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Abstract. Real-coded genetic algorithms (GAs) do not use any cod-
ing of the problem variables, instead they work directly with the vari-
ables. The main difference in the implementation of real-coded GAs
and binary-coded GAs is in their recombination operators. Although a
number of real-coded crossover implementations were suggested, most
of them were developed with intuition and without much analysis. Re-
cently, a real-coded crossover operator has been developed based on
the search characteristics of the single-point crossover operator used in
binary-coded GAs. This simulated binary crossover (SBX) operator
has been found to work well in many test problems having continuous
search space when compared to existing real-coded crossover imple-
mentations. In this paper the performance of the real-coded GA with
SBX in solving multimodal and multiobjective problems is further
investigated. Sharing function approach and nondominated sorting
implementations are included in the real-coded GA with SBX to solve
multimodal and multiobjective problems, respectively. It is observed
that the real-coded GAs perform equally well or better than binary-
coded GAs in solving a number of test problems. One advantage of the
SBX operator is that it can restrict children solutions to any arbitrary
closeness to the parent solutions, thereby not requiring any separate
mating restriction scheme for better performance. Finally, real-coded
GAs with SBX have been successfully used to find multiple Pareto-
optimal solutions in solving a welded beam design problem. These
simulation results are encouraging and suggest the application of real-
coded GAs with SBX operator to real-world optimization problems at
large.
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1. Introduction

With the success of binary-coded genetic algorithms (GAs) in various opti-
mization problems, real-coded GAs are finding some attention primarily in
solving continuous search space problems. Real-coded GAs differ from the
binary-coded GAs in the coding of the problem variables. Since the problem
variables are used directly in real-coded GAs, there lies a need for developing
new, yet efficient, crossover and mutation operators. Although there exist
a number of studies of real-coded GAs with different crossover and muta-
tion operators [1, 2], recently a crossover and a mutation operator have been
developed by simulating the working of their binary counterparts [3]. In
that study, the main motivation was to develop real-coded genetic operators
having similar search power as that in the binary genetic operators. The sim-
ulated binary crossover (SBX) operator used in [3] had search power similar
to that of a single-point binary-coded crossover operator. The search power
was defined as the ability to create any arbitrary child solution from two par-
ent solutions. Based on a derived probability distribution of creating a child
solution in the single-point crossover operator, a similar probability distribu-
tion was used directly to choose a child solution in SBX. In that study, the
performance of the proposed real-coded GAs with SBX was compared with
some of the earlier real-coded GAs and the binary-coded GA. Motivated by
the success of the proposed real-coded GAs in [3], we extend its application
to multimodal and multiobjective function optimization problems.

In this paper we briefly describe the SBX operator and extend the concept
of sharing in the real-coded GAs to solve a number of multimodal functions
for multiple solutions simultaneously. Since children solutions arbitrarily
close to the parent solutions can be created using the SBX operator, there is
no need to use a separate mating restriction scheme. Thereafter, we extend
the principle of nondominated sorting in real-coded GAs to solve a number of
multiobjective optimization problems for Pareto-optimal solutions. To show
the efficacy of the proposed techniques, we also show simulation results of the
presented sharing and nondominated sorting techniques to optimize the engi-
neering design of a welded beam. The successful working of these techniques
suggests that the real-coded GA using the SBX operator performs similar to
the binary-coded GA and can be used efficiently in solving continuous search
space problems.

2. Simulated binary crossover

When problem variables are directly used in a GA, binary-coded crossover
operators can no longer be applied. A number of real-coded crossover op-
erators have been developed that create two children solutions from two
parent solutions. In most cases, a probability distribution centering the par-
ent solutions is assumed and two children solutions are created based on that
probability distribution. Creating children solutions using a fixed probability
distribution, which does not depend on the location of the parent solutions,
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makes the search adaptive. For example, if the parent solutions are close
to each other, the children solutions are expected to lie in the neighborhood
of the parent solutions. On the other hand, if the parent solutions are far
away from each other, children solutions far away from the parent solutions
are expected. In early generations of a GA simulation, parent solutions are
expected to be away from each other and almost any solution can be cre-
ated as a child solution. But when the search converges towards a solution,
parent solutions become similar and children solutions also become closer to
the parent solutions. This adaptiveness in the search power of the real-coded
crossover operator is similar in principle to the search power of the binary-
coded single-point crossover operator. However, one main difference is that
for the binary-coded crossover operator, no explicit probability distribution
is used to create a child solution. But there is an implicit probability dis-
tribution that depends on the string length used to code the variable. In a
real-coded crossover operator, a probability distribution is explicitly used to
create a child solution. Since an explicit probability distribution is used, the
performance of real-coded GAs depend on that distribution. In earlier real-
coded GA implementations, the choice of the probability distribution was
somewhat arbitrary and based on intuition. Recently in [3], a SBX opera-
tor has been suggested with a probability distribution similar to that in the
single-point crossover operator used in binary-coded GAs. In the following,
we briefly describe that crossover operator.

