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Abstract . Learning in reference to the real neural complex depicts
progressive modifications occurring at the synaptic levels of th e in­
terconnected neurons. The presence of int raneural dist urb ances (in­
herent ly present ) or any ext raneural noise in the input data or in the
teacher values may affect such synaptic modi ficat ions as specified by
the set of weight ing vectors of th e interconnect ions. Translat ed to ar­
t ificial neurons, the noise considerat ions refer to inducing an offset in
the convergence perform ance of t he network in st riving to reach t he
goal or objective value via the supervised learn ing pro cedure imple­
mente d . The dynamic response of a learning network when the target
itself changes with t ime can be studied in the information-theoreti c
plane and th e relevant nonlin ear (stochastic) dynamics of the learn­
ing pro cess can be specified by t he Fokker-Planck equat ion, in terms
of a condit ional ent ropy- (or mutual informat ion- ) based error mea­
sure elucidated from the prob abilities associated with t he input and
teacher (target) values. In t his pap er, the logistic growth (evolut ion­
ary aspects) and certain attractor features of t he learning pro cess are
described and discussed in reference to neural manifolds using the
mathemati cal found ations of st at ist ical dynamics. Computer simula­
t ion studies on a test multi layer percept ron are presented , and the
asymptot ic behavior of accuracy and speed of learning vis-a-vis the
convergence aspects of the test error measure(s) is elucidated.
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1. Introduction

In relation to learning processes in t he neur al complex, it is well known that
synapt ic modifications (specified by a vector array of adjustable weight ing
parameters WI ) can be influenced by t he inevit able presence of intraneur al
disturbances, which will affect the network 's convergence toward equilibrium.
Fur th er, in the event that the input dat a or teacher values are themselves
stochastic, t he corresponding ext raneural influence may also augment the en­
tro py of t he system (real or art ificial) , facilitati ng the event ual veering of the
network 's output from the equilibr ium value/stable state. Relevant neurody­
namic considerations governing th e variable WI in artificial neur al networks
(NNs) have been addressed in [1] in terms of a stochas t ic differenti al equa­
tion (of the Langevin or Fokker-Planck type). Also, the dynamic states of
t he architectures, such as t he Hofield network subjected to white-noise (ran­
dom ) inputs, have been analyzed via It o-type stochas t ic differenti al equat ions
applied to the so-called "diffusion machine" [2].

In the present work, an alte rnative approach is presented to describ e the
learning dynamics of an art ificial NN in t he presence of dest abili zing fact ors
caused by intra- or ext raneural influences. The st ochast ic variable considered
to model the relevant nonlinear neural dynamics refers to an error-meas ure
parameter evaluated in the information-theoretic plane. Although a lim­
ited extent of neural dynamics considerat ions have been addresse d in the
inform ation-theoretic plane pertinent to biological neurons [3, 4], equitable
st udy or considerat ions vis-a-vis art ificial NN are rath er sparse . [5] describ es
a basic neur al manifold being embedded as a submanifold in the manifold
of a genera l nonneur al information-processing system, and have developed
an "informat ion geometry" method to study the inform ation-theoretic ap­
proach to learning dynami cs and pattern classification problems. Fur th er,
the dynamics of an ensemble of learning processes in a cha nging environ­
ment (which feeds the training inputs to the network) has been describ ed in
[6] via a cont inuous-t ime mast er equation.

In the present study, the approach is concerned wit h the logistic growt h
considerat ions pertinent to the network 's learning pro cess in the inform ation­
theoretic plane. Relevant to this proposed method, a cross-ent ropy- (or
mutual inform ation-) based dist ance measure (c: ) is specified as a stochastic
variable, the asymptot ic behavior of which (with respect to time) is st udied
as a discourse of t he learning pro cess. It is given by the following relation:

N

E = H,(PI,ql) = K L ql¢(Pz!ql)
t= l

or

N

e = H, (ql,PI) = KLPI¢(qz!PI)
t= l

(lb)

where ¢ is a twice-different iable convex function for which ¢ (1) = 0 and K is
a const ant factor. This error measure is adopted to train a NN (depicted in
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Figure La: An artificial neural network trained via a cross-ent ropy­
based error metric in the information-theoretic plane using backprop­
agation mode.

Figure l(a)) via a gradient-descent algorithm in the backprop agation mod e
[7]. The output of the network (Figure l a), namely, 0 1 at the lth cell is
assumed to have probabi lities PI, and ql refers to a target set of probabili ties,
with l = (1, 2, 3, . . . , N) enumerat ing the numb er of the cells and t hereby
offering an index for the output units. The error function given by equat ion
(1) is known as the Csiszar error measure [8] defined in the inform at ion­
theoret ic plane; and, when ¢(y) = y log(y) (with y = Pz/ql or qZ/PI as
appropriate ) , this measure is better known as the Kullback-Leibler measure
[9].

The entropy attribution to the act ivit ies of the neur al complex, and to
the real neurons specifically, has been justified in [10] on the considerations
of the principle of conservat ion of total "neural energy," its distribution, and
an associat ed entropy. They have offered an operational definition of the
macrost ate of a neural syst em (in th e same sense as in physical th eromo­
dynam ic principles) and have associated it with the Shannon's concepts of
inform at ion [11]. Disturbances in the real neur al system caused by environ­
ment have been per ceived in [10] as forces enhancing the associated entropy
(or uncert aint y) and correspondingly reducing the inform ation content that
would otherwise enable the physiological self-regulat ion.

These exist ing bases on real neural information pro cessing offer a di­
rection to extend the entropy- (or inform ation theory-) based concepts to
optimizat ion algorit hms used in art ificial NNs.

The error measure indicat ed in equat ion (1) is a t ime-dependent st ochas­
t ic variable specified over the epochs of it erations performed toward conver­
gence and mediated through feedback st ra tegies (such as the backprop aga-



Teacher
input : T j

Error
function:
Ej(p. q)

352 Neelakanta, Abusalah, Sudhakar, De Groff, Aalo, and Park

2 Hidden layers
Input layer (Each of 10 units) Single
(24 units) ,---' I output

I
Layer #1 Layer #11 uni t

Fs(X 1) Fs(X rr)
Inputs X =LQ(X1) X ='-Q<Xrr)

x l -0..···..·...1:~}_·· ·...···......-:~8.:'1~~~~;~) > " I

x24 -€Y.·..;···8~.......;-·_...c8~ ,(
Weight vector:,'Y~b • 'lb.C .. /'1'c.d

l Gradient-~~cent ~earning I
Backpropagation ....,J

Figure It: Test neural network: A multilayered perceptron simulated
for learn ing st rategies in t he information-theoreti c plane.

t ion algorit hm) in the network. Due to the presence of any intra- and/or
extracellular disturbances, the associated information flow in the neural sys­
tem would, however , degra de with time; and the proliferat ion of information
across the network may even become obsolete or nonpragmatic due to the
asynchronous (random) synap tic delays between th e internal state variable
(being adjusted toward learn ing) and the adjust ing influence (information)
imparted (via the contro l loop) to the network by the error measure. That
is, an aging of neural information (or degenerative negentropy) may occur
that would lead to a devalued (or a value-weighted) knowledge with reduced
utili ty (or pragmatics) being available to the converging efforts of the net­
work striving toward the object ive function. The degradati on so perceived in
the neural informat ion plane depends on the extent of asynchronous delays
encountered when the contro l loop (error) information arrives at the control­
ling section. That is, the asynchronously delayed error measure fed back will
have no pragmatic value inasmuch as its asynchronous characteristics will
not reflect t he true (natural) output state (because the global state of the
neural complex would have changed considerably by then) [12].

