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Abstract. Learning in reference to the real neural complex depicts
progressive modifications occurring at the synaptic levels of the in-
terconnected neurons. The presence of intraneural disturbances (in-
herently present) or any extraneural noise in the input data or in the
teacher values may affect such synaptic modifications as specified by
the set of weighting vectors of the interconnections. Translated to ar-
tificial neurons, the noise considerations refer to inducing an offset in
the convergence performance of the network in striving to reach the
goal or objective value via the supervised learning procedure imple-
mented. The dynamic response of a learning network when the target
itself changes with time can be studied in the information-theoretic
plane and the relevant nonlinear (stochastic) dynamics of the learn-
ing process can be specified by the Fokker-Planck equation, in terms
of a conditional entropy— (or mutual information—) based error mea-
sure elucidated from the probabilities associated with the input and
teacher (target) values. In this paper, the logistic growth (evolution-
ary aspects) and certain attractor features of the learning process are
described and discussed in reference to neural manifolds using the
mathematical foundations of statistical dynamics. Computer simula-
tion studies on a test multilayer perceptron are presented, and the
asymptotic behavior of accuracy and speed of learning vis-a-vis the
convergence aspects of the test error measure(s) is elucidated.
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1. Introduction

In relation to learning processes in the neural complex, it is well known that
synaptic modifications (specified by a vector array of adjustable weighting
parameters w;) can be influenced by the inevitable presence of intraneural
disturbances, which will affect the network’s convergence toward equilibrium.
Further, in the event that the input data or teacher values are themselves
stochastic, the corresponding extraneural influence may also augment the en-
tropy of the system (real or artificial), facilitating the eventual veering of the
network’s output from the equilibrium value/stable state. Relevant neurody-
namic considerations governing the variable w; in artificial neural networks
(NNs) have been addressed in [1] in terms of a stochastic differential equa-
tion (of the Langevin or Fokker—Planck type). Also, the dynamic states of
the architectures, such as the Hofield network subjected to white-noise (ran-
dom) inputs, have been analyzed via Ito-type stochastic differential equations
applied to the so-called “diffusion machine” [2].

In the present work, an alternative approach is presented to describe the
learning dynamics of an artificial NN in the presence of destabilizing factors
caused by intra- or extraneural influences. The stochastic variable considered
to model the relevant nonlinear neural dynamics refers to an error-measure
parameter evaluated in the information-theoretic plane. Although a lim-
ited extent of neural dynamics considerations have been addressed in the
information-theoretic plane pertinent to biological neurons [3, 4], equitable
study or considerations vis-a-vis artificial NN are rather sparse. [5] describes
a basic neural manifold being embedded as a submanifold in the manifold
of a general nonneural information-processing system, and have developed
an “information geometry” method to study the information-theoretic ap-
proach to learning dynamics and pattern classification problems. Further,
the dynamics of an ensemble of learning processes in a changing environ-
ment (which feeds the training inputs to the network) has been described in
[6] via a continuous-time master equation.

In the present study, the approach is concerned with the logistic growth
considerations pertinent to the network’s learning process in the information-
theoretic plane. Relevant to this proposed method, a cross-entropy— (or
mutual information—) based distance measure (¢) is specified as a stochastic
variable, the asymptotic behavior of which (with respect to time) is studied
as a discourse of the learning process. It is given by the following relation:

N
e=H.(p,q)=K Zqzqﬁ(pz/%) (1a)
e=H/(q,m) = KZP@(QZ/Z?!) (1b)

where ¢ is a twice-differentiable convex function for which ¢(1) = 0 and K is
a constant factor. This error measure is adopted to train a NN (depicted in
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Figure la: An artificial neural network trained via a cross-entropy—
based error metric in the information-theoretic plane using backprop-
agation mode.

Figure 1(a)) via a gradient-descent algorithm in the backpropagation mode
[7]. The output of the network (Figure la), namely, O; at the [th cell is
assumed to have probabilities p;, and ¢; refers to a target set of probabilities,
with [ = (1, 2, 3,..., N) enumerating the number of the cells and thereby
offering an index for the output units. The error function given by equation
(1) is known as the Csiszdr error measure [8] defined in the information-
theoretic plane; and, when ¢(y) = y log(y) (with y = p/q or q/p; as
appropriate), this measure is better known as the Kullback-Leibler measure
[9]-

The entropy attribution to the activities of the neural complex, and to
the real neurons specifically, has been justified in [10] on the considerations
of the principle of conservation of total “neural energy,” its distribution, and
an associated entropy. They have offered an operational definition of the
macrostate of a neural system (in the same sense as in physical theromo-
dynamic principles) and have associated it with the Shannon’s concepts of
information [11]. Disturbances in the real neural system caused by environ-
ment have been perceived in [10] as forces enhancing the associated entropy
(or uncertainty) and correspondingly reducing the information content that
would otherwise enable the physiological self-regulation.

These existing bases on real neural information processing offer a di-
rection to extend the entropy- (or information theory—) based concepts to
optimization algorithms used in artificial NNs.

The error measure indicated in equation (1) is a time-dependent stochas-
tic variable specified over the epochs of iterations performed toward conver-
gence and mediated through feedback strategies (such as the backpropaga-
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Figure 1b: Test neural network: A multilayered perceptron simulated
for learning strategies in the information-theoretic plane.

tion algorithm) in the network. Due to the presence of any intra- and/or
extracellular disturbances, the associated information flow in the neural sys-
tem would, however, degrade with time; and the proliferation of information
across the network may even become obsolete or nonpragmatic due to the
asynchronous (random) synaptic delays between the internal state variable
(being adjusted toward learning) and the adjusting influence (information)
imparted (via the control loop) to the network by the error measure. That
is, an aging of neural information (or degenerative negentropy) may occur
that would lead to a devalued (or a value-weighted) knowledge with reduced
utility (or pragmatics) being available to the converging efforts of the net-
work striving toward the objective function. The degradation so perceived in
the neural information plane depends on the extent of asynchronous delays
encountered when the control loop (error) information arrives at the control-
ling section. That is, the asynchronously delayed error measure fed back will
have no pragmatic value inasmuch as its asynchronous characteristics will
not reflect the true (natural) output state (because the global state of the
neural complex would have changed considerably by then) [12].