It has been observed that in the binary single-point crossover operator,
both children solutions lie either inside (contracting crossover) or outside (ex-
panding crossover) the region bounded by the parent solutions. Moreover, the
distance of one child solution from one parent is exactly the same as that of
the other child from the other parent solution. Further, there is no apparent
bias for either contracting or expanding crossover, on expectation. Thus, on
an average, the overall probabilities of contracting and expanding crossovers
are the same. The SBX operator for real-coded GAs has been developed
with the above properties. In order to implement this crossover operator for
any two parent solutions p; and p,, a nondimensionalized spread factor § has
been defined as the ratio of the spread of created children solutions ¢; and
¢ to that of the parent solutions as follows:

C1 —C

P1— P2

: 1)

It can be shown that § < 1 corresponds to a contracting crossover and § > 1
corresponds to an expanding crossover. Writing the decoded values of two
arbitrary parent strings in terms of their allele values (0,1) and writing the
children strings created from the parent strings as a function of the cross-site
k along the string length, the spread factor 8 has been written in terms of k.
From this distribution, it has also been possible to calculate the probability
of creating a pair of children solutions having a certain 5. That probability
distribution has been approximated by a polynomial probability distribution
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Probability Distribution

Figure 1: Probability distributions used in the simulated binary
crossover operator are shown for different values of the distribution
index n.

as follows:

05(n+1)8%, A<,
0.5(n + l)ﬁ, otherwise.

P(B) = { (2)

In equations (1) and (2), the distribution index n is any nonnegative real
number. A large value of n gives a higher probability for creating solutions
near to the parent and a small value of n allows distant points to be selected as
children solutions. Figure 1 shows the probability distribution as a function
of (3 for different values of the distribution index n. The advantage of using
a probability distribution as a function of [ is that the created children
solutions are relative to the parent solutions. If the parent solutions are
distant, children solutions far away from the parent solutions can be created.
On the other hand, if the parent solutions are close to each other, the children
solutions, in general, cannot be far away from the parent solutions.

In order to create two children solutions ¢; and ¢, from the parent solu-
tions p; and po using the above probability distribution, the following proce-
dure is used.

e Create a random number u between 0 and 1.

e Find a ' for which the cumulative probability

ﬂl
| P@as=u. (3)
e Knowing the value of ', the children points are calculated as

a = 0.5[(p1+p2) = Flp2—mil],
ca = 0.5[(p1+p2)+0p2—pil]-
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The preceding SBX operator is allowed to create any solution in the
entire real space [—00, 0], however, it can also be modified for variables with
known lower and upper bounds (:nz(-L) <z < :cl(-U)). This can be achieved by
modifying the probability distribution (equation (2)) so that the probability
for a solution outside the above bounds is zero. A simple way to achieve this
is to first calculate the cumulative probabilities

p(L)
| P®as, @)

B

Po= [ PEB. (5)

P

Il

In equations (4) and (5), the parameters 3% and B(Y) are the spread factors
for the lower and upper bounds of the problem variable, respectively:
L P1+p2— 2$§L) ) _ 2$£U) —P1— P2
pr=BitPaih o) TPiTPr
p2 — 1 P2 — 1

Thereafter, two spread factors 3] and [, are calculated using modified prob-
ability distributions P(3)/P; and P(f)/P;, respectively, (by using equa-
tion (3)) to create two children solutions as follows:

ca = 05[(p1+p2) — Bilp2 — pil],
ca = 0.5[(py+p2) + Balp: — pul] -

Thus, the modified probability distributions do not create any solution out-
side the given bounds, instead they scale up the probability for solutions
inside the bounds, as shown by the solid line in Figure 2. In the figure,
the parent solutions are p; and p,. The probability distributions for the un-
bounded case (z € [~00,00]) and the bounded case (z € (z(),z())) are
shown in dashed and solid lines, respectively. It can be observed in the fig-

---- Unbounded |
—— Bounded

Probability Distribution

Figure 2: Probability distributions are shown for bounded and un-
bounded cases.
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ure that a solution outside the lower and upper bounds has zero probability
to become a child solution, thereby restricting the search within the given
bounds.

