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Abstract. In this simple model for a one-dimensional array of
excitable cells, each site € Z is in one of x states: 0 (rested
state), 1 (excited state), 2,...,x—1 (refractory states). The states
update in discrete time according to a synchronous rule: changes
1—2,...,k—1— 0 happen automatically, while the 0 — 1 change
is induced by at least a threshold number of 1s in the local neigh-
borhood of z. If indestructible stable periodic objects exist, the
model evolves into a locally periodic state. In parameter ranges
when these structures are impossible, the system approaches the
ground state 0: either the dynamics are dominated by annihilat-
ing waves, which cause power-law decay, or excitation is unable
to propagate and the model experiences exponentially fast relax-
ation.

1. Introduction

The Greenberg—Hastings model (GHM) is probably the simplest model for an
excitable mediwm [13, 18]. Imagine points in a lattice either in the ezcited
state (coded as 1), in the rested state (0), or in one of x — 2 stages of recovery
(2,...,5 — 1, also known as refractory states). The states then update in
discrete time according to the following synchronous rule. An excited state
automatically enters into the recovery cycle; in other words, the state changes
1—2,2—3,...,k—1— 0 are automatic. When a site is rested, it needs
enough excited sites in its neighborhood to become excited.
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In the course of our research on excitable media we carried out extensive
computer simulations of the GHM on two-dimensional boxes [9]. The basic
message that emerged is that the behavior of the system undergoes several
phase transitions as the parameters (number of colors, radius of the neigh-
borhood, and threshold needed for excitation) are varied. By far, the most
interesting cases are those in which the system self-organizes into spatial
wave structures [3, 6, 9]. These waves are usually driven by stable centers
that cannot be disturbed by their surroundings: the stable periodic objects
(SPOs) [3, 9]. An SPO is a finite set colored with & colors in such a way that
every site with color k has at least a threshold number of representatives of
the succeeding color (k + 1) mod & in its neighborhood. If it is possible to
construct an SPO for a given set of parameters, then a random initial state
on an infinite lattice will contain infinitely many of them. The state of these
indestructible structures is periodic with period k, thus ensuring that exci-
tation never dies out. If parameters are chosen so that SPOs do not exist,
the empirical evidence suggests that the evolution either degenerates into a
slowly dying annihilating system or even a system experiencing quick global
relaxation [9, 10]. It may be also noted that when SPOs are feasible, most
are not present at the beginning, but rather they are dynamically generated
[10]. Readers interested in interactive explorations of such issues are in-
vited to visit http://math.wisc.edu/~griffeat/sink.html and download
WinCA, a Windows-based program for cellular automata (CA) experimen-
tation written by R. Fisch and D. Griffeath.

Because of the crucial effect that SPOs have on the GHM dynamics, con-
structing SPOs and devising good arguments for their nonexistence in var-
ious parameter ranges are subjects of central theoretical importance [3, 9].
In many cases SPOs are exceedingly rare, so that one cannot rely on com-
puter simulations either to find them or to argue convincingly against their
existence. The combinatorial issues arising from two-dimensional GHM rules
are extremely complicated and have eluded mathematical analysis. This sug-
gests that one should study the simpler one-dimensional model to gain better
understanding of the combinatorial obstacles. On a related note, it seems
intriguing to see whether at least part of the complex spatial behavior of the
two-dimensional GHM carries into the extremely restrictive environment of
the one-dimensional lattice. Our final motivation for investigating the one-
dimensional GHM is that the three-parameter rule proposed below appears
general enough to demonstrate the types of excitable dynamics possible in
one-dimensional CA.

The remainder of the introduction is devoted to basic definitions and
notation, as well as an informal presentation of the results of this paper.

GHM dynamics depend on three positive integer parameters: «, r, and
f. The parameter x specifies the number of colors or states in the model;
each color will be identified as an element of {0,1,...,x — 1}. Parameter r
indicates the range of the neighborhood of a site. Thus, the neighborhood of a
point z € Zis N, = x4+ N, where N = {—r, —r+1,...,r—1,r}. Parameter 0
is the excitation threshold. The general one-dimensional deterministic GHM
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¢ is then given by the following one-step rule:
(7¢(x) +1)mod &, if %(z) # 0,
(z) 1 if 74(z) = 0 and
xIr) =
e Hy € N2 wly) = 1} 2 6,
0, otherwise.

(1.1)

Once 7y is specified, either as a deterministic or random color configuration,
equation (1.1) determines the continued evolution of ;.

If A is a finite subset of Z, then the GHM can be defined on A, assuming
free boundary conditions, so that every z € A has N, = (x + N) N A. This
will be referred to as a finite system, while the GHM on all of Z will be called
the infinite system.

We now introduce some terminology which will be used to describe the
long-time behavior of the GHM. In the following definitions, we assume that
vo is a fixed deterministic initial configuration for the GHM dynamics. (In
fact, these concepts make sense for any deterministic sequence of configura-
tions 70,71, . .. € {0,1,...}%.)

We say that 7, fizates if every site changes color only finitely many times;
hence, for every site &, Voo (z) = limy_o, () exists. If, in addition, .. (z) =
0 for every x, then ~, dies out strongly. In part, tractability of GHM dynamics
is the result of the fact that a GHM can fixate only by dying out strongly.

If v, does not fixate, then different qualitative behaviors are possible. We
say that 7 dies out weakly if each site spends an overwhelming proportion
of time in the rested state:

1
tliglo i Sgo Lu@=o=1
for every z € Z. Dying out weakly (as we will see) does not necessarily imply
strong death, since the evolution may be dominated by rare waves, which can
travel over long distances and prevent any site from attaining a final state.
We say that ; is locally periodic if the following three conditions are
satisfied.