2. Stochastic neural dynamics

The trajectory of the time-dependent neural process pertinent to the learning
endeavor represents the evolution of ¢ with time in a stochastic nonlinear
dynamic system. Hence, in reference the variable e(¢) describing the neural
stochastic dynamics, a differential time evolution relation can be prescribed
for e(t) as follows:

de(t)/dt = Fi[e(t)]. (2)



Dynamic Properties of Neural Learning 353

Or it can be specified by a recursive discrete-time process as follows:
et +1) = Fyle(t)) (3)

where Fy (or Fy) is a differentiable function. It can be noted that ¢, in general,
is an N-dimensional vector affiliated with the phase space containing the time
evolution of the underlying neural process spanned by the N-dimensional
state vector of a dynamic system. A portrait of the corresponding time evo-
lution of this system is therefore constituted by a set of trajectories in the
N-dimensional phase-space. When the system reaches a state of permanent
regime where the trajectories stay bounded, the corresponding invariant sub-
set is termed an “attractor” specifying a state of stochastic equilibrium.

Relevant to an error measure £ adopted in network training (to assist
the neural complex to learn from the environmental inputs), the neural dy-
namics can be described by a stochastic differential equation (of the general
types given by equation (2)). Both the conventional types of error measure
(such as the quadratic error measure) as well as the error measure that can
be evaluated in the information-theoretic plane (on a cross-entropy basis as
given by equation (1)) can be regarded to follow the paradigm of stochastic
dynamics along the temporal passage of iterative epochs facilitated via feed-
back methods (until the error value is minimized). To assess the approach
characteristics of the error parameter (¢) toward an equilibrium value (at-
tractor) over a period of time (i.e., over the iterations of learning epochs) in
order to develop an explicit dynamic model, the following valid assumptions
can be made.

1. The parameters that decide the stochastic aspects of ¢(t) are confined
within the basin of attraction.

2. The initial conditions of the stochastic process (eq, tp) involved should
be specified appropriately.

3. The process is likely to be attracted to a stationary stochastic process
whose probability density function (pdf) can be uniquely determined
by the parameters of the original system variable, namely, €.

4. In view of the preceding assumption, in the terminal attractor regime
the pdf of e(t) does not vary as t — oco. That is, ex(t) = e(t — 0) is
a stationary process.

5. As a first-order approximation, the stochasticity of the dynamics of ()
is influenced only at fixed times corresponding to each onset of iterative
epochs facilitated by the feedback.

6. The epochal iteration times are much larger than the periods of any
fluctuations associated with e(t).

7. At the terminal stage, convergence of £(t) toward an equilibrium value
of £y is ensured only if the network’s optimization efforts are consti-
tuted favorably by reinforcement error information.
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8. On the contrary, in the presence of overwhelming degenerating (or an-
nihilating) error information, the dynamics of e(¢) will be divergent.

3. Stochastic dynamics of the error measure (¢): General
considerations

The dynamics of €(t), in general, can be equated to a random walk process
by virtue of the aforementioned assumptions and in view of the following
considerations.

Specifically, the endeavor of the network toward convergence when con-
ceived in the information-theoretic plane refers to an adaptation process
wherein the progressive acquisition of information leads to minimization of
disorganization or eradication of uncertainty (entropy) of the network output
vis-a-vis the teacher function.

When the network has learned (or adapted itself to the environmental in-
puts) to the fullest extent, it does not need any more information inasmuch
as it retains no further uncertainties about the output against the teacher
values; that is, a fully trained network may not perceive any further infor-
mation since the output is maximally certain against the teacher value with
which it is compared.

A heuristic time-dependent model of the goal-oriented, converging aspect
of the neural complex versus time expressed in terms of £(¢) as described pre-
viously, can be depicted qualitatively in terms of the variance of the teacher
function ¢ and that of the network output o3. That is, the evolution of
error entropy ¢(t) can be specified by an envelope profile given by [13]

e(t) = (k/2)log(1 + o /m(t)o7) (4)

where m(t) is the number of iterations over time (¢), which can be modeled
as a simple case by depicting m = «t, where « is the number of iterations per
unit time; and k is a constant as determined by the base of the logarithm.
Hence,

e = (k/2)log(1 + o /aoat). (5)

In the initial time frame, that is, at the commencement of network learning,
the error information pertinent to the output (in reference to the teacher
value) could be significantly different, and thus the network has a large
potential to receive information in tending toward the objective function.
Therefore, the initial error information e(tp — 0) = €¢ can be designated as
the potential error information.

4. Random walk paradigm of £(¢) dynamics

As discussed earlier, the error measure e(t) when specified in the information-
theoretic plane can be written in the form of equation (1). More generally, it
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can be constructed by combining linearly two weighted parts of the Csiszér
metric, given by equations (1a) and (1b). That is:

Ky Z G (pi/ @) + Ko ZP@(Qi/Pi)

= Y (eni+ex), =12, ..., m ..., n (n— o0, t— 00)(6)

K3

Il

€

where K and K, are weighting factors. If K; = Kj, equation (6) can be
considered as symmetrized and balanced.

Designating each iterative epoch as of duration A7, the total time in-
volved in reaching the terminal state of dynamics (with n — oc0) is taken as
an integral multiple nAT = T, (say). Suppose the potential energy asso-
ciated with the system (which is being minimized) is taken as F. For each
epoch of iteration, there is a corresponding energy configuration, the en-
semble of which can be represented by a canonical Gibb’s distribution given
by [12]

Pi(Eli) = Cl eXp(—AEM/ER) (7&)
or by
Pi(es;) = Coexp(—AFEy;/ER) (7b)

where Er is a reference energy level, and the normalization constants (parti-
tion functions) Cy and C; are determined from the requirement Y; Pi(e1;) =
i Pi(es;) = 1. Hence, € = Cy = 1/M(Ty,), where M is the total number of
energy levels configured over the time Tt,. The corresponding configurational
entropy associated with e1; or ey; is

Sr(e) = —K) P;logP;

= —K [1/M(Tw)]log[1l/M(T.)]
= Klog[M(T)] (8)

where, again, K is a constant specified by the base of the logarithm. The
number of ways (or realizations) the ensemble M(7,,) can be divided into
two groups of m; and ms (corresponding to ;1 and &9, respectively, without
regard to order) is given by the binomial coefficient, namely,

my
where M(Ty,) = (my + my).