2. Stochastic neural dynamics

The trajecto ry of the time-dependent neural process pert inent to the learning
endeavor represents the evolut ion of e with t ime in a stochastic nonlinear
dynamic system. Hence, in reference the variable c(t ) describing the neural
stochastic dynamics, a differential t ime evolut ion relat ion can be prescribe d
for c(t) as follows:

dc(t)/dt = Fdc(t) ]. (2)
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Or it can be specified by a recursive discrete-ti me process as follows:

c( t + 1) = F2 [c(t )]

353

(3)

where F1 (or F2 ) is a differenti able function. It can be noted that e, in genera l,
is an N -dimensional vector affiliated wit h t he phase space containing the t ime
evolut ion of the underlying neural pro cess spa nned by the N -dimensional
state vecto r of a dynamic system. A portrait of t he corresponding time evo­
lut ion of this syst em is t herefore constit uted by a set of trajectories in t he
N- dimensional phase-space. When the system reaches a st ate of permanent
regime where the t rajectories st ay bounded , t he corresponding invariant sub­
set is termed an "at t ractor" specifying a state of stochast ic equilibrium.

Relevant to an error measure e adopted in network t raining (to assist
t he neur al complex to learn from the environmental inpu ts) , the neural dy­
namics can be clescrib ed by a stochast ic different ial equation (of the genera l
types given by equat ion (2)) . Bot h the convent ional typ es of error measure
(such as the quadra t ic error measure) as well as the error measure that can
be evaluated in the information-theoret ic plane (on a cross-ent ropy basis as
given by equa t ion (1)) can be regarded to follow the paradigm of stochast ic
dynamics along the temporal passage of iterative epochs facilit ated via feed­
back methods (unt il the error value is minimized) . To assess the approach
characterist ics of the error parameter c(t ) toward an equilibrium value (at­
tractor) over a period of t ime (i.e., over the iterations of learning epochs) in
order to develop an explicit dynamic model, t he following valid assumpt ions
can be made.

1. The parameters t hat decide the stochas t ic aspects of c(t ) are confined
within t he basin of at t raction.

2. The init ial condit ions of the stochast ic pro cess (co, to) involved should
be specified appropriately.

3. The process is likely to be at trac ted to a stat ionary sto chast ic process
whose prob ability density functi on (pdf) can be uniquely determined
by t he param eters of the original system variable, nam ely, c.

4. In view of the preceding assumption, in th e t erminal at t rac tor regime
the pdf of c(t) does not vary as t ---+ 00. That is, coo (t) = c(t ---+ (0) is
a stationary process.

5. As a first-order approximation, t he stochas ticity of the dynamics of c(t)
is influenced only at fixed t imes corresp onding to each onset of iterative
epochs facilitated by the feedback.

6. The epochal itera t ion t imes are much larger t han the periods of any
fluctuat ions associated with c(t ).

7. At the t erminal st age, convergence of c(t) t oward an equilibrium value
of Coo is ensured only if the network's optimizat ion effort s are const i­
tut ed favorably by reinforcement error inform ation.
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8. On the contra ry, in the prese nce of overwhelming degenerating (or an­
nihilating) error inform ation, t he dynami cs of c(t) will be divergent.

3. Stochastic dynamics of the error measure (c): G eneral
considerations

The dynami cs of c(t) , in genera l, can be equated to a random walk pro cess
by virt ue of the aforementioned assumptions and in view of the following
considerations .

Specifically, the endeavor of t he network toward convergence when con­
ceived in the inform ation- theoreti c plane refers to an adaptat ion process
wherein the progressive acquisit ion of information leads to minimizat ion of
disorganization or eradication of uncert aint y (ent ropy) of the networ k output
vis-a-vis the t eacher funct ion.

Wh en the network has learned (or adapted itself t o the environmental in­
put s) to the fullest extent, it does not need any more inform ation inasmuch
as it ret ains no further uncertainties about the output against the teacher
values; that is, a fully t ra ined network may not perceive any furth er infor­
mation since the output is maximally certain against t he teacher value with
which it is compared.

A heuristic time-dependent model of the goal-oriented, converging aspect
of t he neural complex versus t ime expressed in ter ms of c(t) as describ ed pre­
viously, can be depicted qualitatively in terms of the variance of the teacher
funct ion (J~ and that of the network output (J&. That is, the evolut ion of
error ent ropy c(t) can be specified by an envelope profile given by [13]

c(t) = (k/ 2) log(l + (J~ /m(tk0) (4)

where m(t) is t he numb er of it erations over t ime (t ), which can be mod eled
as a simple case by depictin g m = at, where a is the number of iterations per
uni t t ime; and k is a constant as determined by t he base of the logari thm.
Hence,

E = (k/ 2) log(l + (JM a(J0t) . (5)

In the initial time frame, that is, at t he commencement of network learning,
t he error informatio n pertinent t o the output (in reference to the teacher
value) could be significant ly different , and thus t he network has a large
potenti al t o receive inform ation in tending toward the obj ective function.
Therefore , the initi al error inform ation c(to ---> 0) = co can be designated as
the potenti al erro r inform ation .

4 . Random walk p a radigm of c(t) dynamics

As discussed earlier, the error measure c(t) when specified in th e inform ation­
theoret ic plane can be writ ten in the form of equation (1) . More genera lly, it
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can be construc ted by combining linearly two weight ed parts of the Csiszar
metric, given by equat ions (La) and (lb) . That is:

e = K 1Lqi¢(P;jqi)+K2LPi¢(q;/Pi)

L (£li + £2i), i=l, 2, ... , m, ... , n (n-+ oo, t -+00) (6)

where K 1 and K 2 are weighting factors. If K 1 = K 2 , equat ion (6) can be
considered as symmetrized and balanced .