1. For each z there is a finite time T}, so that n;(z) is periodic for ¢ > Ty,
2. 7, does not fixate.

3. There is no global spatial periodicity, that is, for each x € Z there is a
positive integer n and a time ¢ so that n,(x) # ns(nz) for s > t.

In addition, ~ is uniformly locally periodic if it is locally periodic and the
final period is the same for all sites.

The third condition specifies the locality of local periodicity. The period-
icity should not manifest itself spatially throughout Z but should emanate
from infinitely many different finite collections of sites. In this case, dif-
ferent regions of Z will be out of phase with each other. For example, we
do not want to use the term “locally periodic” to describe the evolution of



332 R. Fisch and J. Gravner

/‘

(2,1,5) (3,2,3)

(13,10,2) (1,1,4)
Figure 1: Characteristic behaviors of one-dimensional GHM.

the two-color GHM with » = 6 = 1, starting from ...0101010101... (or
...000010000. .. or any other configuration with only a finite number of 1s).

If the initial state is random, then we say that the system has one of the
above properties if the appropriate condition holds for almost all initial states.
For example, “locally periodic” will mean the same as “locally periodic a.s.”
Throughout the remainder of this paper, unless explicitly stated otherwise,
the initial state of the GHM 7, is random with each () uniform over the
% colors and independent of v(y) for y # x. Figure 1 displays simulations of
typical examples (determined by their (r, 8, ) coordinates) of (clockwise from
top left) uniform local periodicity, nonuniform local periodicity, nonstrong
weak death, and strong death. Each system was run on an interval of 500
sites with periodic boundary conditions until time 499. (As mentioned earlier,
such simulations can in general be deceptive due to rare nucleation.)

Analysis of one-dimensional systems related to GHM started in [1, 4,
11, 12]. The earliest references study the related cyclic cellular automaton
(CCA). In the CCA ¢ every color advances by contact, that is, z changes
color from % to (k 4+ 1) mod & only if the neighborhood of z contains more
than 6 sites with color (k + 1) mod x. More formally,

Gt () = { (G(z) +1)mod &, if [{y € N, : G(y) = (G(e) + 1) mod K}| > 0,
T G, otherwise.

(1.2)
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Table 1: Conjectured threshold-range phase diagram for the one-
dimensional GHM.
f/r € (0,1/k) (1/k,1/3) | (1/3,1/2) (1/2, 00)
phase | uniformly locally locally weak death | strong death
periodic periodic

All of the four references cited study the basic case r = 6 = 1. Using
ideas from [1], it was shown in [11] that the basic CCA fixates if and only if
k > 5. The precise nature of fluctuations in the basic three-color models is
determined in [4, 12]. For basic GHM with x = 3, P(7,(0) # 0) ~ C,/+/t for
a constant C ([4]), while the analogous CCA result has the form P((,(0) #
(1)) ~ Cy/+/t for a constant Cy ([12]). General one-dimensional two-color
CCA are studied in [5, 16], where large deviation techniques are used to
compute a “critical threshold” for large r. For rigorous results about the
two-dimensional GHM and CCA, as well as conjectures based on computer
experiments, we refer the reader to [3, 6, 8, 9, 10, 17].

The major aim in studying the one-dimensional GHM is to determine the
long-term behavior of «, for any given r, 6, and x. The results of this paper
suggest the following conclusions.

1. If r > k(6 — 1), then ~; is uniformly locally periodic.

2. 130 — 1 < r < k(6 — 1), then the system is locally periodic, but not
uniformly locally periodic.

3. 120 —1<r<30—1, and k > kg = ko(f), then 7; dies out weakly,
but not strongly.

4. If r <20 — 1, and k > 3, then the GHM dies out strongly.

By far, the most elusive of these is 3, for which we have only partial rigorous
results. Assuming the correctness of 3, one can summarize the four conclu-
sions as shown in the phase diagram of Table 1, which can be assumed valid
only for large r, 8, and .

The rest of this paper is organized as follows. Section 2 formally intro-
duces the crucial combinatorial concept of an SPO, provides some examples
of SPOs, and discusses their influence on the environment. Section 3 gives
sufficient conditions for strong death. Section 4 proves a theorem on nonex-
istence of SPOs. This theorem is sharp for a large number of colors and
gives some insight into conditions under which the GHM dies out weakly.
The only case for which we can rigorously establish weak death is the basic
case r = § = 1 with an arbitrary number of colors. Section 5 is somewhat
technical and includes a fairly detailed asymptotic analysis of the basic case,
explaining such issues as nucleation and survival of traveling waves. The pa-
per concludes with section 6 presenting some special combinatorial properties
of two-color models.
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2. Stable periodic objects

We call a set A C Z together with a coloring n : A — {0,1,...,x} an SPO
if every z € A has at least  sites of color (n(z) + 1) mod & in N.

Note that, under the dynamics of both GHM and CCA, an SPO repeats
its initial color pattern every x times independently of colors of other sites.
It follows that if an SPO exists in the initial state, or is created at some
other time, then the system cannot die out weakly. Existence of SPOs for a
particular model is therefore crucial for its ergodic behavior but is in general
a difficult combinatorial problem. Two-dimensional SPOs are introduced in
[9], together with some remarkable examples due to Dan Pritikin.

The following proposition is the basic observation about the existence of
SPOs. Throughout this paper we will use the following notation, introduced
by an example:

[013]

k stands for an interval of 3k sites with colors 013013...013.