The focus of this paper is to study the performance of the real-coded
GA with SBX on multimodal and multiobjective problems. The application
of binary-coded GAs for the solution of these problems is finding increasing
attention. This is because the solution of such problems requires multiple
solutions to be found simultaneously and GAs are particularly suitable for
these problems because of their inherent population approach. In the fol-
lowing, we first investigate the application of real-coded GAs to multimodal
problems and then study the multiobjective problems.

3. Multimodal problems using sharing genetic algorithms

A multimodal problem contains multiple optimal solutions in its search space.
The objective of a multimodal function optimization procedure is to find
multiple optimal solutions having either equal or unequal objective function
values. The knowledge of multiple optimal solutions is particularly useful to
design engineers for choosing an alternative optimal solution, as and when
required. In solving for multiple optimal solutions, traditional optimization
algorithms need to be applied as many times as the number of optimal so-
lutions. This is because most of those algorithms are point-by-point search
methods and can only find one optimal solution at a time. Since GAs create
a population of solutions instead of one solution in each iteration, it may
be possible to capture multiple optimal solutions in the population, thereby
allowing GAs to be applied only once to find multiple solutions. After the
pioneering work in [4], researchers have also developed different GAs to find
and maintain a stable subpopulation of optimal solutions in the population
(e.g., [5, 6]).

In solving multimodal problems using GAs, the study in [4] was moti-
vated by a “gedanken” experiment based on a modified two-armed bandit
problem. It was observed that if the reproduction phase is performed with a
modified fitness function obtained by degrading the original fitness value of
a solution by a cumulative measure of the proximity between that solution
and the rest of the population, a stable subpopulation can be maintained
in the population. They defined a proximity measure (d;;) between any two
solutions ¢ and j either phenotypically (with the problem variables directly)
or genotypically (with corresponding strings). A sharing function Sh(d;;)
is used to define the sharing effect of one solution to another based on the
proximity measure of two solutions as follows:

1% if dy; > o
Sh(d’L]) = { o’ ! = @

0, otherwise.

(6)

The parameter ¢ is the maximum distance between two solutions that can
belong to one optimal solution. Thereafter, the cumulative proximity (m/}) of



Studies on Multimodal and Multiobjective Problems 437

the 7th solution in the entire population (of size N) is calculated by summing
the individual sharing function values as follows:

N
ml =Y Sh(d). (7)

j=1

The reproduction is then performed with the shared fitness f/ = f;/m; in-
stead of the original fitness f;. This sharing technique has been successfully
applied to many multimodal problems [5, 6].

We implement the stated sharing function concept in real-coded GAs. It
is important to note that the implementation of sharing is only in the repro-
duction phase; the crossover and mutation operators need not be changed.
The primary differences in the implementation of binary-coded and real-
coded GAs are in the coding and in the recombination operators. Thus, the
concept of sharing can also be used in real-coded GAs. Since, in real-coded
GAs the problem variables are used directly, phenotypic sharing is a natural
choice. To calculate the proximity measure d;; and the parameter o, the
following guidelines were suggested in [5] and are used here:

g = |2 (@ -0, 0
k=1
- g

where p is the number of variables and ¢ is the desired number of optimal
solutions.

3.1 Simulation results

The real-coded GA with SBX operator and the shared reproduction scheme
have been implemented to solve a number of test problems obtained from
the literature and also to a number of random bimodal functions. The per-
formance of real-coded GAs has been compared with binary-coded GAs on
all test functions.

In solving multimodal problems using GAs, the primary objective has
been not only to find all optimal solutions but also to distribute the popu-
lation members well among multiple optimal solutions [5]. To compare the
performance of different GA implementations, a deviation measure similar
to chi-square was suggested in [5]. This measure calculates the deviation of
the distribution of the population from an ideal distribution, which can be
obtained using the modified two-armed bandit gedanken experiment from
[4]. The chi-square deviation measure is given as

R o= (10)

k=1 Tk
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where 7, and 7, are the expected value and standard deviation of the number
of ideal solutions in the kth optimal solution in the population, and 7 is the
actual number of the solutions in the kth optimal solution in the population.
In all our simulations, all solutions having a fitness greater than or equal to
70 percent of the globally best fitness are counted as the number of solutions
(rx) near the corresponding optimum. However, the suggested values of the
parameters 7, and 7 of the ideal distribution for ¢ optimal solutions having

function values fx, k=1,2,...,q are as follows [5]:
N Ik
Ty = N,
Ez=1 fk

I
3
B

Fo. = fF (1~%’°).

