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A bst r a ct. Temporal sequences are a fundam ent al form of infor­
mation and communication in both natural and engineered syst ems .
T he biological control pr ocess t hat dir ect s the generation of it era tive
st ructur es from undifferentia ted t issue is a typ e of tempo ra l sequen­
tial process . A qu antitat ive explana t ion of this temporal pro cess is
react ion -diffusion, init ially proposed in [1] and later widely st udied
and elaborate d .

We have adapted the reacti on-diffusion mechanism to create a
temporal sequence processor (T SP) composed of cells in a diffusion­
support ing medium that performs storage, associative retrieval, and
predict ion for te mpo ral sequences. The TSP has severa l interest ing
at t ribute s: (1) It s achievab le dep th (or degree) is constrained only by
storage capacity, (2) it tolerates substant ial t ime warp , and (3) it sup ­
ports user-sp ecified flexible groupings of stored sequences into coarser
classes at ret rieval time. T he TSP is also capable of pr eserving the
t ime exte nt of stored symbols, as in a musical melod y, and permi ts
retrieval of both the symbols and their te mporal exte nt. Exp er imental
verifica t ion of the propert ies of the TS P was performed wit h Reber
gra mmar sentences and musical melod ies.

1. Introduction: Temporal sequences

Temporal sequences arise nat urally when one at tempts to process any tim e
domain signa l for the purpose of recognizing or predicting the presence of
features relevant to the part icular application . Human speech , biomedical
signa ls, music, or any fun ct ion of t ime originating from a sensor const it utes
a t emporal sequence whose mean ing or intelligence cont ent depends not only
on the exist ence of certain fea tures, but also on their par ti cular temporal
order. A t ime domain signal is most convenient ly abst racted as a temporal
sequence of feature vectors, often called a spati otemporal sequence,

x = {x (t;)}, t , = 1,2, .. . , 00 .
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where each vector x(ti ) is a feature vect or , a condensed but adequate ly veridi­
cal represent ation of the signal in the vicini ty of time t..

The feature vect ors X originating dir ectly from signal applica t ions usu­
ally span a space of high dimensionality, for exa mple, R15

. In many practi cal
applica t ions , the infinite numb er of possible feature vectors in a real space
are reduced to a finit e number of classes by a clust ering operation such as a
self-organizing feature map or k-m ean s clust ering. Upon representing each
of K clust ers or equivalence classes with a symbol s. , i = 1, .. . , K , we obtain
a man ageab le set of K symbols forming the assumed input for the tempo­
ral sequence pro cessor. Abstract ed spatiotempo ral sequences are therefore
represented as st rings such as cjk ltprmm bos without significant loss of rep­
resentational power compared with the actual signal information. The basic
sequences can be supplemented with time extent information by minor ex­
tension of the fundam ental repr esentation , as we discuss in sect ion 4.7.

Also, t he actual cardinality K of t he finite alphabe t , if too large, can
become a maj or considerat ion, but t his is a question of scale that we will
ignore.

2. The objectives of temporal sequence processing

T here are two distinct sequence pr ocessing tasks that we are particularl y
int erest ed in pursuing here. These tasks arise in t he context of semant ic
content discovery in signals [2].

1. Emb edded sequence recognit ion (ESR). A number of short pat tern se­
quences, (PS1 ,PSZ, . .. ) = PS , are sto red in the device as shown in Fig­
ur e 1. An unbounded argument sequence , ARGSEQ, is compared with
the set , P S, contained in the sequence memory. When a subsequence
of ARGSEQ is found that matches any member of the set PS wit hin
a pr esp ecified accuracy, a success ful recognition is indicat ed . As an
example of this case in speech recogniti on , PS is some tran sformed
repr esentation of phonemes or qu asiphonemes, and the ARGSEQ is a
similarly pr eprocessed speech signal.

2. Sequentially addressed sequence m emo ry (SASM). "Long" sequences ,
ST , are stored (see Figur e 2) . Short "address" sequences are compared
with ST for the purpose of locat ing regions of ST that mat ch the applied
address sequence . If a sufficient ly close mat ch is found , we want to rec­
ognize the condit ion and possibly read out the cont inuat ion of ST from
the endpoint of the success ful match or , possibly, find the beginning
of ST and read the whole st ored sequence . This case is the tradi t ional
CAM problem, modified by the requirement of sequenti al pr esent ation
of the address and sequenti al readout from the match point .

Two dist inct algorithmic procedures (ES R and SASM) are needed to solve
these two problems.
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EMBEDDED SEQUENCE RECOGNITION TASK
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Stored short sequences.
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Figure 1: Embedded sequence retr ieval is the ident ification of "short"
stored subsequences within a long or unbounded argument sequence.
It is performed by the guided sequence retrieval algorithm.

SEQUENCE ADDRESSED SEQUENTIAL MEMORY

EX AMPLE ADDRESS SEQUENCE XT F

LONG STO RED SEQUENCES

R T K C L X T F P C Y W #

L P P R S T U M N N #

B E L 0 N G a R S H a R T #

[x T F F I L L E R #

Figure 2: The task defined as sequence-addressed sequential memory
is defined as the location of short sequences within long stored strings,
followed possibly by ret rieval of t he identified sequence.

• For ES R and for the address ing phase of SASM, an algorit hm is used
to guide t he comparison of an ex ternal address sequence wit h intern al
sequences . We will call t his algor it hm guided sequence retri eval (GSR) .

• For t he readou t phase of SASM, afte r a unique stored sequence has
been identi fied , t he algor it hm used is free sequence retri eval (F SR ). It
dep ends solely on intern al stored states . FS R is also viewed as t ime­
series prediction .

T hus, our m ain obj ect ives from an applica t ion viewpoint (ESR and SASM)
will b e seen to reduce to the two algorit hms, GSR and FSR, appropria te ly
applied . If t he effect iveness of GSR and F SR can be demonstrated convinc-
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ingly, th e success of th e applications follows. The GSR and FS R algorithms
will be covered lat er.