Below we give several examples of SPOs for various ranges of parameters.
We leave out the somewhat tedious checking of the SPO hypotheses.

Proposition 2.1. The following are SPOs.
k=2,r+1>20:
0] [1] [0]
31 6 [51°
k=3r+1>20,r>2:

0 [1] [2] [o] f[1] f[o] [2] [1] O
0 g 6-1 6-1 0—-1 0 0 ’

k=4,r> 20
(0] (1) 3 [2] [1] [3] [o] [1] [3] [2] [1] [3]
0 0 0 2 6-1 6 6-2 3 0 4 60-3
(0] 1 [3] [2]

0 0 0

k=5r>20+1:

[0] [1] 4 [2] 0 [3] 1 [4] ([2] [o] [3] [1]
-1 6 0 0 -1 2 6-1 2 6-1
(4] [2] (o] [3] [1] [4] [2] [o0] [3]

2 60— 2 3 0—2 3 0—2 3 f—3 4
k arbitrary, r +1 > 30 :

[0] [r=1] [1] [w=2] [2] [s=2] [1] [r—1] [O]
0 0 0 0 6 9 0 0 0
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The “monster” SPOs in the five-color cases are very hard to write down for
general 0, so just the left end is indicated above. To show what complicated
objects these are, we write them down explicitly in the two smallest cases,
when r = 5 and 0 = 2 (28 sites):

0114220331422033140224113004 (2.1)
and when 7 =7 and 6 = 3 (109 sites):

001114222033314422003311442000311142220033114422003331
4442001133002244 1130002444 133300224411 330022241113 00044.
(2.2)

Of course, both objects (2.1) and (2.2) are astronomically rare in the initial
state, but they are readily able to generate waves of excitation and thus
influence distant sites in the surrounding environment. There are, however
“holes,” consisting of 0s, which remain unfilled by either dynamics. However,
if we increase the radius r to 6 (while keeping 6 = 2 and x = 5), then the SPO
(2.1) becomes “unstoppable;” it will eventually control every site that is not
in the domain of another SPO. These effects are formulated more precisely
(and more generally) in the following theorem. Many of the arguments in its
proof are similar to the ones in [3, 8].

Theorem 2.1.

1. If an SPO exists, then y; is locally periodic.
2. If an SPO exists and r > k(6 — 1), then v is uniformly locally periodic.

3. Assume that there is an SPO with 0 contiguous Os at its left end. If,
in addition, r < k(6 — 1), then the system is not uniformly locally
periodic.

Proof. Regions between SPOs are finite, hence periodic. Part 3 of the
locally periodic definition is clear because there are always sites that are
part of SPOs and “out of phase.” This proves statement 1.

To prove statement 2, first note that somewhere in the initial state there is
an SPO interval. Let I be the largest interval containing it with the property
that every site in [ is eventually periodic with period . If it is not Z, then
there is a site z on its boundary, that is, z ¢ I and, say, x + 1 € I.

Let us assume first that r > (6 — 1)k. This implies that there is at least
one color that has 0 representatives in M, N I. Thus there exists a ty such
that vy, 1n has 0 representatives of color 1in ;NI for n =0,1,.... Define

0, lf %OMW(I) = O,
K — Yio+ni(), otherwise.

b - {
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Assume first that D(n) > 0 for every n. Then D(n) is nonincreasing; hence
there exists some ng so that D(n) is a nonzero constant for n > ny. Hence z
must change color every time for ¢ > ¢y + ngk. If D(n) = 0 for some ng, then
Veg+ns+1(2) = 1 for all n > ny, hence again z changes every time. It follows
that x € I, a contradiction.

It remains to prove statement 3. Let k = [r/(6—1)| and a = r—k(0—1).
Then k < k. If a # 0, form the following object

[0] [1] [k—1] [k] 1 2 k-1 [k] [k+1]
0—-1 6-1"" -1 a 0—a 0

where the block of 8 sites with color (k+ 1) mod « is the left end of an SPO.
If a = 0, then form the same object, except start the SPO with the block of
0 sites with color k. This object is clearly an SPO if a = 0 and otherwise
under the additional requirement that r +1 > 260 + k — 1, which is for 8 > 3
equivalent to r > 20 + 1y—3. Luckily, the exceptional case § =3, r =20 =6
has a = 0; therefore object (2.3) is always an SPO. A sufficiently long interval
of 0s, bordered by object (2.3) on the right and its mirror image on the left,
will never change. m

We should note that we do not address the important statistical question
that arises in the nonuniform local periodic cases: Which sites are more
prevalent—those that are eventually periodic or those that are eventually 0
(assuming that there is no third possibility)? (See [5, 16] for such analysis of
the two-color CCA.)

., (23)

3. Strong death

An argument based on spatial restrictions (see Theorem 1 of [10]) can be
used to establish global relaxation in a finite number of steps if § > r and
k > 3. Here we use a one-dimensional setting to prove much better sufficient
conditions for strong death.

Theorem 3.1.

1. Ifr+1< %6, and k = 2, then vy, dies out strongly.
2. Ifr4+1 < 20 and k > 3, then +; dies out strongly.

Proof. In both cases we show that a sufficiently large block of Os has to
expand. Specifically, we show that any block of ¢ > 4r sites with color
0 at time ¢ will produce a block of at least size £ + 1 at some time s €
{t+1,...,t+ 2k —1}. Without loss of generality we can assume that 7, is 0
on {z < 0}, 1:(0) = k — k for some k € [1,k — 1], and prove that v, = 0 on
{z < 0} for some s specified above.