For nonpeak solutions, 7y41 = 0 and 7441 = /3f_, 72. Equation (10) sug-
gests that smaller deviation measures W yield better distribution of the pop-
ulation on the optimal solutions.

3.1.1 Five test functions

Five test functions, which were used in [5], are solved using real-coded GAs.
The functions, their domain, and the description of the optimal solutions are
given as follows.

MM1: sin®(57z) 021
Five equispaced maxima with equal function
values.
2
MM2: exp (—21n2 (%) > sin®(5mx) 0<z<1

Five equispaced maxima with unequal func-
tion values.

MM3:  sin®(57 (2% — 0.05)) 0<z<1
Five unequispaced maxima with equal func-
tion values.

2

MM4:  exp (—21n2 (%) ) sin®(5m (2% — 0.05)) 0<z<1
Five unequispaced maxima with unequal func-
tion values.

MM5:  [1— ((#2 + 2o — 11)% + (21 + 22 — 7)%) /2186] —6 < 21,2, <6
Four maxima with equal function values.

The simulation results are compared with binary-coded GAs having a

single-point crossover operator. The following GA parameters are used in all
simulations.
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Population size N: 100

String length ¢: 30  (for binary-coded GAs)
Crossover probability: 0.9

Mutation probability: 0

Distribution index n: 0-500 (for real-coded GAs).

Figure 3 shows the deviation measure ¥ versus the distribution index n
on the function MM1. In order to investigate the effect of n on the per-
formance of the real-coded GAs, we have varied n from 0 to 500. Average
deviation measures for generations 101 to 200 are plotted to demonstrate
that the algorithms not only distribute their populations well among all the
optimal solutions, but also maintain the distribution for a large number of
generations. Figure 3 reveals that for small values of n, the SBX operator is
unable to maintain stable subpopulations on all five optimal solutions. The
horizontal dashed line is the deviation measure obtained for the binary-coded
GAs with single-point crossover on this function. Figure 3 also shows that
real-coded GAs perform better than binary-coded GAs when n is somewhat
larger than 30. The distribution of population members is further illustrated
in Figure 4, where the deviation measure is plotted with generation number.
Figure 4 shows that the real-coded GAs with n = 35 and binary-coded GAs
perform more or less the same and that the real-coded GAs with n = 200 per-
form much better than the binary-coded GAs. The reason a comparatively
larger value of n is required to adequately solve the problem can be explained
as follows. The deviation measure described in equation (10) becomes better
if the population is well distributed among the optimal solutions and the
number of lethal individuals (solutions not belonging to any optimal solu-
tion) is low. A little thought will reveal that if two individuals belonging to
two different optimal solutions are allowed to cross over, lethal solutions may

=3

--- Binary GA
—— Real GA
-—-- Binary GA with Mating Restriction

Average Deviation Measure
o = N w A~ 0 N © ©

50 100 150 200 250 300 350 400 450 500
Distribution Index, n

=]

Figure 3: Average deviation measure (for generations 101 to 200) is
plotted with distribution index n for function MMI1.
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Figure 4: Deviation measure is plotted with generation number for
function MM1.

be created. Under SBX, this possibility can be minimized by suitably choos-
ing a distribution index, n. In function MM1, the two extreme peaks are at
z = 0.1 and =z = 0.9, respectively. Since solutions having a function value
greater than 0.7 are considered to belong to the niche of an optimal solution,
the difference between a child solution from the closest parent solution must
be at most equal to 0.022. Thus, for contracting crossovers, the minimum
spread factor must be equal to f = 0.945. If we want to succeed in 99 per-
cent of crossovers, the corresponding n can be approximately calculated by
equating the cumulative probability of success to 0.99, as follows:

1— " =0.99.

For the two extreme optimal solutions, the above equation demands n ~ 80.
For the two nearest optimal solutions (z = 0.1 and z = 0.3) the required
distribution index is n &~ 18. The value of n = 35 observed in Figure 3 is a
compromise between these two values of n.