2 .1 D esi r ed qualities of a temporal sequence p r o cessor

Let us briefly review the qualit ies we desire for a TSP from an engineering
viewpoint. These qualities will affect how well and how complete ly the TSP
can achieve GSR and FSR over a range of problems , that is, its versatility.

First , some definitions are needed. A complex sequence is one const ruc ted
from any number and order of symbols from a permissible alphabet . We
assume only complex sequences in th is paper.

The depth or degree of a sequence is the min imum number of symbols
preceding Sn required to predict s.; accurately. By a system having depth n ,
we mean tha t any symbol Sk requiring no more than th e precedin g n sym­
bols, S k-n, " " Sk- 2 , S k-l , to predict it can be pr edict ed with certainty. For
example, if the syste m has depth 2:8, th en having learned th e two sequences
xabcbaahz and axbcbaahy, the terminal z and yare infallibly pr edicted.

• Quality 1: Depth. The TSP should be capable of minimum depth
n » 1. n should be a design paramet er. Note that th e depth n , for
complex sequences, implies t he ability to count up to n repeti tions of
the same symbol, which is a strong requirement.

• Qualit y 2: Tempo ral fl exibility. The TSP should to lerat e temporal scal­
ing and warp during st orage, addressing, and retrieval.' Scaling refers
to the absolute t ime units ; warp is the nonuniformity of intersymb ol
spacing. However , it should be possible to retrieve th e relative presen­
t ation length of th e symbols if that inform ation is st ored .

• Quality 3: Equivalence class fl exibility. The TSP should be capable
of flexib ly adjust ing the "radius" of the equivalence classes of stored
sequences . Thus, similar sequences , learned as dist inct , may be t reated
as equivalent without altering the sto red data. This quality impli citly
permi ts limited err ors such as missing or added symbols to be either
to lerated or not tolerated , depending on the object ive during retr ieval.

• Quality 4: Min imum storag e. We define th e absolute storage require­
ment as th e to tal numb er of weights needed to store a par ticular collec­
t ion of sequences. The total number of weights required depends on the
number of common subsequences in th e data. In th e present context ,
the required storage capacity is N sy m * Nt , where Nsy m is th e number
of symbols in the alphabet and N; is the numb er of symbol transi­
tions that must be dist inguished . Obviously, we want to min imize this
requirement.

• Quality 5: Sequential content addressability. The TSP should provide
for content addressability with a sequent ially supplied address .

IThe terms retrie val and recognition are used synonymously here.
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2.2 Implications of desired qualities

W hat exactly are the propert ies tha t the desired qualit ies and our applica­
tions object ives imply about the T SP or network in general terms? A careful
ana lysis of this question yields inst ructive insights on the subject of the TSP.

First , in order to simplify the addressing algorit hm , it is very desirab le
t o have only one cell (or neuro n) per symbol of t he alpha bet . T his choice
defeats the potential prob lem of having to man age mult iple act ive pat hs while
searching for a uni que responsive sequence .

Second, to be able to dist inguish sequences such as cbbbh from cbbbbg, each
transit ion must produ ce a distinct internal state, for example, the transit ion
from the second to the third b must result in a different internal state from
that produced by the transit ion from the third to t he fourth b. T his implies
t hat t he one cell identified with the symbol b must be able to resolve the
difference, however it may be represent ed , between v and v + 1 previous
occurrences of the symbol up to some maximum depth , n . (See [3J for a
thorough discussion .) But , third, to satis fy temporal flexibility (quality 2),
the ability of a cell t o disti nguish between the vt h and (1/ + l) th previous
occurrences of a symbol must not be rigidly dependent on the absolute or
relative t ime sca le.

F inally, the desire for equivalence class resolut ion (qua lity 3) can be sat­
isfied by an acceptance window diam eter that is dyn am ically adjustable at
retrieual time so that the t ransit ion from the vt h to t he (v + l )t h previous
occurrence of a symbol can be either resolved or ignored accord ing to a global
cont rol par am eter .

Given these crystallized requir ement s for the TSP, the merits of various
proposed syste ms can be judged for breadth of capabilit ies.

We will show that the TS P prop osed here does satisfy all of these requi re­
ments wit h some limitations on t ime flexibili ty (quality 2) and on addressing
of int ern al subse quences (quality 5).

2 .3 Previous work on sequence recognit ion by networks

For an excellent summary art icle on temporal sequence processing see [4] The
conclusion regarding simple recurrent network architect ures (SRNs) [5, 6] is
that they are ext remely limited in depth , to t he degree that they are imprac­
ti cal for many applications . [7] concludes that t here is no st raight forward way
for these networks to exhibit the property of count ing . Our own experiments
support this conclusion. The limitation on SRNs is cente red on the fact that
there is only one vector t o repr esent all past contexts, which severely limits
depth . In addit ion, there is no known design formu la that relates achievable
depth to architecture param et ers.

T he recurrent cascade corre lation network (RCC) in [8] is anot her inter­
esti ng approach to TSP that is actively const ructive, as is its parent , the
cascade corre lation network. It learns a Reb er grammar efficiently and pro­
cesses the t est set wit h a very low err or rate. A major limit ation of RCC is
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that its time delays are fixed , which limits its usefulness with t ime-variab le
inputs (see quality 2 of sect ion 2.1).

The ab ility to t ra in for depth and for variab le intersymb ol delay is af­
forded by the "gamma delay" arrangement explored in detail in [9]. It is
difficult to compare their approach with the present work since the gamma
delay assumes numerical signals, for which algebra ic operations are defined ,
whereas we are t reat ing the sequences as nominal symbols.

[10] also present s an interesting mechanism for ret aining and distributing
the memory of past events in their T EMPO 2 model. They make use of an
adapt ive gaussian kernel to capture history by distributing the "t race" of a
symbol in t ime. The react ion-diffusion meth od of history retent ion used here
is essent ially a superset of the diffusion idea , since the reaction process adds
to the flexibi lity which can be exploited.