We now prove statement 1. Let a be such that the site r—a is the position
of the fth 1 on the nonnegative axis at time ¢. If a < 0, then we may take
s =t+1. If a > 0, then we claim that there are at most # — 1 sites with
color 1 in N at time ¢ + 1. There are exactly a 1s on the negative axis and
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at most 7 —a — 6 + 1 of them in [1,7 — a]. Even assuming that all sites
r—a+1,...,r have color 1, we cannot have more than r +a+ 1 — 6 1s in
No. But a <r—0+1, and therefore r +a+1—6 < 2r — 20+ 2 < 0. Hence
we can take s =t 4 2 in this case.

We now prove statement 2. We can assume that at some time v € [t +
1,t + k] a site on the negative axis becomes 1. Then there exists an integer
a € [1,7] so that y,(z) is 0 for z < —a, is 1 for z € [—a,—1], has exactly
0 —12sin [0,y —a—1],and is 2 for z =7 —a.

As a first step, we claim that vy,(z) = 0for 2 < —a—1and v < u <
v+k—1. At times from v to v+ k — 2, the number of sites with color different
from 1 in N_,_1N{z > —a} is at least § — 1; since r < 26 — 1, this does not
leave enough space for x sites with color 1.

Now the argument splits into two cases. One case is that +,(0) # 0.
We claim that then 7,4.—1(0) = 0. This is enough, since Yy41x—1(z) = 0
for z# < 0. The claim is a triviality if 4,(0) = 1 and is otherwise implied
by the fact that for times between v + 1 and v + k — 2 there are at most
r—a—(0—1)4+a=r—0+1< 0 sites with color 1 in N.

The other case is that 7,(0) = 0. If v,41(0) = 0, then the argument
proceeds as above. However, if 7,.1(0) = 1, then there must exist at least
0 —a 1sin [1,r] at time v. At time v+ x — 2 we have the following situation:
(k—1) on [—a,—1], k — 2 at the origin, at least # —1 colors 0 in [1,7 —a—1],
0 at 7 — a, and at least 6§ — a sites with color k — 1 in [1,7]. We claim that
there are less than 6 1s in [1,7 — 1] at time v + k — 1. Assuming this claim,
it is clear that y,4+, = 0 on {z < 0}.

To prove the claim, assume that there are b Os in [r — a + 1,7] at time
v+ K —2. Since there are at least 20 4+ b+ 1 — a sites with color different from
1 in [0, 7] (this is the only place where we use that k > 3; i.e., k — 1 # 1),
every 0 that turns to 1 at the next time needs to reach at least 30 +b—a—1r
1s outside [0,7]. To have 6 1s in [0, 7] at time v+ — 1, we have to have § —b
Os in [0,7 — a], which at time v + x — 1 turn into 1s. However, this implies
that the site 7 — a — (6 — b) + 1 reaches 6 1s at time v + k — 2. Therefore
30+b—a—r+a+(0—0b) <r+1,or 4 <2r+ 1, an impossibility. This
ends the proof of statement 2. m

We are now in position to characterize the behavior of the general three-
color GHM.

Corollary 3.1. Assume that k = 3. Then ;

1. dies out strongly if and only if r + 1 < 20,

2. dies out weakly, but not strongly, if and only if r =0 =1,

3. is locally periodic if and only if r +1 > 20, r > 2, or it

4. is uniformly locally periodic if and only ifr+1>30 —1, r > 2.

Proof. This follows immediately from Proposition 2.1, Theorem 2.1, and
Theorem 1 in [4] (see also Theorem 5.1 below). m
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4. Nonexistence of stable periodic objects

Assume that r, 8, and x > 3 are such that an SPO does not exist. In such
a case there is still the possibility of traveling waves. Indeed, consider the
configuration

(1] [2] [3] [wx—-1]

(2] [ [ e

where a is either "] or [], depending on the parity of x. This con-
figuration is able to move across Os, as soon as r + 1 > 20, suggesting that
v cannot die out strongly. On the other hand, nonexistence of SPOs seems
to indicate that no “stationary” finite configurations are stable; hence the
following conjecture.

Conjecture 4.1. Assume that r, 8, and k > 3 are such that r+1 > 26, and
an SPO does not exist. Then 7; dies out weakly, but not strongly.

Taking Conjecture 4.1 for granted still leaves one intriguing question open:
Does an SPO exist if r+1 > 207 In view of exotic SPO architectures, exem-
plified by the example of (2.2), this question is not easy to answer for small
numbers of colors. On the other hand, it turns out, perhaps surprisingly,
that the large x design in Proposition 2.1 is optimal; there are no SPOs for
thresholds larger than (r + 1)/3. This is the subject of our next result.

Theorem 4.1. Assume that r + 1 < 30. Moreover, if 6 < 5, then assume
that k > 120 + 3, and if > 5 assume that k > 146 — 7. Then an SPO does
not exist.

Proof. We assume that an SPO interval exists and is positioned on Z so
that the site z > 0 is its rightmost site, that the origin has color 0, and that
there are at least @ representatives of each of the colors 1,...,k—11in [1, 2],
but exactly 6 — 1 representatives of color 0 in [1, z]. We can also assume that
this SPO is the shortest possible. This, in particular, implies that every color
must eat; in other words, if the color of an z is k, then there is at least one
site with color (k — 1)mod & in AV,.

Step 1. For each k =1,2,...,k— 1, every site in [0, z] with color k — k is
in the interval (0,7 + (k — 1)(r — 0 + 1)].