Inasmuch as the statistics concerning state transitions associated with
e(t) are governed by Gibb’s distribution (equation 7), the discourse of £ with
time represents a time-homogeneous Markov chain. Further, the transitional
epochal state of ¢(t) is determined by the configurational energy level AEy;
and/or AFEs; and can be modeled by the concept of one-dimensional random
walk. Starting at ¢ = 0 and taking steps of length A7 each, let Aet and
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A&~ be the reinforcing and annihilating information, respectively, imparted
by the error feedback via the control loop (with the probability of each being
equal). The random walk model enables the computation of the probability
of achieving a specific information state at t = mA7 after m iterative steps.
That is, by considering Ae* as the reinforcement information and Ae™ as the
degenerating counterpart, the corresponding (proportionate) contributions
occurring randomly (with equal probabilities) refer to the evolution process
depicting the excursion of €(¢) about the equilibrium value (e4,) versus the
iteration of epochs (Figure 2) performed.

The transitional probability associated with the excursion of &(t) by Ae*
in the aforementioned one-dimensional random walk process commencing at
an initial state depicted by eo(t — to) = (€9, o) is given by

Z[(e + Ae*,t + mAT) | (,1)]
= Transitional probability of e(¢) assuming the values

e+ Aet
or at mth epoch or time
€+ Ae~
= 1/[1 + exp[(AElm - AEZm)]/ER] (10)

In this random walk process, the current value of €(¢) is determined by the
potential level AE, and therefore the corresponding probabilities of the state
of e(t) as given by equation (10) also depend on the current value of (t).
This (energy-dictated) random walk process (as opposed to the free diffusion
process) is a force field-dependent diffusion process and therefore corresponds
to the Ornstein-Uhlenbeck process [14].

For a given m, the possible values of ¢ (especially for large values of ¢)
would differ from each other by multiples of 2Ae* since changing ¢ (by Ae*
or Ae™) at any single step changes the final value of &(¢) by that amount.
Or a probability W(e; m) can be defined such that 2Ae¥W(e; m) refers
to the probability of reaching ¢ after m excursions. That is, 2Ae*W(g; m)
is the probability reached in the interval (¢ = mAT)] < t < [(t = mAT +
AT)] after m steps. The relation between W(e; m) and M(T,,) is therefore
20 W(g) = M(T,)(1/2)™, using W(e) for W(e; m) and T, = (mAT) for
convenience.

It may be noted that any particular set {Ae;f} or {Ag;} (regarded now
as defining a particular ensemble sequence of increments or decrements in
€ with respect to each step in a random walk) has probability (1/2)™ and
there are M (T,,) such sets that lead to the mth epoch at ¢ = Tj,. Inasmuch
as W(e) and M (Ty) differ only by a coefficient (independent of T3,), the
corresponding configurational entropy can be written as

St,.(e) = Klog W(e) (11)
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Figure 2: Convergent and divergent modes of ¢ as a function of time
(t) or number of epochal iterations (m). (i) Random walk represen-
tation of Aet and Ae~ versus t or m. (ii) Temporal trajectory of .
(ii)(a) Actual trajectory crossing the equilibrium value of ¢ (e4) at
specific attractors (*). (ii)(b) Envelope of the trajectory e showing
the asymptotic trend of £ at its terminal dynamics as ¢ or m — oo.
(iii) Divergent and convergent profiles of ¢ versus time. (iii)(A) & (D):
Diverging envelopes directed from positive and negative sides, respec-
tively. (iii)(B) & (C): Converging envelopes directed from positive
and negative sides, respectively.
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Further, for m > 1 and n — oo and (T,,/nAT) = (¢/nlAet) < 1, the
following approximation is valid:

log[(m & e/nAe®) /2] = (e/nAet) — [(62/2n*(Ac®)?] + log(m/2) (12)

Using the preceding approximation and applying Sterling’s formula! to
log[M (T},)], the following result is obtained:

W(e; m) =~ [1/{2mm(Ae*)?}?] exp[—e?/2m(Ae*)?] (13)

That is, for m > 1 and n — oo and (¢/nAe* < 1), the pdf describing
the statistics of e(t) at the mth epoch is gaussian with a mean (¢) = 0 and
a variance (%) = m(Ae*)?. (In the considerations presented earlier, the
equilibrium value is taken as e, in reference to which, if € is presumed to
fluctuate, then () = 0.) Thus, the probability of the temporal statistics of &,
in a broad sense, refers to a superposition of m independent random variables
and approaches a gaussian distribution with zero mean (about the equilib-
rium value) and of a finite variance in the limiting stage of m approaching
n. This is in concordance with the central limit theorem.

5. Evolution of £(¢): Representation via the Fokker—Planck
equation

Pertinent to a given environment from which the network learns, if the time
between learning steps is drawn from a Poisson distribution, the dynamics of
an ensemble of learning processes has been described in [6] by a continuous-
time master equation. Presently, the evolution of & versus time (or number
of iterative epochs) can be modeled as a forward equation (or the master
equation) of diffusion process (Fokker—Planck equation). This refers to the
description of the transition probabilities of € changing by Aet or Ae™ at
each step, with the conditions at the commencement of the iterative epochs
being (g9, to). Such a description satisfies a stochastic differential equation
given by [14]

de(t)/dt = p(e,t) + o(e, t)C(t) (14)

where ((t) is a random function such that [; ¢(s)ds imposes the attributes of
a random walk to the variable e(¢). In general, ((¢) is a stationary, gaussian
white noise, suggesting that the dynamics specified by equation (14) is driven
by a stationary gaussian process. The evolution of ¢(¢) models a continuous
brownian motion. It has a pseudoderivative, namely, a time derivative in
a mean-squared sense. This pseudoderivative random process {de(t)/dt}
equals an ideal gaussian white noise ((¢) as given by equation (14), where
¢(t) is zero mean and uncorrelated in time, but has a finite variance (%) < oo
for all ¢. Further, in the interval (to — t1), the entity nAr{e,t; <t < o} is
a sample-continuous, second-order markovian process with u(e,t) and o(e, t)