The temporal sequence processing algorit hm studied in [11] addresses
many of the same goals as the current effort . They achieve the depth objec­
t ive by assuming an element with mult iple terminals. Terminal 1 stores th e
state of th e most recent inpu t to the element, terminal 2 the second most
recent exte rnal input to the element, and so on. Thus, by providing an n­
terminal element represent ing symbol S k, with each terminal corr esponding
to a dist inct history of the sequence prior to Sk, a depth of n can be accurately
sto red . This design meets all of the desired qualit ies specified in sect ion 2.1
except, possibly, for some limitatio ns on quality 3. Minor propert ies of the
design that are less than ideal are the fact that a maximum depth must be
specified in advance and the biological bas is for multiple dist inct terminals
is not supported . But the design in [11] squarely faces the need for sufficient
storage to represent the complexity required , which is t he primary problem
with SRNs and most other attempts . It overcomes or ameliora tes its need for
prespecified maximum depth by prov iding a mechanism for chunking, that is,
grouping subsequences iteratively into higher-level representat ions. We will
return to a comparative discussion of the present reaction-diffusion method
wit h t he approach of [11] in sect ion 5.

3. The biologic al basis : React ion-diffusion

A well-st udied biological expe riment consists of the surgical removal of an
int ernal segment of a cockroac h t ibia followed by regrafting of th e distal and
proximal parts, as illustr ated in Figure 3 [12]. If the origina l t ibia consisted
of a sequence of similar but not ident ical segments numbered 123456789, and
the segments 4567 are removed , it is observed that after one or two moults
the internal segment is regenerated in its original order. This experiment im­
plies the existe nce of memory of the t ibia segment sequence an d a controlled
growt h process . How is this to be explained? A quantit at ive explanation for
this as well as myr iad ot her pattern growth processes (e.g., zebra st ripes, leaf
capillary patterns) was set forth some 40 years ago [1] in t he form of a set
of partial differential equations that describe the self-stabilized increase and
decay of growt h-st imulating "morphogens" in a reaction-diffusi on process.
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Here is an example system.

R eaction-Diffusion Equa t ions

8gp(z) = Egp(Z) _ () D ( 82gp(z))
c a gp z + 9 " 2
ut r u Z

8r(z) = "" 2( ) - (3 () D (8
2r(

z))
s: 'YL gp z r z + r "2
bt p u Z
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(1)

(2)

where gp represents the concentrat ion of the pth morphogen that excite s the
growth of the pth segment of the t ibia , r is the concent ration of the common
or global reactant, and the coefficients are cons tants, the Ds being diffusion
coefficients.

To give a sketch of the bio logical meaning, assume that segment 8 emits
morphogen g7 . If r = 1, 8gdbt will grow by posit ive feedb ack (te rm 1 of
equat ion 1) for some time, and the diffusion term (cont aining Dg) will dif­
fuse t he chemical into the segment 8-segment 3 interface, stimula ting growth
of segment 7 mat erial. At dist ant loca tions, the reactant r will diffuse and
sup press growt h of segment 7. Segm ent 7 material at the interface wit h
segment 3 triggers the emission of g6, which causes segment 6 growth . No­
t ice that the reactant concentration is genera ted in proportion to the sum
of squares of the morphogens pr esent , thus suppressing and stabilizing the
pro cess through the app earance of r in the denominator of the first term in
equati on 1. T hus the react ion-diffusion equations perm it calculat ion of the
growt h , diffusion , and decay of each morphogen in turn, which effectively
carr ies the history of previous act ivity forward in time while dist ributing the
information spatially by diffusion. This is the natural biological process that
we will simu la te as the basis for the intercommunicat ion of cells (elements)
and the distribut ion of sequence information .

Figure 3 illustrat es the expe riment [13, 14]. A cockroach t ibia is originally
const ru ct ed as a sequence of similar but not identi cal segments numbered
123456789 in proximo dist al order. If segment s 4567 are surgically removed
and the remaining por tions of the tibia grafted together to form the sequence
12389, after one or two moults (M) the missing elements are found to re­
generate. Further experimental evidence shows that growth morp hogens are
emit ted sequent ially starting from the distal segment , 8, indu cing growth in
the order 7654.

T he existence of this biological sequence reproduction , being a form of se­
quential memory, at trac ted our interest in using an analogous process in the
storage and retrieval of symbol sequences. The react ion-diffusion temporal
sequence pr ocessor (ReDi TSP) emerged from this observat ion . The primary
benefit of this starting point is a well-defined , stable system for communi cat­
ing cond it ions from one cell by a mean s ot her than discret e conduct ive paths
(e.g., axons or wires).
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F igur e 3: An expe rime nt that demonst rates t he regenerati on of
sequent ial segments of cockroach tibia. Corr ect ly ordered regener­
atio n of segme nts is explained by the react ion-diffusion mod el. (From
[12].)

3.1 T he computational model

Architectur ally, the ReDi TSP model consists of cells randomly dist ributed
in two- or three-dimensiona l space (Figure 4). We will assume a two-dimen­
siona l geometry, without loss of generality, for present ation simplicity. Cells
(Figure 4, upper left ) are fixed in pos it ion . Each of the N cells is un iquely
lab eled Gi , i = 1, .. . , N, which is also the label of the output that the cell
emits when activated.

T he cells are interconnected through a diffusion-suppor ting medium. At
any t ime t , and at any position (x , y ), the intern al "signal" is a vecto r

G (x , y , t ) = (G1 ,G2 , . . . , Gk , . . . , GK )

where K is the total number of distin ct symbols.? G is the symbol concent ra­
tion vector at location (x,y), and Gk is the concent rat ion of the kt h symbol
at (x,y).

Each cell has a number of weight registers Vi , i = 1, . . . , P . T he length
of each V register is K real numbers.

A cell can be activated by two means. F irst , the cell may act as a rad ial
basis function cell in response to t he local value of the G vector . If

p

AG = min II Vj - G(x ,y) 1I < Us
J=l

the cell is internally excite d by level AG. T he excited cells form a compet i­
t ive network result ing in a single winner, namely, t he cell j* , which sat isfies
mint=l (AGj ), being the most strongly excited cell.