Each of (k—1) must lie in [0, 7], because otherwise some x — 1 would only
see colors in [1, 2], which contain only § — 1 0s. For each k < x, determine
z > 0 so that k — k is the color of z, and there are exactly § — 1 colors
k —k in [z + 1, z]. By the same argument, all colors K — k — 1 must lie in
[0,z + 7).

We now prove the claim in this step by induction. If it is true for some
k<r—1,thenz, <7+ (k—1)(r—0+1)—0+1, and, consequently, all
colors £ — (k+ 1) liein [0,7 + (k= 1)(r — 0+ 1) =0+ 1 +7].

Step 2. For each k = 0,1,...,k — 1, every site with color k lies in
[0, (k + 2)r].

If a 0 lies inside [2r + 1, 2], then (since, by Step 1, every x—1 in [0, 2] lies
in [0,7]) we can discard it, thus reducing the size of the SPO. Hence all Os
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lie in [0, 2r]. Similarly, if yy is the position of the rightmost representative of
the color k < k — 1, then all colors k4 1 must lie in [0,y +7]. An induction
argument completes the proof.

Step 3. Fix two colors 0 < ¢; < ¢ < kK — 1. Assume that there exists an
z € [0,2], such that each color k € [c1, c] has at least 6 representatives in
[z, 2], but does not appear in [z — r,z — 1]. Then each color k € [c1, ¢2] has
at least 0 representatives in [0, (¢; +2)r 4+ (k —c1)(r — 6+ 1)].

By Step 2, we know this holds for £ = ¢;. Fix a y € [z, 2], and assume
that a color k € [c1, co) has at least 6 representatives in [z, y]. Then there is
at least one k in [0,y — 6 + 1] and, consequently, at least 6 colors k£ + 1 in
[0,y — 0+ 1+ r] (nothing to the left of 0 can influence these representatives
with color k). Again, a simple induction argument establishes Step 3.

Step 4. Assume that x > 21. Then none of the colors 7,8,...,x — 14
appears in [3r + 1, 4r].

By Step 1, all sites in [0, z] with colors Kk — 1,k — 2,...,x — 10 lie in
[0,10(r —0+1)+6—1] C [0, 7r + 3]. By Step 2, all sites in [0, 2] with colors
0,1,2,3,4,5 are in [0, 7r]. Together, these account for at least 160 of the sites
in [0, 7r + 3]. Since Tr 4+ 4 < 216 — 10, these leave at most 50 — 10 sites in
[0, 7r + 3] unaccounted for.

Assume now that the claim of this step is not true and let k& be one of
the colors 7,8, ...,k — 14 which is represented in [3r + 1,4r]. Since this site
must eat something, there has to be at least 6 — 1 other ks in [r + 1, 67], and
at least one k— 1 in [2r+1,5r]. In turn, there must be at least @ colors k —1
in [1,7r]. Also, the original color k must be eaten by @ colors k + 1, all of
which have to be [2r + 1, 5r]. These force at least 0 colors k+2 in [r+1, 67},
and, in turn, at least @ colors k£ + 3 in [1, 7r]. We thus have 56 colors among
6,7,...,k— 11, a contradiction.

Step 5. Assume 6 < 5, and k > 120 + 3. Then the theorem is true.

The colors 0, ...,60+2 and k—60—1,...,x—1 are in this case all distinct.
We will count the number of colors in the interval I = [0,126% — 30 — 2].

If1<k<60+1,then k(r—0+1)+0—1 < 120 — 30— 2, hence, by Step
1, there are at least @ of each of the colors k — 60 —1,...,k—1in I. On the
other hand, if 7 < k < 60 +2, then 10r+ (k—8)(r—0+1) < 120> —20 -7 <
126% — 30 — 2. By Steps 3 and 4 (note that 60 + 2 < x — 14), there are at
least 6 of colors 7,...,60 + 2 in I. Hence we have produced 6(120 — 3) sites
in I, an impossibility.

Step 6. Assume that § > 5, and xk > 140 — 7. Then the theorem is true.

Then the colors 0,1,...,70 —3 and Kk — 70 +4, ...,k — 1 are all different.
This time, let I = [0,140% — 130 — 2]. By Step 1, there are at least @ of
eachof k — 1,k —2,...,k =T+ 4 in I. By Steps 3 and 4, there are also
at least @ of the colors 7,...,70 — 3 in I, producing 140% — 130 sites in I, a
contradiction. m

In addition to the method used in the above proof, which works well for a
large number of colors, we present one that is more appropriate for a smaller
number of colors.
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Proposition 4.1. Assume that k > 4 and r + 1 = 20. Then an SPO does
not exist.

Proof. Let #; € {0,1,...,x—1}Z be the following modification of the GHM:

(F(z) + 1) mod &, if A4(z) >0
or ({y € Nz : #(y) =1} = 0 and
£ — 1€ H(MNs)),

0, otherwise.

Fer () =

We conjecture that 4; dies out strongly if and only if there is an SPO for .
We do not know how to prove this, but at least one direction is clear, if 4;
dies out strongly, then there can be no SPOs of minimal length, and hence
no SPOs at all, for ;. The proof that 4; dies out strongly in this case is very
similar to the proof of statement 2 of Theorem 3.1 and hence omitted. m

5. The basic case r =0 =1

The method of [4], which assumes that x = 3, does not carry immediately
over to arbitrary k, because, vaguely speaking, it is not straightforward to
define an edge so that the only way it can be annihilated is by collision with
another edge. We will make this clear below; we begin with the statement of
the main result.

Theorem 5.1. Assume thatr =60 =1 and k > 3.

1. There exists a constant A = A(k) so that P(v,(0) = 1) ~ A/\/t as

t — oo.