In order to improve the performance of binary-coded GAs with sharing,
oftentimes, a mating restriction scheme [5] is used. In a mating restriction
scheme, similar solutions are only allowed to mate with each other, thereby
disallowing the creation of lethal solutions. The SBX operator, on the other
hand, can restrict children solutions to lie in the vicinity of the parent solu-
tions by using a large value of the distribution index n. Thus, the mating
restriction scheme may not be necessary with the SBX operator to improve
performance (either on-line performance as defined in [7] or our deviation
measure V) of GAs. In Figure 3, the dashed-dot line shows the deviation
measure of the binary-coded GAs with sharing and mating restriction. It
can be seen in the figure that the real-coded GAs with n higher than about
150 can achieve similar or better performance than binary-coded GAs with
sharing and mating restriction schemes together.

Similar experiments are performed using the other four test functions and
similar results are obtained. Figures similar to Figures 3 and 4 are presented
in the Appendix for the functions MM2 through MM5.
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Figure 5: Average deviation measure (from generations 101 to 200)
of real-coded GAs and binary-coded GAs are plotted for 50 different
bimodal functions.

3.1.2 Random bimodal function

To further compare the performance of real-coded GAs with SBX and binary-
coded GAs, we have created 50 functions having two peaks located at any
two random points in the range (0,1). The functional form of the two-peaked
function (with optimal solutions close to x; and ) is as follows:

[exp (- E55) + exp (- 55|
[1 + exp ( %)] ’

The parameter b acts like the spread of the optimal solutions. We use MM6
with 50 different random combinations of 1, 22 € (0,1), and b € (0,0.05) to
create 50 bimodal functions.

Binary-coded and real-coded GAs are used to find both optimal solu-
tions in the same 50 random functions with GA parameters as mentioned
earlier. The average of the deviation measure ¥ of the simulation runs from
generations 101 to 200 is calculated in each case and shown plotted versus
the function number in Figure 5. The figure shows that the performance of
real-coded GAs with SBX (n = 200) is consistently better than that of the
binary-coded GAs. This is expected because in real-coded GAs the search
power can be controlled using the distribution index, n. With a large value
of n, the real-coded GA with SBX behaves like a binary-coded GA with
sharing and mating restriction. With large values of n, the search is always
confined in the vicinity of the parent solutions. Thus, the solutions improve
marginally in each generation and the combined effect of shared reproduc-
tion and recombination operators guide the search parallely towards each
optimal solution. Since, in the above simulation of binary-coded GAs the
mating restriction scheme is not used, there is no restriction for the solu-
tions from different optima to mate with each other. These crossovers some-

MMG6: 0<z<1.
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times create some nonoptimal solutions, which deteriorate the performance
of binary-coded GAs.

3.2 Fractional sharing

One criticism against the implementation of sharing strategy in GAs is that
for every individual in the population the sharing function needs to be calc-
ulated for every other individual [4, 8]. This requires N? evaluations of
sharing functions at each generation. However, if proper book-keeping is
maintained, this complexity can be reduced to half because the sharing func-
tion is commutative (i.e., Sh(d;;) = Sh(d;;)). Although it is suggested in [4],
and later in [16], to use a smaller subpopulation (of O(N)) for calculating
the cumulative proximity, no simulation results have been reported to the
best of our knowledge. In this section, we investigate the effect of using a
fractional population for calculating the cumulative proximity measure.

For each individual in the population, a small subpopulation P, of size n
(share size) is chosen at random and sharing function values are calculated
for each individual in this subpopulation. Sharing strategy remains the same
as before except equation (7) is now replaced by the following:

JEPy

It is obvious that if 7 is equal to the population size, equation (11) is identical
to equation (7).

In order to study the effect of 7 in the performance of sharing GAs, we
apply both binary-coded and real-coded GAs to test functions MM1 through
MMS5 with different values of 1. The distribution index n is kept the same
as that used in earlier simulations (i.e., with n = N). Figure 6 shows the
variation of the average deviation measure ¥ of GAs in generations 401 to 500
with 7 (which is also the percentage measure of share size to the population

250

225
® 2
§ st MM

- — MM4
ssof e MMS
S 125
>
@
QO 100
S
Q 75
5}
> 50
<
25 | Lal T P e R et T = el

0.0

0 10 20 30 40 50 60 70 80 90 100
Share Size

Figure 6: Average deviation measure (from generations 401 to 500)
of real-coded GAs is plotted versus share size 7.
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size). Figure 6 reveals that beyond a critical value of n (much smaller than
the complete population size), the performance of GAs are similar to that of
1 = N. For example, this critical value is only five percent of the population
size in the case of function MM1, 15 percent in the case of function MM2,
and ten percent for MM3, MM4, and MM5.

