

Fahlmann, S.E., “The Recurrent Cascade-correlation Architecture,” in
Advances in Neural Information Processing Systems; NIPS-3, Proceedings
of the 1990 Conference, held at Denver on November 26-29, 1990, edited by
Lippmann, Moody, and Touretzky (Morgan Kaufmann, Palo Alto, CA, 1990).

deVries, B. and Principe, J.C., “The Gamma Model-A New Neural Net Model
for Temporal Processing,” Neural Networks, 5 (1992) 565-576.

Bodenhausen, Ulrich and Waibel, Alex, “Learning the Architecture of Neural
Networks for Speech Recognition,” IEEE Proceedings of the [CASSP, 1 (1991)
117-124.

Wang, DeLiang and Arbib, Michael, “Timing and Chunking in Processing
Temporal Order,” IEEE Transcripts on SMC, 23 (1993) 993-1009.

Meinhardt, Hans, Models of Biological Pattern Formation (Academic Press,
1982).

Bohn, H., Interkalare Regeneration und segmentale Gradienten bei den Ex-
tremitaten von Leucophaea-Larven (Blattaria). III. Die Herkunft des in-
terkalaren Regenerats. Wilhelm Rouz Arch., 167 (1971) 209-221.

French, V., “Leg Regeneration in the Cockroach, Blattella germanica I. Re-
generation from a congruent tibial graft/host junction,” J. Embryol. exp.
Morph., 179, (1976) 57-76.