2. The system dies out weakly, but not strongly.

1/4
3. As k — 00, A(K) ~ (8—/€> e /2,

™

It is perhaps possible to give further terms in the asymptotic expansion
of A(k), but explicit computation may be hard even for xk = 4.

Before starting with the proof, we introduce some useful language. For a
fixed z € Z, and an integer k € [2, k], we say that z, z+1, ..., z+k—11is a right
percolating path of length k, if vo(2) = 1, and (2 +1) € {0}U[s—i+1,k—1]
fori=1,...,k—1. A left percolating path is defined analogously.

Fix an z € Z, assume that vo(z) = 1, and fix ¢ > 1. If it is not the case
that v(x —t) = 1 and y(x —t + 1) = 2, then the 1 at = dies out on its left
by time t. If it dies out by time ¢ + 1, but not by time ¢, we say that it dies
out at time t. The definition of a 1 that dies out on its right is analogous.

For a z € Z, define by z* the bond {z,z + 1} and «~ by (z — 1)*. A
bond z7 is open at time ¢ if v(z) — v (z+1) € {-1,0,1}(mod &), and closed
otherwise. It is easy to check that an open bond stays open forever.
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Assume that y9(z) = 1 and that this 1 dies out on its left at time ¢ — 1.
Then (z —t)" is either open at time ¢ — 1, in which case the 1 “collides with
another 1,” or else it is closed. The second possibility does not arise when
k = 3, this being the only case when all bonds are open at time 0.

Next in line is a key lemma that enables us to use the techniques from
[4, 12]. For z,y € Z we define the interval [z,y] to be harmless if yo(z) # 1,
Y(y) # 1, and there are no 10 or 01 pairs in [z,y] at time 0. We define a
site = to be a left edge if the following two conditions hold.

e Y(z)=1.

o If [y, y+ 2k — 5] is the first harmless interval of length 2k —4 completely
on the left of x, and the colors of sites z, z < y, are changed to 0, while
preserving other colors, the 1 at x never dies out on its left.

Again, a right edge is defined analogously. What the next lemma says, in
short, is that a left edge can die only by annihilation against a right edge.

Lemma 5.1. Assume there is a left edge at x which dies out on its left at
time t — 1. Then there is a right edge either at x — 2t + 1 or at x — 2t + 2,
which dies out on its right at time ¢t — 1.

Proof. We start by figuring out how a bond can stay closed for a long time.
Fix a y € Z and a time ¢ and define F!(y) to be the event at which the
following happens.

e yT is closed at time 0.

e There is a y; € [y — k + 3,y] such that v (y1) = 1, and this 1 dies out
on its right at time y — y;.

e Thereisays € [y —y1 + 2,y — y1 + £ — 1] with yo(y2) = 1, and this 1
dies out on its left at time y, —y — 1.

e Thereis ays € [y — ya — K+ 3,y — y2] with 10(ys) = 1, and this 1 dies
out on its right at time y — ys.

And so on, alternating between left and right of y, until a y; is found so that
ly — yi| > t — 2k. Note that 1s that arrive to 0 from the left are no more
that 2k — 4 units apart. A harmless interval of length at least 2k — 4 in
[y — t + 2k,0] hence prevents H!(y) from happening.

We define Fy'(y) by reflection of F}(y) over the bond y*. The claim is
that

{y* is closed at time t} C F}(y) U F (y). (5.1)



342 R. Fisch and J. Gravner

To prove this, observe that a closed bond 0k at time ¢ will become open at the
time ¢+4x—1—Fk unless the 0 changes to 1 at some time s € [t+1,t+xk—1—k].

Now, (5.1) implies that the edge (x — ¢)* is open at time ¢ — 1, since the
length of the harmless interval implies that neither H}(z — t) nor HJ (z — t)
can happen. Hence there is a 1, either at x — 2t + 1 or at x — 2t + 2, that
dies on its right at time ¢ — 1. We have to prove that this 1 is a right edge.
Let [y — k + 5,y] be the first harmless interval of length 2k — 4 on the right
of this 1. Since y < =z, changing all colors in [y 4 1,00) to 0 also eliminates
the 1 at . With this initial state, the 1 at £ — 2t + 1 or z — 2t + 2 hence
lives forever on its right and is therefore a right edge. m

For a site « we define the probability measures P, = P(-|z is a right
edge) and P! = P(-|z is a left edge). Let E., ET, Var!, and Var’, be the
respective expectation and variance operators. Moreover, we define random
variables L, and R,. Let y > « be the position of the first right (resp. left)
edge on the right of z. Then L, (resp. R,) is the number of left (resp. right)
edges in (z,y). Define

p = ps,= P(0is a right edge),
¢ = g¢u= P (L, =0).

Lemma 5.2.

1. ¢ = PR, =10),

2. Define the random variables Ri(z) by Ro(z) = z and Ryu1(z) =
inf{y > Ry(x) : y is a right edge}. Under P!, Riy1(z) — Ri(z), k>0
are 1.i.d. and so are Lg, (s, k > 0.

3. E"(L,) = E.(R,) = 1.

2q

4. Val";(LI) == Varé(Rw) = qu

Proof. We argue by symmetry that statement 1 holds:
P}(L,=0) = Y Pl(yaright edge, no edges in (z,y))

y>x
= p ') P(z aright edge, y a right edge, no edges in (z,y))
y>z
= p ') P(z aleft edge, y a left edge, no edges in (z,y))
y>x
= Prl(Rx =0).