Designating each iterative epoch as of dur ation t:>.T , the to tal time in­
volved in reaching t he terminal state of dynami cs (with n -+ 00) is taken as
an integral multiple nt:>.T = Too (say) . Suppose the potenti al energy asso­
ciated with th e system (which is being min imized) is taken as E. For each
epoch of it eration, there is a corresponding energy configuration, the en­
semble of which can be represented by a canonical Gibb 's distribution given
by [12J

or by

Pi(£li) = C1exp(- t:>.E1i/ ER)

Pi(£2i) = C2exp (- t:>. E2;/ ER)

(7a)

(7b)

where ER is a reference energy level, and the normalizat ion const ants (part i­
t ion funct ions) C1 and C2 are det ermined from the requirement 2:i Pi(£li) =

2:i Pi(£2i) = 1. Hence, C1 = C2 = I/ M (Too ) , where M is the total numb er of
energy levels configured over t he time Too. The corresponding configurational
ent ropy associated with £li or £ 2i is

Sr(£) - K L Pi log Pi

- K L [I/ M (Too ) ] log[I/ M (Too ) ]

K log[M(Too ) ] (8)

where, again, K is a const ant specified by the base of the logarithm. The
number of ways (or realizat ions) the ensemble M (Too ) can be divided into
two groups of m1 and m 2 (corresponding to £ 1 and £2 , respect ively, without
regard to ord er) is given by the binom ial coefficient , namely,

( MZoo
) ) = M(Too)!/m1!m 2! (9)

where M (Too ) = (m 1+ m 2)'
Inasmuch as the statist ics concerning state transitions associated wit h

£(t ) are governed by Gibb 's dist ribut ion (equat ion 7), the discourse of e with
tim e represents a t ime-homogeneous Markov cha in. Further, the t ransit iona l
epochal st ate of £(t) is dete rm ined by th e configura tional energy level t:>. E1i
and/or t:>. E2i and can be modeled by the concept of one-dimensional random
walk. Starting at t = 0 and taking ste ps of length t:>.T each, let t:>.£+ and
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S e: be the reinforcing and annihilat ing informat ion, respectively, imparted
by the error feedback via the contr ol loop (with the prob ability of each being
equal). The random walk model enables the computation of the probability
of achieving a specific information state at t = m6.T after m iterative steps.
T hat is, by considering 6.c+ as the reinforcement information and S e: as the
degenerat ing counterpart , the corresponding (proportion ate) contribut ions
occurring randomly (with equal probabilit ies) refer to the evolut ion process
depicting the excursion of c(t ) about t he equilibrium value (coo ) versus the
iteration of epochs (Figure 2) performed.

The transition al probability associat ed with the excursion of c(t ) by 6.c±
in the aforementioned one-dimensional random walk process commencing at
an init ial state depicted by co(t ---> to) = (co , to) is given by

Z[( c + 6.c±, t + m6.T) I (s , t)J
= Transit ional probability of c(t ) assuming the values

1
e + 6.c+ )

or at mth epoch or t ime
c + 6.c

= 1/ [1+ exp[(6.E1m - 6.Ezm )J!ER ] (10)

In this random walk process, t he current value of c(t ) is determined by t he
potent ial level 6.E , and therefore t he corresponding probabilit ies of the state
of c(t ) as given by equation (10) also depend on the current value of c(t ).
This (energy-dictated) random walk process (as opposed to the free diffusion
process) is a force field-dependent diffusion process and therefore corresponds
to the Ornstein-Uhlenbeck process [14].

For a given m , the possible values of e (especially for large values of t )
would differ from each other by multiples of 26.c± since changing e (by 6.c+
or 6.c ) at any single step changes the final value of c(t ) by t hat amount.
Or a probability W( c; m) can be defined such that 26.c±W (c; m) refers
to the probability of reaching e aft er m excursions. That is, 26.E±W (c; m )
is the probability reached in t he interval (t = m6.T)] :::; t :::; [(t = m6.T +
6.T)] aft er m steps. The relat ion between W (c; m) and M (T,n) is t herefore
26.c±W( c) = M (Tm )(1/2 r, using W (c) for W (E; m) and Tm = (m6.T) for
convenience.

It may be noted that any par t icular set {6.ct} or {6.ci} (regarded now
as defining a particular ensemble sequence of increments or decrements in
e with respect to each step in a random walk) has prob ability (1/2) m and
t here are M(Tm ) such set s that lead to t he mth epoch at t = Tm . Inasmuch
as W (c) and M (TM ) differ only by a coefficient (independent of Tm ) , t he
corresponding configurat ional ent ropy can be writ ten as

STm(c) = K log W (c) (11)
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Figure 2: Convergent and divergent modes of E as a funct ion of t ime
(t) or number of epochal iterations (m). (i) Random walk represen­
tation of ll.E+ and ll.E- versus t or m. (ii) Temporal traj ectory of E.

(ii)(a) Actual t rajectory crossing the equilibrium value of E (Eoo ) at
specific attractors (*). (ii)(b) Envelope of t he trajectory E showing
the asymptotic trend of E at its terminal dynamics as t or m --4 00.

(iii) Divergent and convergent profiles of E versus t ime. (iii)(A) & (D):
Diverging envelopes directed from positive and negative sides , respec­
t ively. (iii)(B) & (C): Converging envelopes directed from posit ive
and negat ive sides, respectively.
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Fur th er , for m » 1 and ti ----7 CXJ and (T,n/ nf::::.T ) - (c/nf::::.c±) « 1, the
following approximation is valid:

log[(m ± c/nf::::.c± )/2] ;:::-; (c/nf::::.c±) - [(c2/ 2n2(f::::.c±)2] + log(m / 2) (12)

Using the preceding approximation and applying Ste rling 's formula.' to
log[M(T,n)]' the following result is obtained:

W( c; m) c::: [1/ {2'lrm (f::::.c±)2}1/2] exp[-c2/ 2m( f::::.c± )2] (13)

That is, for m » 1 and ri ----7 CXJ and (c/nf::::.c± « 1), the pd f describing
the statist ics of c(t) at the mth epoch is gaussian with a mean (c) = 0 and
a vari ance (c2) = m( f::::.c±)2. (In t he considerations presented earlier, the
equilibrium value is taken as coo , in reference to which, if e is presumed to
fluctu ate, then (c) = 0.) T hus, t he prob ability of the temporal statist ics of e,
in a broad sense, refers to a super posit ion of m independent random variables
and approaches a gaussian distribution with zero mean (about t he equilib­
rium value) and of a finite variance in t he limitin g stage of m approaching
n . This is in concordance with t he central limit theorem.

