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Abstract . Real-coded genet ic algorit hms (GAs) do not use any cod­
ing of the problem variab les, instead they work dir ectly with the vari­
ab les . The main difference in the implementation of real-coded GAs
and binary-coded GAs is in their recombination op erators. Alt ho ugh a
number of real-cod ed crossover implementations were suggested, most
of them were developed wit h intuition and wit hout much analysis. Re­
cen tly, a real-cod ed crossover operator has been developed based on
the search characteristics of t he single-point crossover operator used in
binary-coded GAs. T his simulated binary crossover (SBX) operator
has been found to work well in many test problems having continuous
search space when compared to exis t ing real-coded crossover imple­
mentations. In this paper the performan ce of the real-cod ed GA with
SBX in solving mult imodal and multiob jective problems is further
investigated . Sharing function approach and nond ominated sort ing
implementati ons are includ ed in the real-coded GA with SBX to solve
mult imodal and mult iobjective problems, resp ecti vely. It is observed
that the real-coded GAs perform equally well or bet ter than binary­
coded GAs in solving a nu mber of test problems . One advant age of the
SBX operator is that it can restri ct childr en solut ions to any arb it rary
closeness to the parent solutions , t hereby not requi rin g any separate
mating restrict ion scheme for bet ter performance. F inally, rea l-coded
GAs with SBX have been successfully used to find mu lt iple P areto­
optimal solut ions in solving a welded beam design pr oblem . These
simulation results ar e encour aging and suggest the applica t ion of real­
cod ed GAs with SBX operator to rea l-world optimization problems at
large.
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1. Introd uction

Wit h the success of binary-coded genet ic algorithms (GAs) in var ious opti­
mization problems, real-coded GAs are finding some at te ntion pr imarily in
solving cont inuous search space problems. Real-coded GAs differ from the
binary-coded GAs in the coding of the problem variab les. Since the problem
vari abl es are used directly in real-coded GAs, there lies a need for developing
new, yet efficient , crossover and mu tat ion operators . Alt hough there exist
a number of st udies of real-coded GAs wit h different crossover and muta­
tion opera tors [1, 2], recent ly a crossover and a mutation ope ra tor have been
developed by simulat ing the working of their bina ry counterparts [3] . In
t hat st udy, the main motivation was to develop real-coded geneti c ope rators
havin g similar search power as that in the binary genet ic operators. T he sim­
ulated binary crossover (SBX) operator used in [3] had sea rch power similar
to t hat of a single-point binary-coded crossover operator. The sea rch power
was defined as the ability to create any arbit rary child solution from two par­
ent solutions . Based on a derived probabi lity distribut ion of creating a child
solution in the single-point crossover ope rator, a similar probability distribu­
t ion was used direct ly to choose a child solution in SBX. In that st udy, the
perform an ce of the proposed real-coded GAs with SBX was compared wit h
some of the earlier real-coded GAs and t he bin ary-coded GA. Motivated by
the success of the proposed real-coded GAs in [3], we extend its application
to mult imodal and multiobj ecti ve fun ction optimization problems.

In this pap er we br iefly describe the SBX operat or and extend the concept
of sharing in the real-coded GAs to solve a number of mult imodal funct ions
for mult iple solutions simultaneously. Since children solut ions arb itrar ily
close to t he par ent solutions can be create d using the SBX operat or , t here is
no need to use a separate mating restrict ion scheme . Thereafter , we extend
the principle of nondominated sorting in real-coded GAs to solve a number of
multiobj ecti ve optimization problems for Pareto-opt imal solutions . To show
the efficacy of the proposed techniques, we also show simulation results of the
present ed sharing and nondominat ed sort ing te chniques to optimize the engi­
neering design of a welded beam. The successful working of these techniques
suggest s t hat the real-coded GA using the SBX operator perfor ms similar to
the binary-coded GA and can be used efficiently in solving cont inuous sea rch
space problems.