1Sterling’s formula: log(a!) = (z + 1/2) log(z) + log(v2r — ).
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being the Borel functions of &(t) specified within certain bounds. Let the
transition probability density function of e(¢) be denoted by Z(e,t | 9, t0);
s(e), —o0 < € < 00, is a Schwartz function of rapid descent. (That is, s is
infinitely differentiable and, for any x and A, | € |*] fM(e) |— 0 as| e |— o0.)
Suppose an initial condition is imposed such that Z(e,? | €9,%0) = 6(e — €o),
where ¢ refers to the initial value of € at the onset of the iterative process
commencing at t = ¢y, and

+o0
/ s(e)Z(e,t) | €0, to)de — 5(e0) ¢ —to, Vs€S (15)

Subject to the preceding initial conditions, Z(g,t) | €, to) satisfies the Fokker—
Planck equation given by [14]

0Z /0t = (1/2)0%[02]/8<? — O]pZ]/Oe (16)

where Z = Z(e,t) | €o,t0), 0 = o(e,t), u = u(e,t), and ta > ¢t > to > t1.
Suppose o%(g,t) = [(t) and u(e,t) = -(t)e. Specific to these prescriptions,
the Fokker—Planck equation (equation (16)) reduces to

0Z /0t = (1/2)[(t)0*Z/0e* — 0-(t)0(¢ Z) /O (17
which has a solution given by [6]
Z(e,t | €0, to) = (1/V21V?2) exp[—(e — Ugq)?/2V? (18)

This expression depicts again the gaussian nature of ¢ with mean and variance
being U and V2, respectively. They can be obtained explicitly by solving [14]:
d(V?)A = | +2-V? and dUA = U with the initial conditions V2(ty) = 0
and U (to) =T

The time-dependent wandering of € under random force as given by equa-
tion (14) can also be described by the following Langevin equation [15]:

de/A + Bre = AL(t) (19)

where B, = (2/A7) and A(t) is the random force function. The initial
condition, namely, e(t — ty — 0) = &o specifies the solution of equation (19)
as

e(t) — epexp(—2t/AT) = /Ot[exp[Q(ac —t)/AT]|A(z)dz

The corresponding solution for transition probability Z(e — goe™/A7) is

given by

1/{27[1 — exp(—4t/AT)]}/?
exp{—[e — o exp(—2t/AT)]?/2(1 — exp(—4t/AT)}
= [1/(2m0%)"* exp[~(e — &(1)*/20%(t)] (20)

which approaches a delta-dirac function as ¢ — ¢y — 0 (Figure 3), and &(¢)
depicts gge™2/A7 and 0% = [1 — exp(—4t/AT)].

Z(E,t | 807150)
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Figure 3: Stochsticity of e (expressed in terms of the transitional
probability of Ae*) versus time, .

Thus, the heuristic discussion on the random walk model &(t) as pre-
sented earlier has led to the per-unit-time probabilities of the excursions of
¢ (namely, W(e; m) along the temporal framework of the iterative epochs)
being modeled as a gaussian process. It is in conformity with the solution of
stochastic differential equation representation of the transition probabilities
of e(t) given by equation (20). Again, as dictated by the initial conditions
(€0, to) at the onset of the iterative epochs, it can be observed that the
stochasticity of €(t) is determined by a gaussian process along the passage of
time in the attractor basin.

6. Logistic growth model of £(t)

The temporal evolution of & can also be modeled as a logistic growth with
an oscillatory trend around its equilibrium (terminal) value (e« ), depending
on the initial state of the evolutionary process. Suppose at the early stages
of iterations of the error feedback imposed on the network, the value of
€ is slightly less than the equilibrium value. This reduced value offers a
niche to receive reinforcing information that augments the network’s efforts
toward optimization, leading to a further reduction in the cross-information—
based error at the output. However, after a few iterations, the stochasticity
associated with the network inputs may yield an output that could lead
to negative information, with the result that an enhancement of the error
measure (causing an excursion of ¢ to drift away from the equilibrium value)
may be perceived. The causative actions changing £ toward or away from
the equilibrium value could also, in general, be asynchronous in reference to
the current state of £(¢) and may be separated to the extent of a few iterative
epochs, depicting a delayed arrival in reference to ¢. Hence, the rate of change
of £ caused by Ae® is not a function of the present value £(t), but is due to a
past value e(t — t4), where t4 is the delay time involved. The corresponding
divergent and/or convergent aspect of £(¢) from the equilibrium value can
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t=ty(> 0) t —

Figure 4: Logistic growth of ¢ as a function of time (t) seeking the
equilibrium value e, as t — 0.

therefore be specified by the following growth model, in which the rate of
change of £(t) is functionally dependent on a past value, e(t — t4):

[1/e(t)]de(t)/dt = T'(t) (21)

where I'(t) depicts the growth rate function, which can be denoted by a
simple linear form, as follows:

I'(t) = [g — he(t — ta)] (22)

where g is the growth rate of ¢ without external influences and h represents
the effect of augmentation in the values of .