Similar performance is observed with binary-coded GAs in [17]. These
experimental results show that only a small fraction of the population size is
sufficient to calculate the cumulative proximity for properly distributing the
population to all optimal solutions.

4. Multiobjective problems using nondominated sorting genetic
algorithms

In a multiobjective optimization problem, there is more than one objective
function, all of which are to be optimized simultaneously. Traditionally, the
practice is to convert multiple objectives into one objective function (usually
a weighted average of the objectives is used) and then treat the problem
as a single objective optimization problem. Unfortunately, this technique
is subjective to the user, with the optimal solution being dependent on the
chosen weight vector. In fact, the solutions of the multiobjective optimization
problem can be thought of as a collection of optimal solutions obtained by
solving different single objective functions that are formed by using different
weight vectors. These solutions are known as Pareto-optimal solutions.

In order to find a number of Pareto-optimal solutions, different extensions
of binary-coded GAs have been tried (e.g., [9, 10, 11]). Because of their
population approach, GAs are idle candidates to solve this problem. In one
implementation of binary-coded GAs, the concept of nondominated sorting of
population members is successfully used to solve some test problems [11] and
a number of truss-structure optimization problems [12]. We briefly describe
that method and show how the same concept can be used in real-coded GAs
with the SBX operator.

GAs require only one fitness value for an individual solution in the pop-
ulation. Thus, an artificial fitness value must be assigned to each solution in
the population depending on the comparative values of each objective func-
tion. In order to assign a fitness measure to each solution, in [11] the idea
of nondomination among population members from [13] is used. In a popu-
lation, the nondominated solutions are defined as those solutions which are
better in at least one objective than any other solution in the population.
In order to implement such a nondominated sorting concept, the following
procedure is adopted.

e The population is sorted to find the nondomination set of solutions. All
individuals in this subpopulation are assigned a large artificial fitness
value.

e Since the objective is to find a number of Pareto-optimal solutions,
sharing is performed among these nondominated solutions and a new
shared fitness is calculated for each.
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e These solutions are temporarily counted out of the population and
the next nondominated set is found. These solutions are assigned an
artificial fitness value marginally smaller than the least shared fitness
value in the previous nondominated set. This is done to impose a higher
preference for solutions in the previous set than for the current set.

e Sharing is performed again among the new nondominated set and this
process continues until all population members are ranked in descend-
ing order of the nondominated sets.

e Thereafter, the reproduction operation is performed using these artifi-
cial fitness values.

e Crossover and mutation operators are applied as usual.

The preceding procedure is implemented with real-coded GAs and sharing is
performed phenotypically. The performance of real-coded GAs is compared
with binary-coded GAs in solving three test functions used in an earlier
study [11].

4.1 Simulation results

All of the test functions have two objective functions to be minimized, al-
though the preceding procedure can be used for more than two objectives.
Moreover, the nondominated sorting GAs do not restrict the objectives to be
of a minimization type only. A combination of minimization and maximiza-
tion objective functions can also be handled equally efficiently. This feature
of nondominated sorting GAs makes them attractive in solving multiobjec-
tive problems. In each of the following three test problems, the objective is
to find multiple Pareto-optimal solutions.

minimize 2
MO1 Pareto solution:
minimize (z — 2)?2 0< <2
—x ifz<1
- e —24z ifl<xz<3
minimize )
MO2 4—z if3<z<4 Pareto solution:

Atz ifz>4 1<zr<2and4 <z <5.

minimize (z — 5)?

minimize 2+ (z; — 2)%2 + (25 — 1)
MO3 (21 ) (2 ) Pareto solution:
minimize 9z; — (zo — 1)? T
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Figure 7: The deviation measures of real-coded GAs and binary-coded
GAs are plotted versus generation number for multiobjective problem
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Figure 8: The deviation measures of real-coded GAs and binary-coded

GAs are plotted versus generation number for the multiobjective prob-
lem MO2.

The same GA parameters used in the multimodal study are chosen here.
The chi-square like deviation measure defined in equation (10) is used to
judge the working of the algorithms. For the test functions MO1 and MO2,
the deviation measures are computed for ten equal intervals (¢ = 10) in the
Pareto-optimal set. The performance of both real-coded GAs with SBX and
binary-coded GAs on problems MO1 and MO2 are shown in Figures 7 and
8, respectively. From both figures it can be observed that the performance
of real-coded GAs is similar to that of binary-coded GAs.