2. Simulated b inary crossover

When problem variables are directl y used in a GA, binary-cod ed crossover
operators can no longer be applied . A number of real-coded crossover op­
erato rs have been developed that create two children solut ions from two
parent solut ions. In most cases, a probability distribution centering the par­
ent solutions is assumed and two children solutions are created based on that
probability distribution. Creat ing children solut ions using a fixed probability
distribution , which does not depend on the location of the parent solut ions,
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makes the search adapt ive. For examp le, if the parent solutions are close
t o each other , the children solut ions are expecte d to lie in the neighborhood
of t he parent solutio ns . On the other hand, if the parent solutions are far
away from each ot her , childre n solutions far away from t he par ent solut ions
are expected. In early generations of a GA simulat ion, parent solutions are
expected to be away from each ot her and almost any solution can be cre­
ated as a child solution. But when the search converges towards a solut ion,
parent solut ions become similar and children solutions also become closer to
the parent solut ions . T his adaptiveness in the sea rch power of the real-cod ed
crossover operator is similar in principle to the search power of the binar y­
coded single-point crossover ope rator. However , one main difference is that
for the binar y-cod ed crossove r operator , no explicit probability distribution
is used to create a child solution . But there is an implicit prob ability dis­
t ribution that depends on the st ring lengt h used to code t he variable. In a
real-coded crossover operator , a pro bability distribution is explicitly used to
create a child solution . Since an explicit probability dist ribution is used , the
performan ce of real-coded GAs depend on that dist ribution . In earl ier real­
coded GA implementati ons, the choice of the probability dist ribut ion was
somewhat arbitrary and based on intuition . Recent ly in [3], a SBX op era­
tor has been sugges te d with a probability distribut ion similar to that in the
single-point crossover operator used in binary-cod ed GAs . In t he following ,
we briefly describe that crossove r ope rator.

It has been observed that in the binary single-po int crossove r operator,
both children solutions lie either inside (cont racting crossover ) or outside (ex­
panding crossover) the region bounded by the parent solut ions . Moreover , t he
dist ance of one child solution from one par ent is exac t ly the same as t hat of
the other child from the other parent solut ion . Further , there is no apparent
bias for either cont racting or expanding crossover, on expec tat ion . T hus , on
an average, the overall prob abilit ies of contracting an d expanding crossovers
are the same. T he SBX operat or for real-coded GAs has been developed
wit h the above pr operties. In ord er to imp lement this crossover operator for
any two parent solutions PI and P2, a nondimensionalized spread factor 13 has
been defined as the rat io of the spread of creat ed childre n solut ions CI and
C2 to that of the parent solutions as follows:

f3= I~I ·PI - P2
(1)

It can be shown that 13 ::::: 1 corresponds to a cont rac ting crossover and 13 ~ 1
corresponds to an expanding crossover. Writing the decod ed values of two
arb itrary parent st rings in terms of their allele values (0,1) and writi ng the
children st rings created from the parent st rings as a function of the cross-sit e
k along the st ring length, the spread factor 13 has been writ ten in terms of k .
From this dist ribut ion , it has also been possible to calculate t he probab ility
of creat ing a pair of children solut ions having a certain 13. That probability
distribution has been approximated by a polynomial pro babilit y distribut ion
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Figure 1: Probability dist ribut ions used in the simulated binary
crossover operator are shown for different values of th e distr ibution
index n.

as follows:

() {
0.5(n + l) ,6n,

P ,6 =
0.5(n + 1) {3}+2' otherwise.

(2)

In equat ions (1) and (2), the distribution index n is any nonnegative real
number. A large value of n gives a higher probability for creating solutions
near to the parent and a sm all value of n allows distant po ints to be selecte d as
children solut ions. F igure 1 shows the probabi lity dist ribution as a function
of ,6 for different values of the dist ribution index n . T he advantage of using
a pr obab ility dist ribution as a fun ct ion of ,6 is that the created childre n
solut ions are relative to the par ent solut ions. If the parent solut ions are
distant , children solut ions far away from the parent solutions can be created .
On the other hand , if the parent solutions are close to each other , the children
solutions, in general, cannot be far away from the parent solut ions .

In order to create two children solut ions CI and Cz from the parent solu­
tions PI and pz using the above probab ility dist ribution , the following proce­
dure is used .

• Cr eat e a random number u between 0 and 1.

• Find a ,6' for which the cumulative probability

fo {3' P (,6)d,6 = u.

• Know ing t he value of ,6', t he children po ints are calculated as

CI 0.5 [(PI + pz) - ,6' lp2 - PII] ,

C2 0.5 [(PI + P2) + ,6' lp2 - PI ll·

(3)
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(5)

(4)

p'
2

p '
I

T he preceding SBX operator is allowed to create any solut ion in the
entire real space [-00,00], however , it can also be modified for var iables with

known lower and upper bounds (x~L) :::; X i :::; x~U) ) . This can be achieved by
modifying the prob abi lity distribution (equation (2)) so that the pr obabi lity
for a solut ion outs ide the above bounds is zero. A simple way to achieve this
is to first calculate the cumulat ive probab ilities

f3{L)

10 P ((3 )d(3 ,

r:
Jo P ((3 )d(3.