Hence, the differential delayed equation depicting the logistic growth of
e(t) is written as

de(t)/dt = e(t)[g — he(t — ta)] (23)

For incremental changes in time (At), the preceding equation can be written
as a second-order difference equation of the form

e(t+ At) — e(t) = (At)e(t)[g — he(t — AL)] (24)

With the change of notations given by ¢ = mAt, e(t) = e(mAt) = &,
G = gAt, and H = hAt, the discrete logistic equation at the mth epoch of
iteration becomes

Em-ﬁ-l —E&m = Em(G R HEm—l) (25)

Any delay involved in the preceding process could be asynchronous with
respect to the current value of time, namely, . Further, assuming that
the displacements of ¢ (namely, Ae*) are small and are confined to the
proximity of the equilibrium value, a linear approximation of the discrete
logistic equation is valid. That is, as ¢ approaches its equilibrium value,
€ — €0 = g/h (Figure 4) and

e(t + At) — e(t) = —Ge(t — At). (26)
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Or, if e, is denoted as (G/H)+Ae*(t), where | AeE (¢) | is much smaller than
the equilibrium value G/H, the following linearized (approximate) growth
relation can be written:

ym+1 - ym B _Gym—l (27)

where y,, = AeZ(t) is the displacement ¢ from the terminal value e, at
the mth epochal instant of iteration. Equation (27) can be recast in a more
general form as

Yma1 + Potym + QoYm—1 =0 (28)

which is known as a constant coefficient difference equation. Its solution
is analogous to the solution of constant coefficient second-order differential
equations, with the necessary conditions for a unique solution being the initial
conditions of the first two values of ¥, and y; available [16]. Such a solution
can be written as

Ym = C17r]" + Corg® (29)

where the values of r are determined by substitution in equation (28). Hence,
it follows that

r™H 4 Por™ + Qor™ T =0 (30)
Upon division by ™!, the following quadratic equation is obtained:
r+Pr+Qo=0 (31)

Its two roots are 15 = [— Py £ (P? — 4Q0)"/?]/2.

The arbitrary constants C; and C» in equation (29) can be determined
uniquely by the initial conditions, leading to two independent solvable equa-
tions,

Yo = Ci1+Ch (32a)
y1 = Ciri+Corg (32b)

assuming that the two roots r; and ry are distinct—that is, (B2 — 4Qq) # 0.

The corresponding solution to equation (27) refers to that of a constant
coefficient linear difference equation, namely, 72 — r + G = 0 with the roots
given by ri» = [1 & (1 — 4G)Y/?)/2.

The equilibrium state of £ (at the terminal stage) is stable if the solution
of y,, does not grow as t — oo (i.e., when m — oo) for any initial conditions
(€0, to). If 0 < G < 1/4, the roots are real, positive, and less than 1 (i.e.,
0 < 712 < 1). Consequently, if 0 < G < 1/4, y,, = Ae(t) — 0 as t — oo,
or the excursion of ¢ vanishes and e(t) will approach the equilibrium value
€00 asymptotically. When G < 1/4, the two corresponding roots are complex
conjugates and hence the solution for y,,(¢) is given by

Ym(t) = |r|™(C3 cosmb + Cy sinmb) (33)
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where |r1| = |ra| = [r| = G2, § = arctan[(4G — 1)'/?], and m = (t/At).

The solution of equation (33) grows or decays as it oscillates, depending on
| 7 |= G2, When 1/4 < G < 1, the solution is a decaying oscillation. That
is, ¥m — 0 and (t) is convergent toward its equilibrium value. When G > 1,
the equilibrium value may be reached quickly, but the unstability renders an
oscillatory growth around the attracted value, leading to a divergent solution.

The divergent growth stems from the asynchronous occurrences of &;; and
€9;, namely, the reinforcement information (Aet) and the degenerating (an-
nihilating) information (Ae™) fed back via the cross-information error metric.
Considering equation (22), suppose g is a positive growth rate (without any
external constraints) and h depicts a constraint stipulated by the network as
a limiting factor. Let Aty refer to the time delay (due to the asynchronous
attributes of eq; or €y;), which can vary without any limit imposed. Then
gAty < 1/4 would represent an extremely small delay permitting ey, or €g; to
yield an entity amounting to Ae;", which constitutes reinforcement informa-
tion by canceling any divergent trend in the current value of ¢, namely, €,,(¢)
at the mth epochal iteration. This is possible because &,,(t) and Ae™ occur
synchronously due to the negligible delay involved; it would also guarantee
an eventual stabilization of &(¢) at an equilibrium value e.,. If the delay is
specified by (1/4 < gAt,; < 1), the function £(t) would oscillate with larger
excursions, but would ultimately seek the equilibrium value with the passage
of time.

However, in the case of gAt, > 1, the oscillation would become divergent,
destabilizing the optimization effort. That is, an entity Ae* encountered by
em(t) at the mth epochal instant of iteration would predominantly augment
any divergent trend in the current value of &,,(t). This can happen when
Aty — 00, meaning that either €1; or ey; is absent or disproportionately un-
balanced and dissimilar (asymmetric) so that the degenerating information
component, namely Ae~, dominates. Hence, if the reinforcement informa-
tion contributed by e1; or &9; is absent, the chances of £(t) to diverge are
increased. In other words, for an asymmetric (one-sided/unbalanced) error
metric represented via cross-information measures (by either &1; or €g; alone),
the cumulative augmentation of Ae* or Ae™ renders Aet to take over the
dynamics of €,,(t). Therefore, the convergence of the network output toward
the teacher value in not guaranteed.

The dynamics of £(t) with a logistic functional growth characteristic as
discussed previously may cause the function £(¢) to cross the equilibrium
value (Figure 2) at several instants of time. These crossings indicate the bot-
tom of the attractor basins being attained repetitively during the iteration of
epochs aimed at the convergence of the network’s output toward the teacher
values.
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7. Convergence considerations
7.1 Stochastical equilibrium

The crossings of the €(t) trajectory at the equilibrium value (Figure 6) rep-
resent conditions of instantaneous stochastic equilibrium states attained by
the vector ¢;. They depict a set of fixed-state point attractors (corresponding
to steady-state conditions). Implicitly, at these points the stochastic equi-
librium is specified by dw/dt = o, where o is the null synaptic matrix (that
is, the R™ null vector {0}) and w is the coupling matrix adjusted through
feedback via epochal iterations of the error function. In the sample space
of the vector €, /0t = o denotes stability or neural equilibrium, with o
representing the null vector of the changes in error activity. Globally, the
neuronal stochastic stability is dictated by the steady-state conditions in the
neuronal field, namely

Ow/ot = x, (34)
and
dw /0t = €, (35)

where x; is a random vector from a gaussian white random process {x,} that
can be related to the random vector ¢; used in equation (14) to model the
stochasticity of e(¢). The neural state vector x has an associated (indepen-
dent) gaussian white noise process denoted by &,. Equations (34) and (35)
represent the stochastic equilibrium conditions vis-a-vis the neuronal state
vector  and the synaptic state matrix w. Both @ and w hover in a brownian
motion about (fixed/deterministic) equilibrium, or terminal attractor value,
as m (or t) — oo, and they reach the state of stochastic equilibrium only
when the random vectors x and & alter them temporally.