The real-coded GA has also been able to find a number of multiple Pareto-
optimal solutions in MO3. As shown in [11], the Pareto-optimal set for this
problem is the line £; = —2.5. Figure 9 shows that all population members,
even in generation 500, are distributed along the Pareto-optimal line. Similar
results were found for binary-coded GAs in [11].
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Figure 9: The population of solutions at generation 500 obtained using
the real-coded GAs is shown to have found the Pareto-optimal line in
problem MO3.

These simulation results suggest that, similar to the nondominated sort-
ing binary-coded GAs, the nondominated sorting principle can be used in
real-coded GAs equally efficiently. In order to further test the efficacy of the
above technique, the real-coded GAs with sharing and nondominated sorting
are applied to the engineering design of a welded beam.

5. Welded beam problem

A beam of rectangular cross-section is welded to a member to carry a certain
load (Figure 10). The welded beam problem is a popular engineering design
problem where the objective is to find a set of four variables (h, ¢, t, and b)
such that the cost of fabrication of the welded beam is minimum, subject to
satisfying a number of constraints [14]. In the original welded beam problem
there are five constraints.

1. The bending stress anywhere in the welded beam is limited to the
allowable strength of the beam material.

2. The shear stress in the weld is limited to the allowable strength of the
weld.

3. Maximum buckling load that can be carried by the plate is caused only
by the applied load.

4. The deflection of the end of the beam is limited to a maximum permis-
sible deflection.

5. The weld size must be smaller than the thickness of the beam.
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Figure 10: The welded beam problem.

The single-objective, nonlinear optimization problem can be written as fol-
lows:

Minimize cost subject to: g¢;

For brevity, the expressions for the preceding constraints are not given here.
They can be found elsewhere [14, 15].

5.1 Multiobjective welded beam design

We convert constraint g4(z) to an additional objective function d(z). Thus,
the welded beam problem now has the two objectives of both minimizing
cost and end-deflection of the beam. There are now four constraints (g1, gz,
g3, and gs). We use the nondominated sorting GAs discussed in section 4 to
solve this problem.

At first, the variables are all assumed to take continuous values. Thus,
we use nondominated sorting real-coded GAs. A population size of 100, a
crossover probability of 1.0, and a mutation probability of 0.0 are used. A
stochastic remainder roulette-wheel selection scheme is used. A distribution
index n of 30 is used. The Pareto-optimal solutions found after 500 gen-
erations are presented in Figure 11. Although the Pareto-optimal solutions
are found within the first 50 generations, the simulation is prolonged for 500
generations to determine whether the GA can maintain a stable set of solu-
tions long after they are initially discovered. Figure 11 shows that the GA
has been able to find many Pareto-optimal solutions in one simulation run.
The solution set contains a design with a low cost of about $3.90, having
a deflection of about 0.005 inches. The corresponding design variables are
h = 0.423, ¢ = 2.457, t = 9.982, and b = 0.433 inches. The solution set also
contains a costly design with a cost of about $40, having a low deflection
of only 0.0005 inches. The corresponding design variables are h = 0.426,
¢ =2.466,t = 9.981, and b = 4.921 inches. The other solutions in the solu-
tion set reveal that the Pareto-optimal solutions vary only in the value of the
variable b. However, neither of the two solutions mentioned above (or any
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Figure 11: The population of solutions (Pareto-optimal solutions) at
generation 500 obtained using the real-coded GAs for the welded beam
problem.

other Pareto-optimal solutions found in the solution set) can be considered
as the absolute best solution in terms of both objectives. In some applica-
tions, cost could be the major factor and the former solution may seem to
be better, whereas in applications where rigidity is the major concern, the
latter solution is better. In an engineering design, either the cost or the de-
flection alone may not be the only desired criteria, a combination of both is
sometimes a compromised solution. Finding a number of such optimal solu-
tions simultaneously provides the designer flexibility in choosing a suitable
solution and also helps provide more insight to the complex interaction of
conflicting objectives governing the design. Traditional methods are handi-
capped in this aspect, since they are expected to find only one solution in
one simulation run.