In equations (4) and (5) , the parameters (3(L) and (3(U) are the spread factors
for the lower and upper bounds of the problem var iable, resp ect ively:

T hereafter , two spread facto rs (3~ and (3~ are calculated using mod ified prob­
ability distributions P((3) /P~ and P ((3) /P~ , respect ively, (by using equa­
t ion (3)) to create two children solutions as follows:

CI 0.5 [(PI + P2) - (3~ lp2 - PI I] ,

C2 0.5 [(PI +P2) + (3~lp2 - PI ll .

T hus, the modified prob abi lity distribut ions do not create any solution out­
side the given bounds, instead they scale up t he probabi lity for solutions
inside t he bo un ds , as shown by the solid line in F igure 2. In the figure,
the par ent solutions are PI and P2. The probability distributions for the un­
bounded case (x E [- 00,00]) and the bounded case (x E (x(L), x(U))) are
shown in dashed and solid lines , resp ect ively. It can be observed in the fig-
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F igur e 2: P rob ability distributions are shown for bounded and un­
bounded cases .
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ure that a solution outside the lower and upper bounds has zero probability
to become a child solution, thereby restricting t he search wit hin t he given
bounds.

The focus of this pap er is to st ud y the performance of the real-coded
GA with SBX on multimodal and mu ltiobject ive problems . The applica t ion
of binar y-coded GAs for the solut ion of these problems is finding increasing
attention. This is because the solution of such problems requ ires multiple
solutions to be found simultaneously and GAs ar e particularly suitable for
these problems becau se of their inherent population ap proach . In the fol­
lowing , we first investi gat e the applicat ion of real-cod ed GAs to mult imodal
problems and then st udy t he multiobject ive problems.

3. Multimodal problems using sharing genetic algorithms

A mult imodal problem cont ains mult iple opt imal solutions in it s search space.
The objective of a multimodal fun ction opt imizat ion procedure is to find
multiple optimal solut ions having either equal or unequal objective fun ct ion
values. The knowledge of multiple opt imal solut ions is particularl y useful to
design engineers for choosing an alternative optimal solution, as and when
required . In solving for multiple optimal solut ions, traditional optimization
algorithms need to be applied as many t imes as the number of optimal so­
luti ons. This is becau se most of those algorithms are point-by-point search
methods and can only find one optimal solution at a time. Since GAs create
a population of solutions inst ead of one solut ion in each iterati on , it may
be possible to capture mult iple optimal solut ions in the population, thereby
allowing GAs to be applied only once to find multiple solut ions . After the
pioneering work in [4], resear chers have also develop ed different GAs to find
and main tain a stable subpopulat ion of optimal solut ions in the population
(e.g. , [5, 6]) .

In solving multimod al pr oblems using GAs, the study in [4] was moti­
vated by a "gedanken" experiment based on a modified two-armed bandit
problem. It was observed tha t if the reproduction phase is performed with a
modifi ed fitn ess fun ction obtained by degrading the original fitn ess value of
a solution by a cumulat ive measure of the proximity between that solut ion
and the rest of the population, a stable subpopulati on can be maintained
in t he populati on . They defined a proximity measure (di j ) between any two
solutions i and j either phenotyp ically (with the problem vari ab les dir ectly)
or genotyp ically (with corres po nding st rings) . A sharing fun ct ion Sh(di j )

is used to define the sharing effect of one solut ion t o another based on the
proximity measure of two solutions as follows:

( )
_ { 1 - d~i , if di j 2: a ;

Sh di j -

0, otherwise.
(6)

The param et er a is the maximum dist an ce between two solutions that can
belong to one optimal solut ion . Thereafter , the cumulat ive proximity (m;) of
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the ith solut ion in the ent ire population (of size N) is calculated by summing
the indi vidu al sharing function values as follows:

N

m~ = ~ Sh(di j ) .

j=l

(7)

The reproduction is then performed with the shared fitn ess ii = hlmi in­
stead of the original fitn ess I; This sharing technique has been successfully
applied to many multimodal problems [5, 6J .