Second , a cell GM may also be excited by the external input directly, by
having

2 Analogous to morphogens in the biological tissue growth model.
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ACLiv.~ LAB EL
Condo OUTPUTWlS. ~__- _ _ ~

SINGLE CELL

Re-Di TEM PORAL SEQUENCE PRO CESSOR

Figure 4: Architecture of the ReDi TSP. Identical cells are distr ibut ed
randomly in a thr ee-dimensional (or two-dimensional) volume sup­
por ting diffusion.
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where S, is the input symbol and ZM is the external input weight vector of
cell M . In thi s case we are assuming nominal (as opposed to linear ) input
symbo ls so that the input symbols ar e an orthogo nal set .

T he single winning cell, Cj . , emits a un it impulse of its lab el symbol, Gj . ,

afte r which the symbols react and diffuse according to the react ion-diffusion
equations .

Let us br iefly touch on the princ ipal aspects of operation of the TSP.
In general terms, the external input path wit h weights ZM provides the
means for learning the sequences originally and for guiding t he sequence of
activa tions in guided sequence ret rieval operation .

T he weight s , VM,j , sp ecify the P different internal condit ions when cell
CM corresponds to the next seque nt ial input symbol. T he V registers, after
training , cont ain the memory of all learn ed transit ions, including context,
back to a depth determ ined by u s ' Set t ing Us = 0 produces theoret ically
infinite depth or eide t ic memory, limi ted only by P , the number of V registers,
since every unique context of a symbol is learned. As Us grows, similar
sequence contexts are treated as equivalent , which reduces depth but also
reduces the st orage capac ity requ ired . The states stored in the V registers
are the sole source of sequent ial op erat ion during free sequence retrieval. The
fuller discussion of how the desired qu aliti es of the TSP are achieved will be
presented afte r the complet e algorithms are descr ibed.
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4. Sequence storage a n d recognition

4 .1 Training the ReDi TSP to store sequences

A training or storage sequence 81 8283 . .. is presented at integral t ime poin ts."
The input symbols are maximally sparse and therefore form an ort hogo nal
set .

T he number of cells is N :2: K , where K is the number of dist inct symbols
in the input symbol alphabet. P is the number of V reg ist ers per cell . The V
regist ers ar e the weight vectors that can respond to intern al symbol vectors
in the diffusion-supporting medium.

Ini tially all V registers ar e in an un assigned state. In order to simplify
the algorithm statement, without loss of generality, assume cells are uniquely
assigned to each symbo l of the alphab et and labeled Gs; . T he cell assignment
is accomplished by setting the exte rnal weight vector , Z, = s..

The Storage (Tra ining) Algorithm

1. Set i = 1.

2. Apply 8 i . T he winning (and act ive) cell will b e Gs; , abbre­
viated AC (act ive cell) .

3. For the AC ,
If

p

min II Vi - G(x,Y)1I < U s
t= l

th e current trans it ion (from 8 i-1 to s.) is already known .

Else recruit an unused V register , Vi , in cell Gs; and set
(one-shot learn )

V j = G(x,y ).

4. Emit a unit impulse of symbo l Gs; ·

5. Evaluate the reaction-diffusion equations for one symbol step ,
growing and diffusing all extant symb ol concentrat ions . (A
cons tant number of integrati on ste ps ar e used per symbol
st ep depend ing on the dimensions of the cell array.)

6. Increment i and go to step 1 (until input sequence end s) .

During storage, each symbo l in the applied sequence causes the emission
of a "symbol fluid ," which diffuses spatia lly. The successive symbols build a
vector G , which varies with both time and space. History of the sequence

3T he t ime poin ts can be set by t he ap pearance of inp ut symbols or t reated as absolute
t ime uni ts.
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Figure 5: How th e TSP works. Nine cells with three V registers
are shown. Bar graphs represent the symbol concent ration after the
sequence addefea is learned. An act ivated cell traps the current symbol
concentrat ion in one of its V registers. For example, the first d traps
only some Ga in its VI register. Each register represents one vector
th at can act ivate (fire) the cell.

is dist ributed thro ughout the volume, where it can be associated to the suc­
cessor symbols. Later , dur ing testing to detect t he existe nce of a stored se­
quence, t he sequence of emission and react ion-diffusion" that occurred during
training will be recapit ula ted , exact ly or app roximate ly (depe nding on as),
by guided sequence retrieval.

4.2 A n exam p le of the t raining algorithm in use

An example of the stored V vecto rs that would exist afte r a sequence is stored
is shown in Figure 5. T he sequence addefea.. ., is stored.

When a first occurs, the environment is blank, so a act ivates Cell "a"
(through the extern al Z inputs, not shown), which record s as, the cur rent
local symbol concent ration, in it s first V regist er.

When the first d occurs , the symbo l a has diffused to the vicinity of cell
"d," which becomes act ivate d from t he external inputs through it s Z weight
vector. Being t he AC , it sto res the local symbol vector, G , in it s VI regist er ,
con sisting only of some a symb ol concentration.

When the second d occur s, cell "d" is reactivated and again st ores t he
local G , which contains some a and some d symbo l concentrat ions . Cell "d"
then emits a uni t impulse of d symbo l.

Upon reaching the second occur rence of a in the input sequence, the
cur rent symbol concent ration at the x , y position of cell "a" is sto red in the
second V register of the cell, which then retains the state. The second V
regist er of cell "a" shows the successively smaller values for e, I, d, and
a, which are approx imately propor ti onal (in this case ) to the recency of
occurrence of the symb ols in the input sequence.

4Note t hat symbol concent rations may grow as well as decay, depending on values of
the free parameters in equations (1) and (2). This allows mor e degrees of freedom t han
diffusion alone.
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The actual magnitudes of the symbo ls in the symbo l vector , G (x ,y),
depend on the relat ive posit ion of cells in the volume as well as on the
constants used in the reactio n-diffusion equations . T he magnitudes of symbo l
concentrat ions do not even have to decay monotonically; it is essent ial only
that the same subsequence produce the same concentrations on repeat ed
appearance .

Storage wit h as = 0 is analogous to eide tic memory and requires a dif­
ferent V regist er for every unique symbo l transit ion. This condit ion is very
pro fligate with memo ry usage. For increasing as, however , an increasing
number of transit ions are treated as equivalent by using an exist ing V vector
that is close enough to a subsequence already seen . In this case , a new V
vect or is not required , and this reduces storage space.