We further applied the nondominated sorting binary-coded GAs to solve
the same problem with identical GA parameters using 10-bit string coding
for each of the four variables. Figure 12 shows the Pareto-optimal solutions
found at the end of 500 generations. It is clear that this GA has also been able
to find multiple Pareto-optimal solutions. However, the range of solutions
obtained using this method is not as wide as that obtained using real-coded
GAs. Although a number of other Pareto-optimal solutions were found early
in the simulation, this GA could not maintain some of the high-cost, low-
deflection solutions. The concept of sharing with real-coded representation
seems to be able to spread solutions better on different optimal solutions
than that with binary string-coded representation.

6. Conclusion

A simulated binary crossover (SBX) operator was developed for continuous
search space problems in an earlier study [3]. The SBX operator in [3] was
applied directly to problem variables, constituting a search similar to a single-
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Figure 12: The population of solutions (Pareto-optimal solutions) at
generation 500 obtained using the binary-coded GAs for the welded
beam problem.

point crossover when applied to binary-coded strings representing problem
variables. In this paper, the real-coded GA with SBX operator has been
extended to solve multimodal and multiobjective optimization problems.

In the case of multimodal problems, sharing functions have been used
to maintain stable subpopulations around multiple optimum solutions. In
a number of test functions, the real-coded GA with sharing has performed
similar to or better than the binary-coded GA with sharing. It has also been
observed that a mating restriction scheme, often used in binary-coded GAs
for better performance, may not be used in real-coded GAs; yet a similar
performance can be achieved by using a larger distribution index, n. By
solving 50 different random bimodal problems, it has been observed that the
real-coded GA with SBX can distribute the population members on both
optima better than the binary-coded GA. Moreover, the age-old criticism
about the full population size requirement of the sharing function method
has been disregarded. It has been observed that a small sample of the pop-
ulation members (as large as 15 percent of the population size) can be used
to calculate the niche count and still maintain stable subpopulations across
the multiple optima.

In the case of multiobjective problems, the concept of nondominated sort-
ing has been implemented in the real-coded GA with SBX operator. Sim-
ulation results on three test problems have shown that the real-coded GA
can also find and maintain multiple Pareto-optimal solutions in the pop-
ulation. This technique has been further tested to design a welded beam
problem. Multiple Pareto-optimal solutions corresponding to minimization
of both the cost and deflection of the beam are found using the real-coded
GA with SBX operator.

This paper has demonstrated that in solving two different kinds of opti-
mization problems having continuous search space, the real-coded GA with
SBX operator applied to direct problem variables can be used efficiently.
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The simulation results show promise in the use of these techniques to other
similar optimization problems.

The successful application of real-coded GAs with the SBX operator on
continuous variables in this study and in [3] suggests the development of a
combined approach to genetic adaptive search using both binary-coded GAs
and real-coded GAs. Often, optimization problems in engineering and sci-
ences involve mixed variables where some are discrete variables including
zero-one variables and some are continuous variables. In the combined GA
approach, a mixed coding representing discrete and continuous variables may
be used. The binary-coded GAs may be used to handle discrete variables and
real-coded GAs may be used to handle continuous variables. Although any
standard reproduction scheme can be used, the recombination operators will
depend on the underlying variable. The binary single-point crossover or the
simulated binary crossover may be used depending on whether the variable
being crossed is discrete or continuous, respectively. A similar consideration
can be made with the mutation operator. Such a GA will allow only the
feasible values of the variables to be searched, thereby reducing the search
effort required to find the optimal solution. This GA will constitute a ro-
bust and flexible search technique that can be used to solve mixed-variable
optimization problems effectively [3].
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Appendix
Deviation measure plots for test functions MM2 through MM5
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Figure 13: Average deviation measure (for generations 101 to 200) is
plotted with distribution index n for function MM2.
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Figure 17: Average deviation measure (for generations 101 to 200) is

Kalyanmoy Deb and Amarendra Kumar

—-—-- Binary GA
—— Real GA
-—-- Binary GA with Mating Restriction

L . I I L

0 50 100 150 200 250 300 350 400 450 500

Distribution Index n

plotted with distribution index 7 for function MM4.

Deviation Measure

Figure 18: Deviation measure is plotted with generation number for

12

11|
10 |

©

o = N w h OO N ®

-~-- Binary GA R
—— Real GA (n=35) |
- Real GA (n=200)

=}
n
=]
S
=)

60 80 100 120 140 160 180 200
Generation Number

function MMA4.

Average Deviation Measure

Figure 19: Average deviation measure (for generations 101 to 200) is
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