We implement the st a ted sharing function concept in real-coded GAs. It
is important to note that th e implementa tion of sharing is only in the repro­
du ction phase; th e crossover and mutation opera tors need not be changed.
The primary differences in the implementation of binary-cod ed and real­
coded GAs are in the coding and in t he recombination operat ors. Thus, the
concept of sharing can also be used in real-coded GAs . Since, in real-coded
GAs th e problem variab les are used dir ectly, phenotypic sharing is a natural
choice. To calculate the proximity measure di j and the parameter (J , the
following guidelines were suggested in [5J and are used here:

di j t ( x (i ) - x (j)r (8)k k ,
k= l

1 t ( (U ) - (L) r (9)(J - - x k x k ,
2{!q k= l

where p is the number of variables and q is the desired number of optimal
solutions .

3.1 Simulation results

The real-coded GA with SBX operator and the shared reprodu ction scheme
have been implemented to solve a number of test problems obtained from
the literat ure and also to a number of random bimod al functions. The per­
formanc e of real-cod ed GAs has been compared with binary-coded GAs on
all test fun ct ions.

In solving mult imodal problems using GAs , the pr imary objective has
been not only to find all optimal solut ions but also to dist ribute th e popu­
lation members well amo ng multiple optimal solut ions [5]. To compare the
performance of different GA implementati ons, a deviat ion measure similar
to chi-square was suggeste d in [5]. T his measure calculates th e deviation of
th e distribution of the population from an ideal distribution, which can be
obtained using the modified two-armed bandit gedanke n experiment from
[4]. The chi-square deviation measure is given as

(10)
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where Tk and Tk ar e the expected value and standard deviation of the number
of ideal solut ions in the kth optimal solution in the population, and rk is the
actual number of th e solutions in the kth optimal solution in the population .
In all our simulations, all solutions having a fitn ess greater than or equal to
70 percent of the globally best fitness are counted as the number of solutions
(rk) near th e corres ponding optimum. However, the suggest ed values of the
par ameters Tk and r k of th e ideal dist ribution for q optimal solut ions having
function values f k' k = 1,2, . .. , q are as follows [5J :

For nonpeak solutions, Tq+l = 0 and r q+l = V~k=l T~ . Equation (10) sug­
gest s that smaller deviat ion measures W yield better distribut ion of t he pop­
ulati on on the optimal solut ions.

3.1.1 Five test function s

Five t est functions , which were used in [5], are solved using real-coded GAs.
The funct ions, th eir dom ain , and the description of the optimal solutions are
given as follows.

MMl: sin6 (5?rx) 0 :::; x < 1

Five equispaced maxima with equal funct ion
values .

MM2: exp (-2In2 ( X~.~.lr) sin6(5?rx) 0:::; x:::; 1

Five equispaced maxima with unequal fun c-
tion values.

MM3: sin6 (5?r(x075- 0.05)) 0 :::; x :::; 1

Five unequispaced maxim a with equal func-
tion values.

MM4: exp ( - 2I n 2 ( X~.~.lr) sin6(5?r(x075- 0.05)) 0 :::; x:::; 1

Five unequispaced maxima with unequal func-
t ion values.

MM5: [1 - ((xi + X2 - 11)2 + ( Xl + x~ - 7)2) /2186J - 6 :::; Xl , X 2 :::; 6

Four maxima with equal function values.

The simulat ion results are compared with binary-coded GAs having a
single-point crossover operator. The following GA par ameters are used in all
simulations.
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Populat ion size N:

St ring length R.:

Crossover pro bability:

Mutation probabili ty:

Distribution index n :

100

30 (for binary-coded GAs )

0.9

o
0-500 (for real-coded GAs ).