As mentioned earlier, the dynamics of neural parameters pursued here
correspond to the fluctuations of the error metric €(¢), which is computed
presently in the information-theoretic plane. It offers competitive feedback
information that either reinforces or destroys the current informational status
at time ¢ (or at the mth iterative epoch) of the adjustments imparted to the
network via the weight matrix w. Therefore, the relation given by equation
(34) can be written as

d(Ae) /0t = x, (36)

where Ae is the fluctuating vector component of the error metric vector set
{e;}. That is, in elucidating the stochastic equilibrium of the NNs, equation
(36) can be adopted in lieu of equation (34).

In essence, the error metric fed back and the corresponding corrective al-
gorithms pursued in the information-theoretic plane can be regarded as those
pertinent to a competitive learning strategy in the information-theoretic
plane. It is also a differential learning pursuit. That is, learning takes place
only when a change occurs in (t), namely Ae*, and it does so according



Dynamic Properties of Neural Learning 365

to the competitive information provided by Ae* or Ae~. The learning pro-
cess is associated to an indicator function that flags whether the learning is
augmentative/reinforcing as a result of Ae™ or whether the learning is de-
generated due to the addition of annihilating information Ae~ facilitated via
feedback.

For a guaranteed convergence, the weight adjustment requires that the
error metric (a distance measure) specified in terms of the cross-entropy (mu-
tual information) parameter of equation (1), computed terms of the pdf of
the output (p;) and that of the teacher values (¢;), should be a balanced
(equally weighted) and symmetrized (two-sided) function. The characteris-
tics of such functions are described in the following definitions and theorems
and are verified by simulation studies presented later.

7.2 Definitions and theorems

Definition 1. Let P = {pla P2, P3y---y pk} and q= {qla 2, q3y -+, qN}
denotes two complete sets of probabilities (3;pi = > =1, i =1,2,...,N)
representing the a priori probability distribution of the discrete random out-
put {O;} of the NN and that of the teacher source {T';}, respectively, with
(pi, ;) corresponding to the ith iterative epoch in the network training sched-
ule. Or, when the network output and the teacher values are specified as con-
tinuous variables, p and ¢ refer to the respective probability density functions
such that [pdp = [qdg=1.

Definition 2. The relative entropy, or cross/mutual, information I(q | p) of
O with respect to T' is defined by the expression

I(q|p) = Z%’ log(gi/p1) = 1k, (37)
Likewise, I(p | q) refers to the cross-entropy of 7" with respect to O. Hence,
I(p | q) = >_pilog(pi/g;) = eax (38)

As indicated before, the transformations expressed by equations (37) and (38)
are known as Kullback-Leibler measures [17], and they represent the amount
of information contributed by 7" about O and the amount of information
contained in O about T, respectively. That is, they refer to the mathematical
expectation of the transinformation about (or directed divergence of) each
outcome of T" versus O and O versus 7', respectively. Hence, it follows that

I(q|p) = ({(prior uncertainty), — (posterior uncertainty),)

>_ ai{[—log(pi)] — [~ log(a:)]} (39)

Likewise,

I(p|q) = ({((prior uncertainty) — (posterior uncertainty),)
sz —log(g:)] — [ log(p:)]} (40)
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Definition 3. The distance between two probability distributions refers to
a divergence measure between them and is given by Kullback-Leibler-Jensen
metric [18] defined as follows:

Jlg)=1I|q)+1(q|p)=exrs (41)

The J measure refers to the divergence, or the discrimination, between the
hypotheses Hy and Hq (constituted by O and T' respectively), or between
p and ¢, and it implicitly represents a measure of difficulty in discriminating
between them. That is,

exey = Jplao) =1I(a|p)—[-1(p|a)]
= Zpi log(pi/q:) — Z gilog(pi/qi) = e1x1 + €ax1,

= Z(pz ~ q) log(pi/a:) (42)

Definition 4. If (z) is a convex function for z > 0, with ®(1) = 0, then the
f-divergence (f depicting the function ®) of a distribution p or ¢ is defined
in a two-sided form of the Csiszdr error measure [8] with weighting factors
K; and K, as

e =1 (p|q) = Ki Z%‘@(Pi/%) + Ky Zpi@(qz'/ipi) (43)

where ®(z) = z log(z), €c, — €1, and g, is a more generalized version
than exyj.

Theorem 1. If the f-divergence as defined by equation (44) is to be consid-
ered as a feasible error metric (eg,) in training a multilayered NN, then the
necessary condition is that I7 = g, must be two-sided and bounded. That
is,

(If = ECZ)

I

K1) q:®(pi/a:) + Ko 3 pi®(ai/pi)

= (e10s + €20) (44)

In equation (45), the condition for balanced symmetrization is that the
weighting factors be equal (i.e., when K; = Ks).

Proof. This theorem can be proved by the geometrical notions of Pythagoras
as follows: The relative entropy-based error metric e(plg, ¢ | p) behaves
intuitively like the square of the euclidean distance norm, although e(p | q)
itself represents no geometrical measure. For a convex set ¢ in R™, let A be
a point outside the set, B be the point in the set closest to A, and C be any
other point in the set. Then the angle between the lines BA and BC must
be obtuse, which implies via the Pythagorean theorem that (%, > (%5 + (3,
where £ represents the linear distance. Hence the convergence of € (toward
an infimum) in the £ norm refers to the minimum distance between the two
distributions. That is, the infimum of (%4, = (g + (3¢), or ec.(p | ¢, ¢ |
p) = (e1c,+€ac,) Where e1¢, = K1 Y qid(pi/¢:) and e1c, = K1 > pid(qi/pi)- m
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Theorem 2. The sufficient condition for (I’ = e¢,) representing an error
metric for training a NN is that both parts of €, namely €1 and €2, be nonzero
in their syntactic values so that the corresponding semantics imparted to
the network (via feedback through the corrective algorithm) add meaningful
information to the weight adjustments in the multilayered network during
each iterative epoch and lead to an eventual convergence of the output error
toward an equilibrium value €.