5. Evolution of c(t ): Representation via the Fokker-Planck
equat ion

Pertinent to a given environment from which the network learns, if the t ime
between learning steps is drawn from a Poisson distribution, the dynamics of
an ensemble of learning processes has been described in [6] by a cont inuous­
time mast er equation. Presently , the evolutio n of e versus time (or number
of it erative epochs) can be mod eled as a forward equation (or the mast er
equat ion) of diffusion pro cess (Fokker-Planck equation). This refers to t he
description of the t ransit ion probabilities of c changing by f::::.c+ or ise: at
each step, with the conditions at the commencement of the iterative epochs
being (co, to). Such a description sat isfies a stochas t ic differenti al equat ion
given by [14]

dc(t )/dt = p,(c, t) + O"(c, t) ( (t) (14)

where ( (t ) is a random function such that fJ( (s)ds imp oses the attributes of
a random walk to the variable c(t ). In genera l, ( (t) is a stationary, gaussian
white noise, suggest ing that the dynamics specified by equat ion (14) is driven
by a stationary gaussian process. T he evolut ion of c(t ) models a cont inuous
brownian mot ion. It has a pseudoderivative, namely, a t ime derivative in
a mean-squared sense . This pseudoderivat ive random pro cess {dc(t )/dt}
equals an ideal gaussian white noise (( t) as given by equation (14) , where
( (t) is zero mean and uncorre lated in t ime , bu t has a finite variance ((2) < CXJ

for all t . Further, in the interval (t 2 - t1) , the ent ity nf::::.T{c, t1 ::::: t ::::: t2 } is
a sample-cont inuous, second-order markovian pro cess with p,(c, t) and O"(c, t)

l Sterling's formula: log(x!) = (x + 1/ 2) log(x) + log(v'27f - x).
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being the Borel functions of E(t ) specified within certain bounds. Let the
transition probabili ty density function of E(t) be denoted by Z (E,t 1 Eo, to);
S(E ), - 00 < E < 00, is a Schwart z function of rapid descent . (That is, s is
infinitely different iable and, for any K, and A, 1E1"1 jP')(E) 1-+ 0 as IE1-+ 00.)

Suppose an initi al condit ion is imposed such that Z(E, t 1 Eo,to) = 8(E- Eo),
where Eo refers to t he initial value of E at the onset of the iterative process
commencing at t = to, and

1
+ 00

00 S(E) Z(E, t ) 1EO,to)dE -+ S(EO) t -+ to, "Is E S (15)

Subj ect to the preceding initi al condit ions, Z(E, t ) 1 EO,to) sat isfies the Fokker­
Pl anck equation given by [14]

fJZ/fJt = (1/ 2)fJ2[0"2Z]/ & 2 - fJ [p2]/& (16)

where Z == Z (E, t ) 1 Eo,to), 0" == O"(E,t ), I-' == I-' (E, t) , and t2 > t > to > t l ·

Suppose 0"2(E,t) = l(t) and I-' (E,t ) = -I(t )E. Specific to these prescrip tions,
the Fokker-Planck equation (equation (16)) reduces to

fJZ/fJt = (1/2)l( t)fJ2Z/&2 - fJ-I(t)fJ(E Z )/&

which has a solut ion given by [6J

Z(E,t 1 Eo,to) = (1j\.I21rV2)exp[-(E - UEO )2/2V2]

(17)

(18)

This expression depict s aga in the gaussian nature of E with mean and variance
being U and V 2

, respectively. T hey can be obtained explicit ly by solving [14]:
d(V 2)6. = l + 2-1V2 and dU6. = -IU wit h the initial condit ions V 2(tO) = 0
and U(to) = l.

T he time-dependent wandering of E under random force as given by equa­
t ion (14) can also be describ ed by the following Langevin equation [15]:

dE6. + ELE = Adt ) (19)

where EL = (2/6.T ) and AL(t) is t he random force funct ion . The init ial
condit ion, nam ely, E(t -+ to -+ 0) = Eo specifies the soluti on of equation (19)
as

E(t ) - Eo exp (- 2t/ 6.T) = l [exP[2(X - t )/6.T ]] A(x )dx

The corresponding solut ion for transition probability Z (E - Eoe-2t/ t.T) is
given by

Z (E,t 1 Eo,to) 1/{21r [1 - exp(-4t/6.T)]}I/2

exp{ -[E- EOexp (-2t/6.TW / 2(1 - exp( - 4t / 6.T)}
[1/ (21r0"1 )1/2] exp[-(E - t (t)2/20"1(t )] (20)

which approaches a delt a-dir ac function as t -+ to -+ 0 (Figure 3), and t(t )
depicts Eoe- 2t/t.T and 0"1 = [1 - exp( - 4t/6.T)].



360 Neelakanta , A busalah, Sudh akar, De Groff, Aalo, and Park

t
t/f\::l/

......._. ..f ..

~o

to ,. ~

'0
~o I O(t-to)

~
v

Eo Eoo E (t)----

Figure 3: Stochsticity of 10 (expressed in terms of the transitional
probability of 6.e±) versus time, t .

Thus, t he heuristic discussion on the random walk model c(t) as pre­
sented earlier has led to the per-unit-t ime probabilities of th e excursions of
e (namely, W (c; m) along th e temporal framework of the iterative epochs)
being modeled as a gaussian process. It is in conformity with the solution of
stochast ic differential equat ion representation of th e tran sit ion probabilit ies
of c(t ) given by equation (20). Again, as dictated by the initial conditions
(co , to) at the onset of the iterative epochs, it can be observed that th e
stochasticity of c(t) is determined by a gaussian process along the passage of
tim e in the attractor basin.

6. Logistic growth model of c(t )

The temporal evolut ion of e can also be modeled as a logist ic growth with
an oscillatory tr end around its equilibrium (terminal) value (coo ), depending
on the initial stat e of the evolutionary process. Supp ose at the early stages
of it erations of the error feedback imposed on th e network, t he value of
c is slight ly less than the equilibrium value. Thi s reduced value offers a
niche to receive reinforcing information that augments the network's efforts
toward opt imization, leading to a furth er reduct ion in the cross-informat ion­
based error at the output. However, after a few iterations, the stochasticity
associat ed with the network inputs may yield an output that could lead
to negative information, with the result that an enhancement of the error
measure (causing an excursion of e to drift away from th e equilibrium value)
may be perceived. The causat ive act ions changing e toward or away from
the equilibrium value could also, in general, be asynchronous in reference to
th e current stat e of c(t ) and may be separated to the extent of a few iterative
epochs, depicting a delayed arr ival in reference to t . Hence, the rate of change
of e caused by b.c± is not a function of the present value c(t), but is due to a
past value c(t - t d), where td is the delay time involved. The corresponding
divergent and/or convergent aspect of c(t) from th e equilibrium value can
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Figure 4: Logistic growth of E as a function of time (t) seeking the
equilibrium value Eoo as t -> 00.

th erefore be specified by the following growth model, in which the rate of
change of c: (t ) is functionally dependent on a past value, c: (t - td) :

[l/ c: (t )]dc: (t )/d t = f (t ) (21)

where f (t ) depicts the growth rat e function, which can be denoted by a
simple linear form, as follows:

I' (r) = [g - hc: (t - td)] (22)

where g is the growth rate of e without external influences and h represents
th e effect of augmentation in the values of e.