F igur e 3 shows the deviat ion measure ijJ versus the distribution index n
on the function MMl. In order to invest igate the effect of n on the per­
formance of the real-cod ed GAs, we have varied n from 0 to 500. Average
deviation measures for generations 101 to 200 ar e plot ted to demonstrat e
that the algorithms not only distribute their populati ons well among all the
optimal solutions , but also maintain the distribution for a large number of
generations . Figure 3 reveals that for small values of n , the SEX operator is
unable to maintain stable subpopulations on all five optimal solutions . The
horizont al das hed line is the deviation measure obtained for the binar y-cod ed
GAs with single-point cross over on this function. Fi gur e 3 also shows that
real-coded GAs perform better than binary-coded GAs when n is some what
larger than 30. The distribution of populati on members is further illustr at ed
in Figure 4, where the deviation measure is plotted with generat ion number.
Figure 4 shows that the real-coded GAs with n = 35 and binary-coded GAs
perform mor e or less the same and that the real-cod ed GAs wit h n = 200 per­
form much better than the binary-coded GAs . T he reason a comparatively
larger value of n is required to adequat ely solve the problem can be explained
as follows. T he deviati on measure described in equation (10) becomes better
if the populat ion is well dist ributed among the optimal solut ions and the
number of lethal individuals (solut ions not belonging to any opt imal solu­
ti on) is low. A little thought will revea l that if two individuals belonging to
two different optimal solutio ns are allowed to cross over , lethal solutions may
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F igure 3: Average deviation measure (for generations 101 to 200) is
plotted with distributi on index n for function MMl.
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Figure 4: Deviation measure is plotted with generation number for
function MMl.

be created . Und er SBX , this possibility can be minimized by suitably choos­
ing a dist ribution index, n . In function MM1, the two extreme peaks are a t
x = 0.1 and x = 0.9, resp ect ively. Since solutions having a function value
greater than 0.7 are considered to belong to the niche of an optimal solution ,
the difference between a child solut ion from the closest parent solution must
be at most equa l to 0.022. T hus, for contracting crossovers, the minimum
spread factor must be equa l to f3 = 0.945. If we want to succeed in 99 per­
cent of crossovers , the corresponding n can be approximately calculate d by
equa t ing the cumulat ive probab ility of success to 0.99 , as follows:

1 - f3n+1 = 0.99.

For the two ext reme opt imal solutions, the above equat ion demands n R> 80.
For the two near est optimal solutions (x = 0.1 and x = 0.3) the requ ired
dist ribution index is n R> 18. T he value of n = 35 observed in Figure 3 is a
compromise between these two values of n.

In order to improve the performance of binary-coded GAs with sha ring ,
oftentimes, a mating restricti on scheme [5] is used . In a mating rest ricti on
scheme, similar solut ions are only allowed to mate with each other, thereby
disallowing the creation of lethal solutions . The SBX operator, on the other
hand , can restrict children solutions to lie in the vicini ty of the parent solu­
tions by using a large value of t he distribu tion ind ex n . Thus, the mating
restrict ion scheme may not be necessary with the SBX operator to improve
performan ce (eit her on-line performance as defined in [7] or our deviation
measure \If) of GAs . In F igure 3, the dashed-dot line shows the deviat ion
measure of the binary-coded GAs with sha ring and matin g rest rict ion . It
can be seen in the figure t hat the real-coded GAs with n higher t ha n about
150 can achieve similar or bet ter performance tha n binary-coded GAs wit h
sharing and mat ing rest riction schemes together .

Similar experiments are perform ed using the ot her four tes t funct ions and
simila r result s are obtained. Figures similar to Figures 3 and 4 are presented
in the Appendix for the fun ct ions MM2 through MM5 .
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Figure 5: Average deviat ion measure (from generations 101 to 200)
of real-coded GAs and binary-coded GAs are plott ed for 50 different
bimodal functions.

3.1.2 Random bimodal function

To fur ther compare the performan ce of real-coded GAs with SBX and binary­
coded GAs, we have created 50 fun ctions having two peaks located at any
two random po ints in the range (0,1). The fun ctional form of the two-p eaked
function (with opti mal solutions close to X l and X 2 ) is as follows:

MM6: O:S X:Sl.

The paramet er b acts like the spread of the opt imal solu tions. We use MM6
with 50 different random combinat ions of X l, X2 E (0, 1) , and b E (0,0 .05) to
create 50 bimodal functions .

Binary-code d and real-cod ed GAs are used to find both optimal solu­
ti ons in the same 50 random fun ctions wit h GA parameters as mentioned
earlier. The average of t he deviation measure \II of the simulation runs from
generations 101 to 200 is calculated in each case and shown plotted versus
the fun ct ion number in Figur e 5. The figur e shows that the performan ce of
real-cod ed GAs wit h SBX (n = 200) is consistent ly bet ter t han that of the
binary-coded GAs. T his is expected because in real-coded GAs the search
power can be cont rolled using the distribution index, n , With a large value
of n , the real-coded GA wit h SBX behaves like a bin ary-coded GA with
sharing and mating restricti on. With large values of n , t he search is always
confined in the vicinity of the parent solutions . T hus, the solutions improve
marginally in each generation and the combined effect of shared reproduc­
tio n and reco mbination operators guide the search parallely towards each
optimal solut ion . Since, in t he above simulat ion of bin ary-cod ed GAs t he
mating restrict ion scheme is not used , there is no restrict ion for the solu­
t ions from different opt ima to mat e with each other. T hese crossovers some-
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times create some nonoptimal solut ions, which deterior ate the pe rform ance
of binary-coded GAs.