Furthermore, statement 2 holds because both Ry41(z) — Ri(2) and Ly, ()
depend only on colors to the right of Ry(z). Finally, to prove statements 3
and 4, we note that, by statement 1 and standard markovian arguments,

Pl(Le=k)=¢""(1-q)?,

fork>1.m
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Proof of statement 1 in Theorem 5.1. Define the events

Gl(z) = {yo(z)=1,this 1 survives on its left up to time t},
Gi(z) {vo(z) = 1, this 1 survives on its right up to time ¢},
Hl(z) Gl(z) N {z is a left edge}, and

Hi(z) = Gj(z)N{z is aright edge}.

Note that P(G!(z)\ H}(z)) < P(there is no harmless interval in [z, +]) <
e ¢t where C' = C(k) > 0 is a constant. It follows that

0 < P(v(0) = 1) — P(H!(t) U HI (—t)) < 27, (5.2)
Assume for the moment that we have proved that, as t — oo,

B
\/E,
for some constant B = B(k). Then it follows by symmetry and translation
invariance that P(H}(t)) = P(H](—t)) ~ B/+/t, while

P(Hy(t) N H{(~t)) < P(Gyps(t) NGyp(—t))

P(H{(0)) ~ (5.3)

P(GLt) PGyl 1) ~ 22

as t — oo. Hence (5.2) and (5.3) together imply that P(y(0) = 1) ~
2pB/V/1.

It remains to prove (5.3); as this consists of checking that the technique in
[4] applies to our case, we merely sketch the argument. Let M, be the number
of right edges in [0,7n]. It follows from the result in [15] that P(|M, — pn| >
en) < e~ for a sufficiently large n, where C = C(k, ¢) is a positive constant.
For a fixed m, define the event

k
FmZ{ZLRi(m)<kf01’k‘=1,...,m}.

=0

It follows from theorems about random walks ([4, 7]) that

)~ —L L
B g 7

as m — oo. Now assume that 0 is a right edge. Then
FM2¢—1+1 C H:(O) - FM21—1'

It is now straightforward to see that this implies that for each ¢ > 0 there
exist constants C1, Csy € (0,00) (depending on € and &) so that for large ¢

|VEP(HI(0)) — B| < CheVt + C1vt - €72,
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where

_ rq
B= /Tl_q). (5.4)

Sending first ¢ — oo and then € — 0 completes the proof. m
Note, for later use, that A = 2B, where B is given by (5.4).

Lemma 5.3. v; does not die out strongly.

Proof. Let F, = {v(x) changes i.0.}. Since Fy = NgezFy, P(Fp) is either 0
or 1. Therefore, we need only show that P(Fp) > 0.
Abbreviate H, = H} (—t) (the event from the foregoing proof), and denote

Yo<i<j<t P(Hi N I:QT]) (5.5)

a = lim inf

=% (Sogice PUHS) )

If we prove that o < 1, then it will follow by the Rényi-Lamperti lemma
([2], page 87), that P(H; i.0.) > 0, but {H; i.0.} C Fp.

The denominator in (5.5) is clearly ~4B%t as t — co. Call the numerator
in (5.5) s;. We will use the estimate lim sup,_, ., s;/t < limsup,_, ., (s; — ¢-1).
Fix an € > 0 and let ¢ be so large that for i > t'/4, P(H;) < (B + ¢€)/i.
Then, by the previous proof,

t t
S¢ — 81 = ZP(H,, n Ht) S Z.P(I?[z n Ht—i)
=0 =0
(B+¢)? 2Y4B+e¢)

< s
t1/4§i52t—t1/4 \/i\/ t —1 \/£

2 ! 1
(B+e) /0 P____x(l =

= (B+ePn+2(B4et VA

< dz 4 2(B + e)t /4

Hence, o < 7/4 < 1, and the lemma is proved. m

Lemma 5.4. +; dies out weakly.

Proof. The argument is a standard application of the Borel-Cantelli lemma,
so we leave out the details. m

Before we prove statement 3 in Theorem 5.1, let us define an immediate
left (resp. right) edge to be a right (resp. left) percolating path of length x
followed immediately by a harmless interval of k — 3 sites.

Lemma 5.5. As kK — 00, p, ~ V21K - €%,

Proof. A necessary condition for 0 to be a right edge is that a right percola-
ting path starts at 0. A sufficient condition is that an immediate right edge
begins at 0. Both comparison events are ~ k!/k". m
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Lemma 5.6. limsup, . gz < %

Proof. Recall that g, = P}(R, = 0). Let F be the event that, moving from
0 to the right, we see a right percolating path before we see a left one (a
percolating path starting at 0 counts here). Clearly 1 — ¢, > P(F) (1 - %)

Let 0 = Xy, X3, Xo,... be the successive positions of 1s on the nonneg-
ative axis. Let 7 = inf{k > 0 : there is exactly one percolating path in
[Xk, Xi+1]}, and let G be the event that the percolating path in [X,, X, 1]

is going to the right. Clearly, G C F and P(G) = ;. ®m

Lemma 5.7. liminf, .. ¢« > 3-

Proof. Now let F' be the event that, going from 0 to the right, we see an
immediate left edge before we see a right percolating path. Clearly ¢, >
P(F'). Let F' be the event that we see an immediate left edge before an
immediate right edge. Then P(F¢)(1 — %) < P(F"°).

First, define Y3 = inf{z > 0 : y(z) = 1,70(x + 1) = 0}, and let ¥}, =
inf{z > Yi_1 : y(z) = 1,7(z + 1) = 0} for k£ > 2 be the successive 10s on
the positive axis. Define o to be the first £ for which Y}, is an immediate right
edge (note that Y, is the first immediate right edge on the nonnegative axis,
unless there is one exactly at the origin). Then P(vy(Y, — 1) = 0) < 2/k.