Hence, the differential delayed equation depicting the logistic growth of
c: (t ) is written as

dc:(t )/dt = c: (t )[g - hc:(t - td)] (23)

For incremental changes in time (tlt) , the preceding equat ion can be written
as a second-order difference equat ion of the form

c: (t + tlt ) - c: (t ) = (tlt)c:(t)[g - hc: (t - tl t )] (24)

With the change of notations given by t = mtlt , c: (t ) = c:(mtlt) = C:m,
G = gtl t , and H = htlt , the discrete logist ic equat ion at the mth epoch of
it eration becomes

c:m+! - C:m = c:m(G - HC:m- I) (25)

Any delay involved in the preceding process could be asynchronous with
respect to the current value of time, namely, t. Further, assuming that
the displacements of e (namely, tlc:±) are small and are confined to the
proximity of the equilibrium value, a linear approximat ion of th e discrete
logist ic equat ion is valid. That is, as e approaches it s equilibrium value,
e --> C:oo = g/ h (Figure 4) and

c: (t + tlt ) - c: (t) = - Gc: (t - tlt ). (26)



362 Neelakanta, Abusalah, Sudhakar , De Groff, Aalo, and Park

Or, if Cm is denot ed as (G/ H)+ ,0.c±(t ), where I ,0.c;'(t ) I is much smaller than
t he equilibrium value G/ H , the following linearized (approximate) growth
relati on can be written:

Ym+! - Ym ':::=' - GYm- 1 (27)

where Ym = ,0.c;'(t) is the displacement e from t he te rminal value Coo at
the mth epochal instant of iteration. Equation (27) can be recast in a more
general form as

Ym+1+ poYm + QOYm- 1 = 0 (28)

which is known as a constant coefficient difference equation . Its solution
is analogous to the solut ion of constant coefficient second-order differenti al
equations, with the necessary condit ions for a uniqu e solut ion being t he initi al
condit ions of t he first two values of Yo and Y1 available [16] . Such a solut ion
can be written as

Ym = C1'ri" + C2'r;n (29)

where the values of 'I' are determined by subst it ut ion in equation (28). Hence,
it follows that

'I'm+! + PO'rm + QO'rm- 1 = 0

Upon division by 'rm- l, the following quadr ati c equation is obtained:

'1'2 + PO'r + Qo = 0

(30)

(31)

Its two roots are '1'1,2 = [- Po ± (P~ - 4QO )1/2]/2.
The arbit rary constants C1 and C2 in equat ion (29) can be determined

uniqu ely by the initi al condit ions, leading to two independent solvable equa­
t ions,

Yo

Y1

C1 + C2

C1'r1+ C2'r2

(32a)

(32b)

assuming that the two roots '1'1 and '1'2 are distinct-that is, (P~ - 4Qo) # O.
The corresp onding solution to equat ion (27) refers to that of a constant

coefficient linear difference equa tion, namely, '1'2 - 'I' + G = 0 wit h the root s
given by '1'1,2 = [1± (1 - 4G)1/2]/2 .

The equilibrium state of c (at the terminal stage) is stable if the solution
of Ym does not grow as t --> 00 (i.e. , when m --> 00) for any initi al condit ions
(co , to). If 0 < G < 1/ 4, t he roots are real, positive, and less t han 1 (i.e.,
o< '1'1 ,2 < 1). Consequent ly, if 0 < G < 1/ 4, Ym = ,0.c;' (t) --> 0 as t --> 00,

or the excursion of c vanishes and c(t ) will approach the equilibrium value
Coo asympto t ically. When G < 1/ 4, the two corresponding roots are complex
conjugates and hence the solut ion for Ym(t ) is given by

Ym(t) = 1'r lm(Cacos me + C4sinme) (33)
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The solut ion of equation (33) grows or decays as it oscillates, depending on
I r 1= G1

/
2

. When 1/ 4 < G < 1, th e solut ion is a decaying oscillat ion. That
is, Ym -4 0 and E(t) is convergent toward its equilibrium value. When G > 1,
th e equilibrium value may be reached quickly, but the unstability renders an
oscillatory growth around th e attracted value, leading to a divergent solut ion.

The divergent growth stems from the asynchronous occurrences of C1i and
C2i, namely, the reinforcement information (!:J.c+) and the degenerating (an­
nihilating) informat ion (!:J.c ) fed back via the cross-information error metric.
Considering equation (22), suppose 9 is a posit ive growth rate (without any
external const raints) and h depicts a constraint stipulat ed by the network as
a limiting facto r. Let !:J.td refer to the time delay (due to the asynchronous
att ributes of C1i or C2i), which can vary without any limit imposed. Then
g!:J.td < 1/ 4 would represent an extremely small delay permitting C1i or C2i to
yield an entity amounting to !:J.c;;:' , which const it utes reinforcement informa­
tion by canceling any divergent tr end in the current value of 10 , namely, cm(t)
at the mth epochal it eration. This is possible because cm(t ) and !:J.c+ occur
synchronously due to the negligible delay involved; it would also guarantee
an eventual stabilization of c(t) at an equilibrium value coo ' If the delay is
specified by (1/4 < g!:J.td < 1), the function c(t ) would oscillate with larger
excursions, but would ultimately seek the equilibrium value with the passage
of tim e.

However, in the case of g!:J. td > 1, the oscillation would become divergent ,
destabilizing the opt imizat ion effort . That is, an entity !:J.c;' encountered by
cm(t) at the mt h epochal instant of iteration would predominantly augment
any divergent tr end in the current value of Cm(t ). Th is can happen when
!:J.td -4 00, meaning that either Cli or C2i is absent or disproportionat ely un­
balanced and dissimilar (asymm etri c) so that the degenerating information
component , namely S e>, dominates. Hence, if the reinforcement informa­
t ion contributed by Cli or C2i is absent, the chances of c(t) to diverge are
increased. In other words , for an asymmetr ic (one-sided/unbalanced) error
metr ic represented via cross-informat ion measures (by either C1i or C2i alone),
the cumulative augmentat ion of !:J.c+ or S e: renders !:J.c;' to take over the
dynamics of cm(t ). Therefore, t he convergence of the network output toward
the teacher value in not guaranteed.