3 .2 Fractional sharing

One crit icism against the implementation of shari ng st rategy in GAs is that
for every individual in the population the sharing fun ction needs to be calc­
ulated for every other indi vidual [4, 8]. T his requir es N 2 evaluat ions of
sha ring functions at each generation . However , if pr oper book-keeping is
maintained , this complexity can be reduced to half because the sha ring func­
tion is commutative (i.e., Sh(d i j ) = Sh(dj i ) ) . Alt hough it is suggeste d in [4],
and later in [16], to use a smaller subpopulation (of O(N )) for calcu lat ing
the cumulat ive proximity, no simulat ion results have been reported to the
best of our knowledge. In this sect ion, we investigate the effect of using a
fract ional population for calculat ing the cumulat ive proximity measure.

For each ind ividual in t he population , a small subpopulation P1) of size TJ
(share size) is chosen at random and sharing function values are calculat ed
for each indi vidu al in t his subpopulat ion . Sharing st rat egy remains the same
as before except equat ion (7) is now replaced by the following:

1)

m;= L Sh(di j ) .
j =l

j E P'1

(11)

It is obvious th at if TJ is equal to the population size, equa t ion (11) is identical
to equat ion (7).

In order to st udy the effect of TJ in the performance of sharing GAs, we
apply both binary- coded and real-coded GAs t o test functions MM1 t hrough
MM5 wit h different values of TJ . T he dist ribution index n is kept the same
as that used in earlier simulat ions (i.e ., wit h TJ = N ). Figure 6 shows the
var iation of the average deviati on measur e Wof GAs in generat ions 401 to 500
wit h TJ (which is also the percentage measur e of sha re size to the population

22.5
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3 20.0
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::::;:
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~ 12 .5
>
CDo 10.0
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:ir 7.5
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>-c

MM1
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... MM3
MM4
MM5

0.0 L......~~-'-'---'_~~~~~~---'~~~

o 10 20 30 40 50 60 70 80 90 100

Share Size

F igure 6: Average deviation measure (from generat ions 401 to 500)
of real-coded GAs is plotted versus share size TJ .
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size). F igure 6 reveals t hat beyond a crit ical value of n (much smaller than
the comp lete popula tion size) , t he performance of GAs are similar to t hat of
'f) = N . For example, this crit ical value is only five percent of the populat ion
size in t he case of function MM 1, 15 percent in the case of fun ct ion MM2,
and ten percent for MM3, MM4 , an d MM5 .

Similar performan ce is obse rved with bin ar y-cod ed GAs in [17]. These
experimental result s show that only a small fract ion of the population size is
sufficient to calculate t he cumulative proximity for prope rly dist rib uting the
population to all opt imal solutions .

4. Multiobjective problems using nondominated sorting genetic
algorithms

In a multi objec tive opt imizat ion problem , there is more than one object ive
fun ct ion , all of which are to be optimized simultaneously. Tr ad it ionally, the
pr act ice is to convert multiple object ives into one objective functi on (usually
a weighted average of the object ives is used) and t hen treat the pr oblem
as a single ob ject ive opt imizat ion problem. Unfortunately, this technique
is subjec tive to the user , with the opt imal solut ion being dependent on the
chosen weight vect or . In fact , t he solut ions of the mult iob jective optimization
prob lem can be thought of as a collect ion of optimal solut ions obtained by
solving different single object ive fun cti ons t hat are formed by using different
weight vectors . T hese solutions are known as Pareto-optimal solut ions .

In order to find a number of Pareto-op timal solutions, different exte nsions
of binar y-cod ed GAs have been tried (e.g., [9, 10, 11]). Because of their
population ap proach , GAs are idle candidates to solve this problem . In one
implement at ion of binary-coded GAs, the concep t of nondominated sorti ng of
populat ion members is success fully used to solve some test problems [11] and
a number of t russ-structure optimization problems [12]. We briefly describ e
that method and show how the same concept can be used in real-coded GAs
wit h the SBX operator.