We have chosen to use a one-shot t raining algorit hm here. Incremental
training , typically used in neural networks, could be used to average out
varia tions in timing of the symbols, but we will not pursue that avenu e in
the current invest igat ion .

4.3 Demonstration of depth and co unting quality

The depth and count ing ability of the TSP, referr ed to in sect ion 2.1, was
demonstr ated in a simple experiment simulating only the storage algorithm .
This property was demonstr ated by monitoring t he growt h of V regist er usage
while storing a sequence with repet itions of a single symbo l. The experiment
consisted of storing the sequence ddddddd. . . and noting the symbol number ,
n , where the storage algorit hm first did not invoke a new V regist er to store
the state . This would correspo nd to a depth of n - 1 as well as the ability
to pre dict the different successor symbol for the sequences cdn- 1e and cd" t ,
for example.

T his experiment was performe d wit h various values of to lerance, as. T he
results are tab ulated below. Unless ot herwise not ed , experiment s were run
with Dg = 0.3, Dr = 0.3, a = (3 = 0.3, E = 0.2, and I = 0.1 in equations 1
and 2.

00

Counting Test

n (largest depth)
3
4
6

10

0.05
0.04
0.02
0.01
o

When the recognit ion (or ret rieval) algorithm , discussed later , uses the
same value of a , t he sto rage pr ocess is recapitulated determinist ically, so we
can conclude that the depth during retrieval will be the same as that found
by this experiment .
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Metaphorically, larger values of o, corres po nd to paying less attent ion t o
the pr ecise count . As the needed count or depth increases, the penal ty is
an increase in the required st orage capacity, the total number of occupied V
registers in the T SP.

4.4 The network in the embedded sequence recognition mode

Suppose many short sequences are sto red in a ReDi TSP (as in Figure 1) . Let
a long argument sequence be pr esent ed beginning at its kt h symbol, Sk , for
t he purpose of detecting whether the arg ument subsequence is stored in the
network. This is guided sequence retrieval ; we are using the known exte rnal
sequence to guide the search for it s stored equivalent .

It is assumed that (1) we want to search for the ent ire sto red (short) st ring
and (2) the period of symbol pr esentati on is the same as dur ing the storage
operation . (JT is the to lerance measure during tes t operations , set ting the
radius of acceptance of mat ches between the stored and argument sequences .

The algorit hm is as follows.

Guided Sequence R etrieval

1. Set the argument string pointer , k = 1. Clear all symbol
concentrat ions , G( x ,y), to zero .

2. Using the exte rnal input Sk, act ivate cell CS k (whose lab el is
GSk ) . If none, terminate with failure.
If t here exists a V regist er of CS k such that

I: I (Gi(x ,y) - Vi) IS; (JT

then CS k becomes the new AC and the t ran sition Sk-1 --> Sk

in the argument sequence is a known (prev iously encoun­
te red) tran sition. Emit one uni t of Sk at the location of CS k ,

and perform one symbo l step of the reacti on-diffusion equa­
tions. Else, if no cell sa t isfies inequ ality 2, then the external
sequence is known only from S l to Sk- 1 . Terminate t he t est
with unknown sequence.

3. If a known t ransit ion occurred , increment k and return to
st ep 2, it erat ing until an end mark of th e stored sequence is
encount ered , imp lyin g a known sequence .

The foregoing algorithm of the test phase recap itulat es the training ste ps
in the sense that the symbol condit ions present at storage are revivified dur­
ing the successful matching of the argument sequence to an originally stored
sequence . Not ice, however , that we are permitting a different act ivation tol­
erance measure, (JT , than we used during training. As (JT rises from 0, we
are requiring increasingly less strict mat ching of the symbol concent rat ions
wit h the original condit ions during storage of the sequence . The int eresting
feature here is that the pr ecision of matching the exte rnal sequence to the
intern al sequence is controllab le during recognition .
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F igur e 6: Embedded rebe l' grammar. Only t he penultimate symbol is
predict able, given the second symbol.

4 .5 An em bed d ed sequence recognition experiment

Embedded sequence recognition prov ides a test bed to demonstr at e how equiv­
alence class flexibility and sto rage efficiency are traded off.

A finite-state Reber gra mmar has been st rengthened as a tes t for depth
and time-series prediction in recurr ent neural nets . The genera ted sequences
all have the second and penult imate symbo ls in determini st ic relat ionship ,
generating sequences such as BTXPSSTTTXTE or BPVTPSPE (Figure 6)
[8] . All interior sequence positions, other than the penult imate, correspond
to transit ions having equal probab ility of eit her of two symbols.

The average sentence length generated is about 10 symbols, with the
maximum of about 30 symbols in a sample of 500 sent ences.

A ReDi TS P with 25 cells in a 5 x 5 grid was defined . Five hundred
st rings were generated and applied to t he TSP in the training or storage
mode. Since the grammar uses only 7 symbols, t here were 18 unu sed cells.

Varying the storage to lera nce measure, (J., demonst rates the range of
genera lization possible during storage. In the limit as a, -> 0, every t ransi­
t ion with a unique history is sto red as a unique transition , consuming one
V register. The first appeara nce of a distinct t ra nsit ion is signaled as an
un known t ra nsit ion , which requires recrui tment of a V register. As (J s in­
creases, some transitions are t reated as equivalent by the system. For exam­
ple, when (J = 0.05, bpptttvvpe is sto red as equivalent to bppttvvpe. Higher
values of (J s result in generalizat ion or enlargement of equivalence class, even­
tua lly to the point th at every transit ion is context-free.

Similarly, increased values of act ivat ion to lerance dur ing retrieval, (JT ,

permit more tolerance in t he affirmat ive decision that a part icular t rans it ion
with it s (possibly) extensive history is permissible.

The accuracy as a function of (JT is plotted in Figure 7 for (J s fixed at
0.0001. Cases where a, > (J T have relatively lit tle mean ing.
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Figur e 7: Accuracy of pr edi cting embe dde d Reb er grammar sentences
as a fun cti on of UT , the test phase to lerance (u s = 0.0001) .
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Figure 8: Number of activation condition regist ers (V regist er s) used
as a function of us' Symbol tran sit ions to taled 4492.