The dynamics of c(t ) with a logistic functional growth characterist ic as
discussed previously may cause the function c(t) to cross the equilibrium
value (Figure 2) at several instants of time. These crossings indicate the bot­
tom of the at t ractor basins being attained repetit ively during the iteration of
epochs aimed at the convergence of the network 's output toward the teacher
values.
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7. Convergence considerations

7.1 Stochastical equilibrium

The crossings of t he c(t ) t ra jectory at the equilibrium value (Figure 6) rep­
resent condit ions of inst ant aneous stochastic equilibrium states at tained by
the vector ci - They depict a set of fixed-stat e point at t ractors (corresponding
to steady-state conditions). Impli citly, at th ese points t he stochastic equi­
librium is specified by ow/at = 0 , where 0 is the null synap t ic matrix (th at
is, the R'" null vector {o}) and w is th e coupling matrix adjusted through
feedback via epochal iterations of t he error funct ion. In the sample space
of the vector e, Be / at = 0 denot es stability or neural equilibrium, wit h 0

representing the null vector of the changes in error act ivity. Globally, the
neuronal stochasti c st abili ty is dict ated by t he steady-state condit ions in the
neuron al field, namely

and

ow/at = Xt

ax/at = ~t

(34)

(35)

where Xt is a rando m vector from a gaussian white random process {Xt} t hat
can be relat ed to the random vector (t used in equation (14) to model the
sto chasticity of c(t). The neural state vector x has an associated (indepen­
dent) gaussian white noise process denot ed by ~t . Equat ions (34) and (35)
represent the sto chasti c equilibrium condit ions vis-a-vis the neuronal state
vector x and th e synapt ic state mat rix w . Both x and w hover in a brownian
motion about (fixed/deterministic) equilibrium, or termina l at t ractor value,
as m (or t) ----7 00, and they reach the state of stochastic equilibrium only
when the random vectors X and ~ alter them temporally.

As mentioned earlier , the dynamics of neural parame ters pursued here
correspond to the fluctu ations of the error metri c c(t), which is computed
presently in the inform ation-theoretic plane. It offers competit ive feedback
inform ation that either reinforces or destroys the current inform ational stat us
at time t (or at the mth iterati ve epoch) of the adjustments imparted to the
network via the weight matrix w. Therefore, the relation given by equation
(34) can be written as

o(f:>.€) /ot = Xt (36)

where f:>.€ is the fluctuat ing vector component of the error metri c vector set
{€;}. That is, in elucidating the stochast ic equilibrium of t he NNs, equation
(36) can be adopted in lieu of equat ion (34).

In essence, the error metric fed back and th e corresponding correct ive al­
gorit hms pursued in the information-theoretic plane can be regard ed as those
pertinent to a competit ive learning strategy in t he information-theoreti c
plane . It is also a differenti al learning pursuit. That is, learning takes place
only when a change occurs in c(t) , namely f:>.c±, and it does so according
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to the compet it ive information provid ed by t"c+ or S e>. The learning pro­
cess is associated to an indicator functi on that flags whether the learning is
augmentative/reinforcing as a result of t"c+ or whether the learning is de­
generated due to the addit ion of annihilat ing informat ion tse: facilitat ed via
feedback.

For a guaranteed convergence, the weight adjust ment requires that the
error metri c (a distance measure) specified in terms of the cross-entropy (mu­
tual information) param eter of equat ion (1), computed terms of the pdf of
the output (Pi) and that of the teacher values (qi) , should be a balanced
(equally weighted) and symmetrized (two-sided) function. The characteris­
t ics of such functions are described in the following definitions and theorems
and are verified by simulat ion studies presented later.

7. 2 Definit ions and theorem s

Definition 1. Let P = {Pl' P2 , P3," " Pk } and q = {ql ' q2, q3, , qN}
denotes two complete sets of probabilit ies (L:i Pi = L:i qi = 1, i = 1, 2, , N)
representing the a priori prob ability distribution of the discrete random out ­
put {Di } of the NN and that of t he teacher source {Ti } , respectively, with
(Pi , qi) corresponding to the ith it erat ive epo ch in the network t raining sched­
ule. Or , when the network output and the teacher values are specified as con­
t inuous variables, P and q refer to the respect ive probability density functions
such that Jpdp = Jqdq = 1.

Definit ion 2. The relative entropy, or cross/mut ual, information I(q I p) of
o with respect to T is defined by the expression

I (q I p) = Lqilog(qdpl ) = ClKL (37)

Likewise, I(p I q) refers to the cross-entropy of T with respect to O. Hence,

I (p I q) = LP;log(pdqi) = C2KL (38)

As indicated before, the transform at ions expressed by equations (37) and (38)
are known as Kullback-Leibler measures [17], and they represent the amount
of information contribute d by T about 0 and the amount of informat ion
contained in 0 about T, respectively. That is, they refer to the mathematical
expectat ion of the transinformation about (or directed divergence of) each
out come of T versus 0 and 0 versus T , respectively. Hence, it follows that

I (q I p)

Likewise,

I (p I q)

((prior uncertainty), - (post erior uncert aintyj. )

L qi{[- log(Pi)] - [- log(qi)]}

((prior uncert ainty}, - (posterior uncert aintyL )

LPi{[-log(qi)] - [-log(Pi)]}

(39)

(40)
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Definition 3. The distance between two probability distributions refers to
a divergence meas ure between t hem and is given by Kullb ack-Leibler-Jensen
metric [18] defined as follows:

J(p I q) = I( p I q) + I( q I p) = cKLJ (41)

The J measur e refers to t he divergence, or the discriminati on, between t he
hypoth eses 1iO and 1iT (const ituted by 0 and T respectively), or betwee n
p and q, and it implicitly represents a measure of difficulty in discriminating
between them. That is,

cKLJ = J (p I q) = I (q Ip) - [- I(p I q)J

L P;log(P;j qi) - L q;lOg(P;j qi) = C1KL + C2KL
i i

L(Pi - qi)log(p;j qi) (42)

Definition 4. If <I> (x) is a convex funct ion for x> 0, with <I>(I) = 0, then the
f -divergence (J dep ict ing t he function <I» of a distributi on p or q is defined
in a two-sided form of the Csiszar error meas ure [8] with weight ing fact ors
K 1 and K 2 as

ccz = I f (p I q) = K 1 L qi<I> (p;j qi) + K 2 L Pi<I> (q;jPi) (43)

where <I>(x) = x log(x), CCz -+ cKLJ, and CCz is a more genera lized version
than CKLJ.

T heorem 1. If the f -divergence as defined by equation (44) is to be consid­
ered as a feasible error metric (ccz) in training a multilayered NN, then the
necessary condition is that I f = CCz m ust be two-sided and bounded. Th at
is,

(If = ccz) K 1 L qi<I> (P;j qi) + K 2 L Pi<I> (q;jPi)

(clCz + c2Cz) (44)

In equation (45), the condition for balanced sym metrization is that the
weight ing factors be equal (i.e., when K 1 = K 2) .