GAs require only one fitness value for an individ ual solution in t he pop­
ulati on . T hus, an artificial fitness value must be assigned t o each solutio n in
the populat ion depe nding on the comparat ive values of each obj ective func­
tion. In order to assign a fitn ess measur e to each solution , in [11] the idea
of nondominat ion among population memb ers from [13] is used . In a popu­
lation , the nondominat ed solut ions are defined as t hose solut ions which are
bet t er in at least one object ive than any ot her solution in the population.
In order to implement such a nondominat ed sort ing concept, the following
pro cedure is adopted .

• T he population is sorted to find the nondominati on set of solut ions . All
individuals in this subpopula t ion are ass igned a large artificial fitness
value .

• Since the object ive is to find a number of Pareto-optimal solutions ,
shar ing is performed among t hese nondominated solut ions and a new
shared fitness is calculate d for each .
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• These solut ions are temporar ily counted out of the populat ion and
the next nondomina ted set is found. These solutions are ass igned an
artificial fitn ess value marginally smaller than the least shared fitness
value in the pr evious nondominat ed set . This is done to impose a higher
pr eference for solutions in the pr evious set than for the cur rent set .

• Sharing is perform ed again among the new nondominated set and this
proc ess continues until all population members are ranked in descend ­
ing order of t he nondominated sets.

• Thereafter , t he reproduction operation is perform ed using these art ifi­
cial fitness values.

• Crossove r an d mu tation operators are applied as usual.

The preceding procedure is implemented with real-coded GAs and sharing is
performed phenotypi cally. The performance of real-cod ed GAs is compared
wit h binary-coded GAs in solving thre e test functions used in an earlier
study [11].

4 .1 Simulat ion r esult s

All of the test functions have two objective fun ctions to be minimized , al­
though the pr eceding pr ocedure can be used for more than two obj ecti ves.
Moreover , the nondominated sorting GAs do not restrict the ob jectives to be
of a minimization type only. A combination of minimization and maximiza­
tion obj ecti ve functi ons can also be handled equally efficient ly. This feature
of nondominated sort ing GAs makes them attract ive in solving mult iobj ec­
t ive problems . In each of the following three test problems, the objective is
to find mult iple Pareto-optimal solutions.

{mmmuze x 2

MOl Par eto solution:
mmnrnze (x - 2)2 0 :::; x:::; 2.

-x if x:::; 1

minimize
- 2 + x if 1 < x :::; 3

M02 4- x if 3 < x :::; 4 Pareto solut ion:

- 4 +x if x > 4 1 :::; x :::; 2 and 4 < x :::; 5.

minimize (x - 5)2

{mimrru ze 2 + (X I - 2)2 + (X2 - 1)2
M03 Par eto solution:

minimize 9 X I - (X2 - 1)2 Xl = - 2.5.
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Figure 8: Th e deviation measures of real-coded GAs and binary-coded
GAs are plotted versus generation number for the multiobjective prob­
lem M02.

The sa me GA par ameters used in the multimodal study are chosen here.
The chi-squar e like deviation measure defined in equat ion (10) is used to
judge the working of the algorit hms. For the test fun ctions MOl and M02,
the dev iation measures are computed for ten equal int ervals (q = 10) in the
Pareto-optimal set . The p erforman ce of both real-coded GAs with SBX and
binary-coded GAs on problems MOl and M02 are shown in Figures 7 and
8, resp ectively. From bo th figur es it can be observed that the p erformance
of real-cod ed GAs is simi lar to that of binar y-coded GAs.

T he real-coded GA has also been able to find a number of mult iple Pareto­
optimal solut ions in M03. As shown in [11], the P ar eto-optimal set for this
problem is the line Xl = -2.5. Figure 9 shows that all p opulation members,
even in generation 500, are distributed along the Pareto-optimal line. Similar
resu lts were found for binary-coded GAs in [11].
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F igur e 9: T he popula tion of solut ions a t generation 500 obtained using
the real-cod ed GAs is shown to have found the Pareto-opt imal line in
problem M03.

T hese simulation results suggest that , similar to the nondominated sort­
ing binary-coded GAs, t he nondominat ed sort ing principle can be used in
real-coded GAs equa lly efficient ly. In order to fur ther test the efficacy of the
above technique, the real-coded GAs with sha ring and nondomin ated sort ing
are applied to the engineering design of a welded beam.