To ret rieve a sequence , a randomly gener ate d Reber sente nce is pr esented
symbol-sequent ially, and mat ching is attempted by the guided sequence re­
trieval algorithm. T he retrieval is counted as accura te only if the penu ltimate
symbol transition in the sentence is found to be a known t ra nsit ion ." The
number of act ivation condit ion regist ers (V regist ers) required as a functi on
of U s is displayed in Figure 8. T his number is a fun ction only of st orage
toleran ce, u" not retrieval toleran ce.

5The a priori probability is 0.50.
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Table 1: False positive rate (percent) for recognit ion of embedded
Reber grammar sentences.

(58 I (5T = 0.0001 (5T = 0.001 (5T = 0.005

0.0001 16.4 25.8 75.6
0.001 15.8 25.8 75.6
0.005 8.0 7.0 71.0

Under the condit ion that pr actically every distinct tr ansit ion in the t rain­
ing set is known ( (58 = 0.0001), the retrieval accuracy for 500 newly generated
st rings was found to vary from 91 percent wit h (5T = 0.001 to 98.6 percent
with (5T = 0.008, a relatively relaxed matching requirement .

The storage efficiency is sugges te d by the fact that for the total 4501
symbol transitions in the 500 st ored sequences, the required number of V
regist ers ran ged from 872 with (58 = 0.0001 to 476 wit h (58 = 0.005.

To study the ability of the TSP to reject false sentences, we trained the
T SP as before, storing embedded Reber sentences containing the T -T and
Pi P deterministi c correlat ion between the second and penulti mate symbols.
For the GSR or recognition st age, however, the embedded Reb er grammar
source was reversed in the penultim ate sym bol only, guaranteeing that none
of the test sequences had been seen complete ly during t raining but that all
sequences were gramma ti cally identical up to the penult imate symbol.

Up on performing the expe riment with this modification , all recognized
sentences (false knowns) corres ponded to false posit ives as indicated in Ta­
ble 1.

When (5T is small , the narrow acceptance window dur ing retrieval eas ily
blocks acceptance of most nonstored cases , lowering t he false-posit ive rate
to the 8 to 16 percent ran ge. Wi th a wider acceptance window, however ,
the false-positive rate soars . These result s suggest a good compromise in the
vicinity of (5. = (5T = 0.001, although this choice would interact with the free
constants used in the reaction-diffusion equa tions .

4. 6 D emonstration of t o le ran ce to warp

In the preceding tes ts , one step per symbol was used during both storage and
testing . T his condit ion permits the symbol concent rations appearing during
GSR st eps to repro duce exact ly the same sequence of symbol concent rations,
G (t ), as the network experienced du rin g storage, assuming t he tolerances (58

and (5T are equa l. T he desirabi lity of tolerat ing int ersymb ol t ime var iat ions
or warp (noted as quality 2 in sect ion 2) is obvious, particularl y if t he original
source of t he symbols is a biological one wit h its ty pical ran dom prop erty.

Consider the effects of warp in the ReDi TS P system. Let the spacing
between symbol s., and Sn +l be !:::. t during t raining. Next consider the int ro­
duction of 50 percent warp dur ing recognit ion by GSR. After matching S n ,

the test for Sn+l occurs at 1.5!:::.t seconds later. T he addit ional 0.5!:::.t seconds
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Table 2: Percentage accuracy in predicting the penultimate symbol
in an embedded Reber sentence when warp is introduced before the
critical symbol. All sentences were stored with a s = 0.0001. a T is
the test (or retr ieval) tolerance. The term 100 % warp means that the
time between the test symbol and its predecessor is twice as long as
during storage. When retrieval is attempted at wider tolerances, for
example, aT :::: 0.005, the accuracy is still excellent up to 200% warp.

aT No Warp 100% Warp 200% Warp

0.001 91.0 69.6 47.8
0.003 92.8 77.6 63.6
0.005 96.4 95.0 93.2
0.008 98.6 98.8 99.0
0.01 99.6 99.6 99.8
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will result in a difference of ,0.G, between the current Gand the value stored
for the transit ion s.; ---+ sn+1 in the same cont ext . The magni tude of the erro r
,0.G will depend on the free parameters in the reaction-diffusion equations,
which are not linear. But II ,0.GII will increase, in general, wit h warp . When
II,0.GII > ar , t he warp will have exceeded the ab ility of the TSP to recognize
the tr ansit ion Sn ---+ S n+l as valid.

An exp eriment was conducted to measure the relationship of the error to
warp. The sequences generated by the embe dded Reber grammar generator
were stored using one ste p per symbol." Duri ng retrieval, however , two or
three times as many symbol steps were applied for the t ransit ion to the
penu ltimate symbol, effect ing a warp of 100 to 200 percent between the
(n - 2)th and (n - l )th symbols. The correct or incorr ect recognition (known
or unkno wn) of the (n - l )th symbol was the err or criterion . T he ret rieval
err or rate was measur ed as a fun ction of the tolerance, a T (see Tab le 2). As
aT increases, we are permitting an increasing to lerance for acceptance of the
comparison of a stored sequence with the external sequence .

The results show the error to be rat her high when the retrieval tolerance
is tight (aT S 0.001). Relaxat ion of aT largely overcomes the warp bu t
decreases dep th and the corresponding resolution of sentence distinctions.
Somewhat greater warp tolerance might be obtained wit h the use of slower
learni ng rather than one-sho t learn ing. T his is one of many trade-offs that
can be juggled by t he choice of sto rage and test to leran ces.

4 .7 Sequentially addressed sequence memory

We defined t he SASM mode in sect ion 2 as the case in which the stored
sequences are relati vely long and the content ad dress is sequent ially pr e­
sented . The responsive sequence(s) are then retrieved . Addressing follows

6Four integrations per symbol step were used . This permitted each symbol's effect to
reach anywhere in a 5 x 5 array of cells.
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the guided sequence ret rieval (GSR) algorit hm , leading the TSP t o recapit­
ulat e the training ste ps and set up the symbol concent rat ions that occurred
during training. Subsequ ent ret rieval of the resp onsive sequence is performed
by free sequence retrieval (FSR) .