Proof This theorem can be proved by the geometrical not ions of Py thagoras
as follows: The relative entropy-based error metric c(plq, q I p) behaves
intuitively like the square of t he euclidean dist an ce norm, although eip I q)
itself represents no geometrical measur e. For a convex set e in R '" , let A be
a point outside t he set , B be the point in the set closest to A, and C be any
other point in t he set . Then the angle between t he lines BA and BC must
be obt use, which implies via th e Pythago rean theorem that e~c ~ e~B+ e~c,
where e represents the linear distance. Hence the convergence of e (toward
an infimum) in the enorm refers to the minimum dist ance between t he two
distributions. That is, t he infimum of e~c = (e~B + e~c) , or ccz(p I q, q I
p) = (c lCz+ C2Cz) where ClCz = K 1 ",£qicP(P;jqi) and ClCz = K 1 "'£ PicP (q;jPi). •
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Theorem 2. The sufficient condition for (1f = ccz ) representing an error
metric for training a NN is that both parts of e, namely CI and C2, be nonzero
in their syntactic values so that the corresponding semantics imparted to
the network (via feedback through the corrective algorithm) add meaningful
in formation to the weight adjustment s in the multilayered network during
each it erative epoch and lead to an eventual convergence of the output error
toward an equilibrium value coo'

Proof. The const ituent part of CCz , namely CICz E (O, 6.c±] and C2Cz E
(O , 6.c±] carry messages of relati ve importance and are applied to the system
dynamics (via feedback), which allows the state variable ccz(t) to converge
toward an att ractor (coo) at a given kth instant of iteration.

Let ClCz supply a "message of relati ve import ance" given by [M1k/ M]
at t he kth instant , and M = 2:(M1k + M 2k). At th e same instant, the
corresponding message of relative importance imparted by C2Cz is given by
[M2k/M ] = [1 - (M lk / M)] since the semantic aspects of CICz and C2Cz

complement each other.
Considering the total messages delivered over k iterations, it is given by

M totaI/M = L[M1k/ M ]+ L [I - M1k/M ].
k k

(45)

Equat ion (45), specified in terms of a controlling (cybernet ic) information
parameter of the network, say C, (which result s from th e error feedback by
the control loop), can be written in reference to the kth iteration as

Gek = (1:+ + I:_) =? {6.c±}. (46)

Here, I e+ can be regar ded as the reinforcing information (which directs the
output error toward th e equilibrium value coo), and I e refers to annihi­
lation information, which leads th e system dynamics to diverge from the
equilibrium. Dominance of I e implies an information deficiency, and the
overwhelming influence of I e+ means th at information augmentation is per­
ceived by th e system dynamics in pursuit of equilibrium or an at tractor value.
As in [19], a paramete r such as Gek eit her "sensit izes" or "desensit izes" the
convergence process (depen ding on th e dominance of th e messages delivered
by Ie+ or Ie at any given kth instant in the network optimizat ion str at egy) .

Considering 6.c+ and S e: (which determine Ie+ and Ie) as dichotomo us
events , their repeated occurrences constitute Bernou lli trials with binomial
distribut ion. Suppose C is single-sided (i.e., CCz is assumed to be constituted
by CICz or C2Cz alone). The corresponding numb er of occurrences of 6.c+ and
S e: will be unbalanced significant ly over n -t 00 iterations (t rials). This
unbalanced condition allows either 6.c+ or txe: to dominat e as n -t 00,

offering one-sided information to the control dynamics. Hence, the system
will diverge posit ively or negatively from the equilibrium (coo) depending on
the dominance of 6.c+ and S e>, respect ively (Figure 2). On th e other hand,
if both CICz and C2Cz are present (two-sided, symmet rized representat ion of
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cCz), the Bernoulli events of ,0.c± are shared by CICz and C2Cz over n iterat ions.
This leads to a balanced state with ,0.c+ and ,0.C sharing about n/2 iterations
each. Because of the system's stochasticity, however, ,0.c + may dominat e
marginally in number of occurrences (= n/2 + D. , ,0. « n/2) so that ,0.C

occurs (n/ 2 - D.) t imes. This unbalanced state of sharing the iterations
with a marginal dominance in number by ,0.c + will augment the necessary
information cumulat ively, as would be required for convergence (from the
negative side). Likewise, if ,0.C occurs (n/ 2+,0.) times, the convergence will
be directed from the posit ive side (Figure 2).

Existence of both C1 and C2 as constituent part s of e is therefore a nec­
essary condit ion for the network to converge. Hence, the compet it ive aspect
of 1£+ and Ie facilitated by t he dichotomous occurrences of ,0.c ± will ult i­
mately decide the convergence toward attractor(s), and it can be rea lized by
proper choice of network parameters (such as the learning coefficient ) and by
adopting symmetr ically weighte d C1 and C2· •

7.3 Simula tion and results

Shown in Figure l (b) is a test NN (multilayer perception) wit h 24 input
units, 2 hidden layers (each with 10 units), and a single output . It was
t rained to recognize a teacher function Isin(x)I using the error metri cs given
by equations (37), (38), and (41). Presented in Figures 5 and 6 are the re­
sults pertinent to (i) histograms of error-value distribut ions (Figure 5) and
(ii) tr ajectories of the errors as funct ions of the number of epochal iterations
performed (Figure 6). The act ua l and simulate d test functions Isin(x) 1versus
t he argument x are presented in Figure 7. The simulated function in Figure 7
correspon ds to the symmetric error measure given by equation (41), which
converged to t he equilibrium status as depicted in Figure 6. The asymmet ric
error measures given by equations (37) and (38) failed in leading t he net­
work's performance toward convergence. Their t ra jectories, as can be seen
from Figure 6, veered off from the equilibr ium value with the discourse of
iterati ons. Thus, this simulat ion study confirms t he need for a symmetrized
error measure for NN learning applicat ions in the inform ation-theoretic do­
main. In the simulat ion st udies performed, the learning coefficient was taken
as 'TJ = 0.01 and the nonlinear sigmoidal function was the Bernoulli func­
tion LQ(x) with Q = 10 [1] . They were chosen so as to realize minimum
root-mean squared value of the deviat ions of the predicted function from the
teacher function at 50 equally spaced arguments .

8 . Further considera tions on t he dynam ics of c(t)

8 .1 Competing augmentative and ann ih ilative
information sp ecies

As discussed in the previous section, the control dynamics of a NN are dic­
tated by the competit ion of reinforcing inform ation 1£+ and by the anni hi­
lat ing counterpart Ie. The event ual convergence (or divergence) of network



Dyn amic Properties of Neural Learning 369

1.. "· "h. i"...... .hhhhh..... h.•.h......._...h!...h_ . h · ·...h.

t (b) (el Cal

'c

".=>
<=:;
c

". ~
"ii
<:i

.J •ce: -- •
"':1 0 +1
cLOV £ 00 cunv

Output error valu es CE)~

Figure 5: Histograms of output error value distributions correspond­
ing to (a) one-sided Kullback-Leibler error measure, E: 1K L, equat ion
(37); (b) one-sided Kullback-Leibler error measure, E: 2K L, equation
(38) ; and (c) symmetrized Kullback-Leibler-Jensen error-measure,
E:K LJ, equat ion (41). (Note: Relati ve numb er of occurrences in each
case refers to value normalized with respect to t he maximum value;
and as t -; 00, the lower divergent value E: LDV of E: 2KL, t he equilibrium
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Figure 6: Comp ute d tra jectories of E: versus the number of iterations,
m, wit h the test network of Figure l(b) subjected to simulat ion stud­
ies: (a) for E: I K L equation (37); (b) for C2K L equat ion (38); and (c) for
E: K LJ equa t ion (41).
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Figure 7: Actual (- ) and simulate d (- .. ) test funct ions.

perform an ce is decided by the dominan ce of D:.c:+ or D:.C facilitat ed by the
C:I and C:2 const ituents of the error metric. The growt h of the D:.c:+ and D:.c
species (which event ually decides the convergence or divergence of the net­
work performance) can be presumed to depend on the population of both
species. That is, if we depict the population of D:.c:+ species by n l and that
of D:.C species by n2, th e dynamics of n l and n2 can be repr esent ed in t erms
of arbit ra ry functions Y and Z as follows:

dnlD:.
dn2D:.