Now define 0 = Xy, X1, Xo,... recursively by X = inf{z > Xj_; +1:
(vo(z),y0(z+1)) is either (1,0) or (0,1)}. Define 7 to be the first index k£ > 1
such that there is exactly one immediate (left or right) edge in [Xj, Xp41+1].
Moreover, let the stopping time 7/ be the first k& for which there are two
immediate edges in [Xj, X1 + 1]. (Note that there cannot be more than
2, one left and one right.) Let G be the event that the immediate edge in
[X, Xr41 + 1] is the left one. By a symmetry argument, P(G) = 1/2. The
last step is to show that P(G\ F’) — 0 as & — co. To this end, observe that

G\ F' C {a right percolating path starts at 0} U {7’ < 7} U {7 (Y, — 1) = 0}.

The only thing left to show is that P(7’ < 7) is small. Actually, P(7' < 7) <
P(a right percolating path at 0|7,(0) = 1,7(1) = 0), which is exponentially
small in x. m

6. The two-color models

Certain “energy” techniques seem to apply only to two-color models [14].
In this section we show how they imply a fairly complete description of the
behavior of the two-color GHM. We include some discussion about the two-
color CCA mainly to illustrate how much trickier cyclic models are.

Proposition 6.1. Assume that k = 2. Then, for every z, v,(z) = Yira()
for all but finitely many t. Moreover, v,

1. dies out strongly if and only if r +1 < 36,
2. is locally periodic if and only if r +1 > 20, or
3. is uniformly locally periodic if and only if r +1 > 20.
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Hence, every point eventually becomes either 0 or a part of an SPO. Of
course, this says nothing new if -, either is uniformly locally periodic or dies
out strongly.

Proof. The three assertions 1, 2, and 3 follow from Proposition 2.1, Theorem
2.1, and Theorem 3.1. To prove that v.1o(z) = () eventually for every site
z, we first notice that it is enough to prove this when an SPO exists; therefore
we can restrict our attention to ; on a finite interval. More precisely, we
fix an n > 0, investigate ; on [0,n — 1] with free boundary, and prove that
Y = Y42 eventually, for arbitrary vy. For this, we use an idea from [14]. Let
us interpret y; as an n-dimensional column vector, and consider the following
“energy” functional

F(t) = (A, yo-1) — (b, % + Ye-1)- (6.1)
Here, A is an n x n matrix with entries a;; = 0if [¢ —j| > 7, a;; = 1 if
0 < |i—j] <r,and a;; = —2r— 1, whereas b is an n-dimensional vector with

all entries § — 1. These are chosen so that the ith coordinate of Ay, — b is

never 0 and positive if and only if 4:1(¢) = 1. Since A is symmetric,
F(t+1) = F(t) = (A7 — b, Y41 — Ye-1)s

hence F(t + 1) > F(t) unless v;41 = y:—1. However, F(t) < (4r + 26)n for
each t, hence F' must be eventually constant. m

Proposition 6.2. Assume that k = 2. Again, for each z, (;(z) = (1a(),
except for finitely many t. Moreover, (;

1. fixates ifr+1<%0+1lorr+1=90,
2. is locally periodic ifr +1> 6+ 1, or
3. is uniformly locally periodic if r +1 > 26.

We conjecture that (; fixates if and only if 8 > r.

Proof.  Assume first that r +1 < 20. Assume that (o(z) is 0 for z > 0
and arbitrary for # < 0. Then we claim that {;(z) = 0 for all ¢ and z >
max{r—0+1,0}. By monotonicity, it is enough to prove the claim under the
assumption that (o(z) = 1 for £ < 0. Furthermore, we assume that r > 0,
for otherwise this claim is a triviality. Let a = r — §. Then (3 is 1 on [0, a],
0 on [—(a + 1),-1], and equal to ¢, elsewhere. Since a+1—17 < —(a+ 1)
and r — (a+ 1) < 0, (o = (. This proves the claim.

The preceding paragraph has several consequences. First, ¢; in any case
dissolves into countably many finite systems. Second, ¢; is locally periodic
for 41 < r+1, but not uniformly so if 4+ 1 < 20. This proves statements
2 and 3.

Let us now assume that r < %9. Assume that the sites in [—r, —1] have
fixated, with the number of 1s there being a. If the origin changes at time ¢
from 0 to 1, then there must be at least 6 —a 1sin [1,7] at time t. Let T > ¢
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be the first time at which one of the 1s in [1, 7] changes to 0. The time 7" must
be finite; otherwise the origin is unable to change back to 0 after ¢. At time
T, there is a site z € [1,7] that sees § — a 1s and 6 Os; hence 2r+1 > 20 — a.
Since we can assume that a < %r (otherwise we can exchange roles of 0s and
1s), we get r > %9, a contradiction. Hence, the origin must fixate, and the
procedure can be iterated.

If @ = r + 1, then a very easy argument works. Take an interval of Os, at
least 7+ 1 sites long, and let = be the first site to the right of it (the color of =
is 1). Either this site becomes 0 at some time (and is stuck at 0 afterwards),
or else it never becomes 0 (hence it is stuck at 1). In the second case, all
sites in [z, z + 7] must be 1 at all times, and the procedure can be continued.

Finally, the first claim is proved with the functional (6.1) with the same
b, and A is given by a;; =20 —2r—1,a;; =1if0< |[i—j| <r,and a;; =0
otherwise. m
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