In FSR, there is no exte rnal symbol input. At the end of GSR (the ad­
dressing op eration), the symbol concentrat ion, G(x,y), has been established
and the pro cessor then follows FSR, which is a sequence of cell activat ions
det erm ined solely by global-maximum activation (global WTA) , analogous
to a falling domino pat tern.

The FSR algorit hm follows. Its basic simp licity is complicate d by the
rat her st ringent demands we will place on it by choice of t ask , which will be
discussed short ly.

Free Sequence Retrieval Algorithm

1. Find the winning cell (most highly activate d globally), C, f C ,
corresponding to

N
'v'C : min(ll(Vk - G(x,y)ll ) = MIN

k= l

where k extends over all V regist ers in all cells and MIN is
the global minimum.

2. Tentative path A: Emit a uni t of symbo l SCi at (x , y) and
Diffuse one symbo l step . Find the most highly activated cell,
Cj a , and the correspo nding minimum act ivat ion, MINA .

3. Tentat ive path B: Diffuse one ste p (without an Emit) . Find
t he most highly act ivate d cell, Cj b , and the corres ponding
minimum act ivation, MINB .

4. Select path A if MINA < MINB and MINA < a T.

Otherwise, select path B if MINB < MINA and MINB <
ar. Otherwise, terminat e with no path .

5. Actualize the steps of the winning path , that is:
Designat e Cj a or Cj b as the AC. If path A, act ualize the
Emit + Diffuse one step ; else actualize only the Diffuse step.

6. Return to ste p 1.

4 .7.1 Selection of a data t ype

There are severa l questions which deserve to be dist inguished because they
pr esent different prob lems.

• Addressing: Can address ing utilize either initi al or intern al subsequences?

• Sequence complexity: Is symbol duration stored and can it be retrieved?
Does the pr esence of subs trings that are common within stored st rings
cause any difficulty for retrieval?
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Figure 9: Example of musical melody encoding. A superscript
represents time length in eighth notes. p2 p2 is an example of a
"reat t acked" note. One eighth note corresponds to a fixed number
of integration steps (usually four) of th e react ion-diffusion equations.

323

To st udy all of these questions, we looked for a data ty pe for which all cases
can ap pear . Such a data type is t he musical score of simple melodi es.

Firs t, a syste m for enco ding a single melod y of a music score was devised
(see Figure 9). The music uni t t ime was chosen to be an eight h note of t he
react ion-diffusion equat ions . For each eighth note, four integration steps of
the reacti on-diffusion equat ions were p erformed. Four steps ensures that an
emit ted pu lse of symb ol will t ravel to every locati on in the TSP st ruct ure
so that any next symbol can link wit h it s predecessor. The appearance of a
base symbol (e.g ., C , D,F# ) was coded as an act ivat ion of the single cell of
the corr espo nding symbol (e.g ., A , B, C# ). Relative time length in eighth
notes is denoted by a superscript ."

To distinguish held notes from reattacked notes notati onally, we will writ e
C2C to represent a C qu arternote followed by a C eighthnote , and C 3 rep­
resent s a dot ted qu arternote or , more pr ecisely, a C tone held for 3 uni t s of
t ime.

At the storage/training algorit hm,level, t he two sequences C2C and C 3

ar e interpreted different ly. The former mean s "Emit C and Diffuse two steps ,
then Emit C and Diffuse one ste p ," whereas the lat t er mean s "Emit C and
Diffuse three ste ps ." "Diffuse one ste p" corr esponds to four integrations of
the reaction-diffusion equations in the following exp eriment s.

An example of a music score to notation mapping is shown in Figure 9.

4 .8 Experiments with SASM

Test 1: Distinguishing Sk from sss · · · s (k times)
For the first t est t he following strings were stored using O's = 0.0001. T he

par amet ers used were Dg = 0.4, Dr = 0.3, 0: = 0.3, (3 = 0.3, E = 0.2, an d
"y = 0.1.

ABC D
E BCD
G BCD

7For a single eighth note, superscript 1 defaults to blank.
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The sequences were addressed (by GSR) up to th e I , and the remainder of
the sequences were ret rieved by the FSR algorit hm. The object ive was to
test the ability of the TSP to distinguish the F F F case from the F 3 case
based on the init ial symbol of th e address, E or G.

The retrieved st rings were exac t ly as stored . The sequence of G vectors
experienced dur ing retrieval was exactly the same as occurred during storage
since IJ s was small enough to give a depth of more than 4, the distan ce from
the last unique symbol to the point where the sequences diverge.

In this case , not only does the difference among the initial four symbols of
each sequence predict th e fifth symbol correctly, bu t the more difficult task
of dist inguishing F F F from F 3 is achieved.

Note t ha t there is no problem due to the common (B CD) subsequences
here or, in genera l, as long as the effect of the first symbol is not confounded
by the depth being too small (i.e., by IJs being too small) .

Test 2: Variable length symbols in the address
Suppose the same number of appeara nces of a symbol occurs in two ad­

dresses, but the t ime lengths of symbol appeara nce are different . Can the
TSP avoid confusion? To t est this, we sto re the following two sequences.

AB C F F- 2 FIE D C
AB E F F F FIG F E

Again, using IJ s = 0.0001, which is small enough to ensure that the context
of each transition is uniquely represent ed , there was no problem at all in
ret rieving the corr ect sequence following the I by FSR. All par ameters were
as in test 1 except that Dg = 0.3 proved to be a bet ter choice.

Test 3: Seq uen ces with long common subsequences
Fin ally, we sto red sequences having common subsequences to test the

ability of the TS P to avoid confoun ding the sequence during retr ieval. The
sto red sequences, with th e address sect ions shown, are

F A-4 I B D E F G B C D-S
F- 2 D IE F G A-3 B-4
F-3 C IDE F G A- 2 B-3
B- 2 C-3 E-2 D E F C-3 B-2 A C
B-2 C-3 E-2 D E C-4 B-2 C A
B-3 C-3 E-2 D E C-2 E-4

The common subsequences were in the free ret rieved section in some
cases and in the address section in ot her cases . Using th e same parameters
as before, with the except ion that Dg = 0.2, all sequences could be retrieved
exac tly-meaning both the symbols (to nes) and their duration.