Y(nl ,n2)
Z(nl ,n2)

(47a)

(47b)

Correspondingly, both populations may affect each other negatively, so that
the interaction between the species is competit ive. That is, the growt h rate
of each species will be ret arded by the presence of the other. From equat ions
(47) , it follows (by eliminati ng the explicit dependence on the tim e factor t)
that

dn2/dnl = Y(nl ,n2)/Z(nl ,n2) (48)

which represents the phase-plane represent ation of D:.c:+ and D:.c.
The two comp eting species, D:.c:+ and D:.C are virt ually identi cal in their

inform ati on values; they differ only in dictating the convergence process to
occur in opp osit e directions. As presumed earlier, at t ribut ing a marginal
unbalance to the competit ion so that D:.c:+ is dominant (by let tin g nl > n2),
the following explicit equat ions can be specified in lieu of equat ions (47):

dnI/dt

dnddt

nl(al - bInI - cIn2)

nl(al - bIn2 - C2n l )

(49a)

(49b)

and the corresponding phase-plane equa t ion is given by

dnddnl = n2(al - bIn2 - c2nl )/nl (al - bIn I - C2n2) (50)



Dyn amic Properties of Neural Learning

",

371

alib i

al/e t

""~.~t~~::· ~ "? e

E _ : : . ; : ~ t

t -eeet iii

- ee I I I

-----?'~ • 'b ;:=::::--:-- '*.../. )r fit

al /cz alibi

Figure 8: Phase-plane diagram in reference to equilibrium dynamics
of interaction between two nearly identical, competing species of error
metrics.

Inasmuch as nl > n2, the int eraction between 6.c+ and S e: is strongly
compet itive in t he sense t hat the interacti on terms, - Cl nln2 and - C2nln2,
are greater (as nl ---7 n2 ---7 n/2 ) than the self-inte ract ion term s, -bIni and
- bln~ . Thus, CI > b: and C2 > bi - Further, since CI > C2, the resulting
condit ions lead to the inequality CI > C2 > bl , in which case an equilibrium
state can be reached. Sketching the phase-plane diagram as shown in Fig­
ure 8, one can see t hat the isoclines are st ra ight lines with posit ive nl and
n2 intercepts; the equilibr ium states are each marked with an asterisk on the
diagram . Designating t he equilibrium population as nlE and n2E,

nlE

n2E

( a IC I - a l bl) /(CI C2 - bi )

( a lc2 - a l bl) /(CI C2 - bi)

(51a)
(51b)

Analysis pert inent to the stability of this problem [20] leads to the pr inciple
of comp et itive exclusion, mean ing only one species can ultimately surv ive.
T he solut ion curves for this problem can be sketch as shown in Figure 8 by
classifying t he equilibrium point s on the basis of the following considerat ions.

1. Coexistent equilibrium pop ulat ion is a saddle point (being always un­
stable).

2. A species t hat eliminates its comp et it ion is a st able node.

Thus, t he unbalanced parts of I e+ and I e contributed by 6.c± con­
st ituent s (of the coexist ing CI and C2 terms) in the error metric feedback
toward network training can facilit at e a st able cont rol/dynamics with an
eventual equilibrium of the syst em (or seeking the convergence toward t he
objective funct ion).

T hus, opti mization in NNs implies the convergence of t he learning pro­
cess mediated by a cost functi on such as c(t) to an at t ractor implicitly. The
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locations of these attractors and their basins in the phase space are dict at ed
by the weight modificat ions, that is, by the iterative adjust ments of W ij as
a result of the supervised learning foreseen . The corresponding nonlinear dy­
nami cs follow a random walk paradigm- based information flow. Convergence
towar d t he attractor also refers to the t rend in the network 's performan ce
t emporally approaching stored vectors/memory configurat ions.

9 . Concl ud ing remarks

The focus of this paper is twofold: (1) it portrays the dynamics of the
learn ing process in NNs; and (2) the relevant portrayals are referred to the
informat ion-t heoret ic plane. Within the broad scope of the aforesa id consid­
erations, the major inferences and conclusions t hat can be gat hered from the
analysis are as follows.

• The stoc hastic dynamics associated wit h the neura l learning pro cess
can be comprehended in the information-theoreti c plan e (as it can be
done in t he parametic space plane).

• T he relevant dynamics can be specified in terms of a class of error
metrics of the network , which can be elucidated in the information­
t heoret ic plane for the purpose of network learning optimizat ion using
the aforesa id error metries (c) as feedback ent it ies. Hence, the relevant
dynami cs refer to e versus time (t ) over which t he epochs of iterations
of error feedback are performed to achieve the convergence.

• The associated stochasticity models the dynamics of c(t ) in terms of
a probability funct ion versus t ime as governed by the Fokker-Plan ck
diffusion equation.

• The dynamics of c(t) can be specified by a logist ic growth mod el de­
picting equilibr ium condit ions .

• Learning dynamics analyzed indi cate that in backprop agat ion mode,
the network training follows the same type of gra dient descent algo­
rithm in t he information-theoretic plane as in the parametic space
plane.

• The convergence or divergence aspects of c wit h the passage of t ime (or
along the iterat ive epochs of error feedback) depend on the compet it ive
role played by augmenting and annihilating inform ation impart ed to
the system by t he error informat ion feedb ack.

• Corresponding values of 6.c+ and 6.C (deviatory measures of E from
the equilibrium value coo) const itute dichotomous events repeated along
the discourse of iterations performed. This Bernoulli pro cess has bi­
nomial dist ributi on on a discrete basis. As n (the number of events
of 6.c±) -t 0, this dist ribution becomes a gaussian pro cess. Excessive
unbalance between 6.c+ and 6.C leads to divergence in t he network's
perform ance. A near-balanced state, however , enables convergence.
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• In t he t erminal reg ion , that is, at t ----> 00 , t he converge nce endeavor
could set c(t) as a station ary process [21]. Ap art from t his t erminal
at t ractor status , during t he discourse of e ver sus t t he error metric
value may also cross the equilibrium value Coo at several inst ant s of
t im e, each represent ing an attractor in t he basin of converge nce .
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