Proof. The constituent part of ec,, namely ¢, € (0,Ae*] and ey¢, €
(0, Ae*] carry messages of relative importance and are applied to the system
dynamics (via feedback), which allows the state variable ec,(t) to converge
toward an attractor (e4) at a given kth instant of iteration.

Let €10, supply a “message of relative importance” given by [M;/M]
at the kth instant, and M = (Mg + May). At the same instant, the
corresponding message of relative importance imparted by esq, is given by
[Map/M] = [1 — (My;/M)] since the semantic aspects of e;c, and exc,
complement each other.

Considering the total messages delivered over k iterations, it is given by

Miotal/ M = Z[Mlk/M] + ;[1 — My /M]. (45)

Equation (45), specified in terms of a controlling (cybernetic) information
parameter of the network, say C. (which results from the error feedback by
the control loop), can be written in reference to the kth iteration as

Cop = (I% + ) = {Ac*}. (46)

Here, I+ can be regarded as the reinforcing information (which directs the
output error toward the equilibrium value e,), and I.- refers to annihi-
lation information, which leads the system dynamics to diverge from the
equilibrium. Dominance of /.- implies an information deficiency, and the
overwhelming influence of I.+ means that information augmentation is per-
ceived by the system dynamics in pursuit of equilibrium or an attractor value.
As in [19], a parameter such as Cy either “sensitizes” or “desensitizes” the
convergence process (depending on the dominance of the messages delivered
by I.+ or I.- at any given kth instant in the network optimization strategy).

Considering Ae™ and Ae™ (which determine I+ and I.-) as dichotomous
events, their repeated occurrences constitute Bernoulli trials with binomial
distribution. Suppose ¢ is single-sided (i.e., £¢, is assumed to be constituted
by €1¢, O €a¢, alone). The corresponding number of occurrences of Aet and
Ae~ will be unbalanced significantly over n — oo iterations (trials). This
unbalanced condition allows either Aet or Ae~ to dominate as n — oo,
offering one-sided information to the control dynamics. Hence, the system
will diverge positively or negatively from the equilibrium (e4,) depending on
the dominance of Ae™ and Ae™, respectively (Figure 2). On the other hand,
if both €10, and es, are present (two-sided, symmetrized representation of
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€cy), the Bernoulli events of Ae* are shared by e1¢, and €5, over n iterations.
This leads to a balanced state with Aet and Ae™ sharing about n/2 iterations
each. Because of the system’s stochasticity, however, Ae™ may dominate
marginally in number of occurrences (= n/2 + A, A < n/2) so that Ae~
occurs (n/2 — A) times. This unbalanced state of sharing the iterations
with a marginal dominance in number by Ae* will augment the necessary
information cumulatively, as would be required for convergence (from the
negative side). Likewise, if Ae™ occurs (n/2+ A) times, the convergence will
be directed from the positive side (Figure 2).

Existence of both &, and ¢, as constituent parts of ¢ is therefore a nec-
essary condition for the network to converge. Hence, the competitive aspect
of I+ and I.- facilitated by the dichotomous occurrences of Aet will ulti-
mately decide the convergence toward attractor(s), and it can be realized by
proper choice of network parameters (such as the learning coefficient) and by
adopting symmetrically weighted ¢; and 5. m

7.3 Simulation and results

Shown in Figure 1(b) is a test NN (multilayer perception) with 24 input
units, 2 hidden layers (each with 10 units), and a single output. It was
trained to recognize a teacher function |sin(z)| using the error metrics given
by equations (37), (38), and (41). Presented in Figures 5 and 6 are the re-
sults pertinent to (i) histograms of error-value distributions (Figure 5) and
(i) trajectories of the errors as functions of the number of epochal iterations
performed (Figure 6). The actual and simulated test functions | sin(z)| versus
the argument x are presented in Figure 7. The simulated function in Figure 7
corresponds to the symmetric error measure given by equation (41), which
converged to the equilibrium status as depicted in Figure 6. The asymmetric
error measures given by equations (37) and (38) failed in leading the net-
work’s performance toward convergence. Their trajectories, as can be seen
from Figure 6, veered off from the equilibrium value with the discourse of
iterations. Thus, this simulation study confirms the need for a symmetrized
error measure for NN learning applications in the information-theoretic do-
main. In the simulation studies performed, the learning coefficient was taken
as 7 = 0.01 and the nonlinear sigmoidal function was the Bernoulli func-
tion Lg(z) with @ = 10 [1]. They were chosen so as to realize minimum
root—-mean squared value of the deviations of the predicted function from the
teacher function at 50 equally spaced arguments.

8. Further considerations on the dynamics of &(t)

8.1 Competing augmentative and annihilative
information species

As discussed in the previous section, the control dynamics of a NN are dic-
tated by the competition of reinforcing information I.+ and by the annihi-
lating counterpart I.-. The eventual convergence (or divergence) of network
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Figure 5: Histograms of output error value distributions correspond-
ing to (a) one-sided Kullback-Leibler error measure, £1x1,, equation
(37); (b) one-sided Kullback-Leibler error measure, £k, equation
(38); and (c) symmetrized Kullback-Leibler-Jensen error-measure,
exLi, equation (41). (Note: Relative number of occurrences in each
case refers to value normalized with respect to the maximum value;
and as t — oo, the lower divergent value e1,pv of eokr, the equilibrium
limit of (e1k1, = €1KL +€2KL) €co, and the upper divergent value eypy
of g1 are set at —1, 0, and +1, respectively.)
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Figure 6: Computed trajectories of € versus the number of iterations,
m, with the test network of Figure 1(b) subjected to simulation stud-
ies: (a) for e1k1, equation (37); (b) for egky, equation (38); and (c) for
ekLJ equation (41).