5 . Welded b eam p roblem

A beam of rect an gular cross-section is welded to a memb er to carry a certain
load (F igure 10). T he welded beam problem is a popular engineering design
problem where the object ive is to find a set of four vari ab les (h, f.., t , and b)
such that the cost of fabricat ion of the welded beam is minimum, subject to
sat isfying a number of const raints [14]. In t he origina l welded beam problem
there are five constraints .

1. T he bending stress anywhere in the welded beam is limi ted to the
allowable st rength of the beam material.

2. The shear st ress in the weld is limited to the allowable st rengt h of the
weld.

3. Maximum buckling load that can be carr ied by the plate is caused only
by the applied load .

4. T he deflect ion of the end of the beam is limited t o a maximum permis­
sible deflect ion.

5. T he weld size must be smaller than t he thickness of the beam .
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Figure 10: The welded beam problem.

T he single-object ive, nonlinear optimization problem can be written as fol­
lows:

Minimize cost subject to : 91 (X) = Syt - O" (x ) 2: 0,

92(X) = Ssy - T(X) 2: 0,

93(X) = Pc(x) - F 2: 0,

94(X) = o max - o(x) 2: 0 ,

9s(X) = b - h 2: o.

(12)

For brevi ty, the expressions for the pr ecedin g constraint s are not given here.
T hey can be found elsewhere [14, 15J.

5.1 Multiobjective welded beam design

We convert constraint 94(X) to an addit ional objective fun ct ion o(x). Thus ,
the welded beam pr oblem now has the two object ives of bo th minimizing
cost and end-deflect ion of the beam. T here are now four const raints (91, 92,
93, and 9s) . We use the nondominat ed sor ting GAs discussed in section 4 to
solve t his problem .

At first , the variables are all assumed to take cont inuous values. T hus,
we use nond ominated sorting real-cod ed GAs . A po pulation size of 100, a
crossover probability of 1.0, and a mu tation pr obabi lity of 0.0 are used . A
stochastic remain der roulette-wheel select ion scheme is used. A distribution
index n of 30 is used. The Pareto-optimal solutions foun d after 500 gen­
erations are presented in Figur e 11. Alt hough the Par eto-optimal solutions
are found wit hin the first 50 generations , th e simulat ion is prolonged for 500
generat ions to det ermine whet her the GA can main tain a stable set of solu­
ti ons long afte r they are ini ti ally discovered. Figur e 11 shows that the GA
has been able to find many Par eto -optimal solut ions in one simulation run.
T he solution set cont ains a design wit h a low cost of abo ut $3.90 , having
a deflection of about 0.005 inches . The corresponding design var iables are
h = 0.423, £. = 2.457, t = 9.982, and b = 0.433 inches . The solution set also
contains a cost ly design wit h a cost of about $40, having a low deflect ion
of only 0.0005 inches. T he correspond ing design var iab les are h = 0.426 ,
£. = 2.466, t = 9.981, and b = 4.921 inches. The other solut ions in the solu­
t ion set reveal that the Pareto-opt imal solutions vary only in the value of the
variable b. However , neit her of t he two solut ions ment ioned above (or any
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Binary GA
RealGA
Binary GA with Mating Restriction

The simulati on resu lts show promise in the use of these techniques to ot her
similar opt imization problems.

The successful applica ti on of real-coded GA s wit h t he SBX operator on
continuous variab les in this st udy and in [3] suggests the development of a
combined approach to genet ic adaptive search using both binary-cod ed GAs
and real-coded GAs. Often , optimization problems in engineering and sci­
ences involve mixed variables where some are discrete variables including
zero-one var iab les and some are cont inuous var iables. In the combined GA
approach, a mixed coding representing discret e and continuous variables may
be used . The bin ary -coded GAs may be used to handle discret e variables and
real-coded GAs may be used to handle continuous variables. Although any
standard repr oduction scheme can be used , the recombinat ion operators will
dep end on the underlyin g variable. T he binary single-point crossover or the
simulated binar y crossover may be used depending on whet her the var iable
being crossed is discrete or cont inuous, resp ectively. A similar considerat ion
can be mad e with the mut ati on operator. Such a GA will allow only the
feasible values of the vari ables t o be searched, thereby reducing the search
effort required to find the optimal solution . T his GA will const it ute a ro­
bust and flexible search technique that can be used to solve mixed-variab le
optimization problems effectively [3] .
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Appendix

D evia t ion measure plots for test functions MM2 through MM5
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