4 .8.1 Comments on t he FSR algorithm

We can now appropriately discuss the complication in the FSR algorit hm
involving the need to test two possible actions at each step (see steps 2 and 3
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in the FSR algorit hm , section 4.7). If one permit ted only sent ences having a
single symbol per step, the simple ru le of th e emission of a unit of a symbol
on each transit ion would be adequate . T he need for th e test arises from the
fact that we want to dist inguish cases of "held" notes versus "reattacked"
notes. For example, in t he subsequences . . . BC4 B . . . and . .. BCC2CB . .. ,
each step through t he region of Cs requires testing whether the act ive cell
supports a path corresponding to (Emit + Diffuse) = "reat tacked not e" or
a path corresponding to (Diffuse only) = "held note." If the sequences were
restr icted to only an "at tacked note" for each symbol transit ion , t he test
of altern at ive possibilit ies seen in the FSR algorithm would be unn ecessary.
Bu t with the allowance of successive appeara nces of the same symbol either
held or reat tacked , the way to distinguish the preferr ed pat h is by test ing the
two possibilit ies corres ponding to path A and path B in the FSR algorit hm.

Also note t ha t the TSP does not support addressing tha t begins at an
internal subsequence of a stored string. The reason for t his limitation is th at
an approxima te value of the G vecto r at t he int ernal symbol where addressing
begins would have to be known in order to conti nue the FSR correctly. For
addressing with an initial subs tring, the addressing always begins with G = °
and the GSR develops the complex distribut ion of symbol concent ra t ions .

5. Discussion

We have proposed and st udied a tempora l sequence processing system that
uses the reaction-diffusion pr ocess to prov ide interconnect ion of all cells and
convey memory of past events .

The cells are prov ided with a mult iplicity of inputs that are capable of
act ivat ion due to the symbol concentra tion at the locat ion of the cell, pro­
ducing a cell like a multi-inpu t rad ial basis function cell. React ion-diffusion
provides for controlled growth and decay processes, rather than just decay
and diffusion , for the concent rations, which adds another dimension of possi­
bilit ies to the sequence representations contained in the TSP and is a unique
feature. Other designs having similar object ives [10, 11] limit themselves to
monotonic decay of memory of past events.

The expe rimental st udy of the ReDi TS P was keyed to five qualit ies,
which are , br iefly, depth , flexibility of equivalence class repr esentat ion , warp
tolerance, minimum stor age, and content addressability. Various combina­
tions of these qualiti es are pr eferred for various applicat ions.

The present syste m permi t s any depth desired bu t at an increasing cost
in storage capacity for increasing depth. A unique feature of th e syste m is
that it allows flexible class equivalence at retrieval t ime. Once the sequences
are sto red with a specific degree of uniqueness of the tr ansiti ons, th ey may
be retrieved (or recognized) using t he same or a lesser degr ee of stringency
in symbol mat ching.

Storage efficiency, in relative terms, is controllab le by a single par ame­
ter , o"s , which sets the radius in symbol concent rat ion space within which
sequence transit ions are recognized and sto red as unique. Thus, sto rage
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efficiency and its inverse, depth , are easily controlled by select ion of the pa­
rameter O"s.

The system shows a moderate amount of warp tolera nce, but this is
achieved at t he cost of accuracy in identifying the stored sequence.

Two principal tasks were examined for the purpose of evaluat ion of the
system: embedded sequence recognit ion (ESR) and sequent ially addressed
sequent ial memory (SASM). In ESR, st ored short sequences are examined for
their occurrence in a longer argument st ring. Bot h tasks are accomplished by
combinations of the more fund ament al algorit hms, guided and free sequence
ret rieval (GSR and FSR).

For the ESR problem, the external sequence guides the inquiry (address­
ing) , which is, operationally, guided sequence retrieval. This algorit hm was
tested using an embe dded Reber grammar to generate short sequences for
sto rage. Other sequences were applied as arguments that , alt hough not nec­
essarily physically longer , prov ided an equivalent test to the case of an ex­
tensive argument st ring . Successful events were those that correctly reached
and predict ed the penultimate symbol. This t est was fully successful, reach­
ing accur acies up to 98 percent for particular values of o, and O"T . A test of
false-positive responses showed that the accuracies at tributed to true-positive
cases were largely valid .

For the SASM problem, the external sequences are short and the internal
sequences are long. The external sequence is used as an address , ap plied
by the GSR algorit hm, and t he remaind er of the internally sto red st ring is
retrieved by FSR in a meth od analogous to following the lowest energy path
from the point where the address ends. We confined ourse lves to addressing
from the initial subsequences of the stored sequences only; addressing begin­
ning internal to th e sto red sequences is not possible, in general, with the
TSP.8

The TSP has no problem at all performing the SASM problem for ord i­
nary complex sequences that are sto red and retrieved with one symbol per
t ime step . In order to demonstr at e th e grea ter capabilit ies of the system, we
int roduced and stored simple melody-like sequences requiring that both the
symbols and their t ime duration be correctly retr ieved. This experiment was
also fully successful, alt hough it required an unwanted complicat ion in the
FSR algorit hm in the form of a test-and-choose procedure to correctly iden­
t ify th e "held" versus the "reat tacked" case when the same symbol recurs.

Comp aring the T SP to the met hod presented in [11], their approach ap­
pears to be more to lerant to warp than ours. T heir approach requires pre­
limin ary knowledge of th e necessary depth before commencing storage of
sequences. The feature of the T SP method that allows adjustment of recog­
nition to lerance during the recognit ion phase is not supported, as far as we
can determine, in the meth od in [11]. The important property of "chunk­
ing," however, is one we have not yet addressed , alt hough we do not see any
inherent difficulty in exte nd ing the TSP to perform chunking.

8 A modified system that permits add ressing from intern al sequences has been st udied
by us and will be presented elsewhere.
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