370 Neelakanta, Abusalah, Sudhakar, De Groff, Aalo, and Park

051

Isin(x)l ——>

0
-1.0 -0.5

Figure 7: Actual (—) and simulated (- --) test functions.

performance is decided by the dominance of Aet or Ae™ facilitated by the
1 and e, constituents of the error metric. The growth of the Ae™ and Ae~
species (which eventually decides the convergence or divergence of the net-
work performance) can be presumed to depend on the population of both
species. That is, if we depict the population of Aet species by n; and that
of Ae™ species by ns, the dynamics of ny and ns can be represented in terms
of arbitrary functions Y and Z as follows:

dnlA = y(nl,ng) (473.)
dneA = Z(ny,ng) (47b)

Correspondingly, both populations may affect each other negatively, so that
the interaction between the species is competitive. That is, the growth rate
of each species will be retarded by the presence of the other. From equations
(47), it follows (by eliminating the explicit dependence on the time factor ¢)
that

d'flg/dnl = y(nl,ng)/Z(m,ng) (48)

which represents the phase-plane representation of Ae™ and Ae™.

The two competing species, Aet and Ae™ are virtually identical in their
information values; they differ only in dictating the convergence process to
occur in opposite directions. As presumed earlier, attributing a marginal
unbalance to the competition so that Ae™ is dominant (by letting ny > ns),
the following explicit equations can be specified in lieu of equations (47):

dni/dt = ni(a; — bing — cing) (49a)
d’rlz/dt = nl(al — blnz — Can) (4913)

and the corresponding phase-plane equation is given by

dng/dnl = ng(al — b1n2 — Cin)/nl(al — bln]_ — Cg’nz) (50)
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Figure 8: Phase-plane diagram in reference to equilibrium dynamics
of interaction between two nearly identical, competing species of error
metrics.

Inasmuch as n; > ng, the interaction between Ae™ and Ae~ is strongly
competitive in the sense that the interaction terms, —cinine and —conins,
are greater (as n; — my — n/2) than the self-interaction terms, —b;n? and
—blng. Thus, ¢ > by and ¢ > b;. Further, since ¢; > c¢g, the resulting
conditions lead to the inequality ¢; > ¢y > by, in which case an equilibrium
state can be reached. Sketching the phase-plane diagram as shown in Fig-
ure 8, one can see that the isoclines are straight lines with positive n; and
ny intercepts; the equilibrium states are each marked with an asterisk on the
diagram. Designating the equilibrium population as nig and nqpg,

((1101 s albl)/(clcg = b%) (51&)
(a1 — azby)/(crca — b3) (51b)

Analysis pertinent to the stability of this problem [20] leads to the principle
of competitive exclusion, meaning only one species can ultimately survive.
The solution curves for this problem can be sketch as shown in Figure 8 by
classifying the equilibrium points on the basis of the following considerations.

g

Naog

1. Coexistent equilibrium population is a saddle point (being always un-
stable).

2. A species that eliminates its competition is a stable node.

Thus, the unbalanced parts of I.+ and I.- contributed by Ae* con-
stituents (of the coexisting ¢; and e, terms) in the error metric feedback
toward network training can facilitate a stable control/dynamics with an
eventual equilibrium of the system (or seeking the convergence toward the
objective function).

Thus, optimization in NNs implies the convergence of the learning pro-
cess mediated by a cost function such as &(t) to an attractor implicitly. The
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locations of these attractors and their basins in the phase space are dictated
by the weight modifications, that is, by the iterative adjustments of W,; as
a result of the supervised learning foreseen. The corresponding nonlinear dy-
namics follow a random walk paradigm—based information flow. Convergence
toward the attractor also refers to the trend in the network’s performance
temporally approaching stored vectors/memory configurations.

9. Concluding remarks

The focus of this paper is twofold: (1) it portrays the dynamics of the
learning process in NNs; and (2) the relevant portrayals are referred to the
information-theoretic plane. Within the broad scope of the aforesaid consid-
erations, the major inferences and conclusions that can be gathered from the
analysis are as follows.

e The stochastic dynamics associated with the neural learning process
can be comprehended in the information-theoretic plane (as it can be
done in the parametic space plane).

e The relevant dynamics can be specified in terms of a class of error
metrics of the network, which can be elucidated in the information-
theoretic plane for the purpose of network learning optimization using
the aforesaid error metrics (¢) as feedback entities. Hence, the relevant
dynamics refer to e versus time (¢) over which the epochs of iterations
of error feedback are performed to achieve the convergence.

e The associated stochasticity models the dynamics of £(¢) in terms of
a probability function versus time as governed by the Fokker—Planck
diffusion equation.

e The dynamics of €(t) can be specified by a logistic growth model de-
picting equilibrium conditions.

e Learning dynamics analyzed indicate that in backpropagation mode,
the network training follows the same type of gradient descent algo-
rithm in the information-theoretic plane as in the parametic space
plane.

e The convergence or divergence aspects of ¢ with the passage of time (or
along the iterative epochs of error feedback) depend on the competitive
role played by augmenting and annihilating information imparted to
the system by the error information feedback.

e Corresponding values of Ae™ and Ae™ (deviatory measures of € from
the equilibrium value e+,) constitute dichotomous events repeated along
the discourse of iterations performed. This Bernoulli process has bi-
nomial distribution on a discrete basis. As n (the number of events
of Ae*) — 0, this distribution becomes a gaussian process. Excessive
unbalance between Ae™ and Ae™ leads to divergence in the network’s
performance. A near-balanced state, however, enables convergence.
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e In the terminal region, that is, at ¢ — oo, the convergence endeavor
could set e(t) as a stationary process [21]. Apart from this terminal
attractor status, during the discourse of € versus ¢ the error metric
value may also cross the equilibrium value ¢4, at several instants of
time, each representing an attractor in the basin of convergence.
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