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Abstract. Bilinear cellular automata (CA) are those whose next state
may be expressed as a bilinear form (inner product) of the neighboring
states. In this paper it is shown that, unlike linear CA, the bilinear CA
over ZP are m-universal, that is, capable of simulating any CA of the
same dimension, and hence also capable of simulating any (universal)
Turing machine. Evidence is given that the bilinear CA over Z,,,
the integers modulo m, may be universal as well. (Although, like
Conway’s Game of Life, this appears to be difficult to establish, even
for a prime number of states.) A fairly complete Wolfram classification
of the bilinear CA over Z,, is also given.

1. Polynomial representations of cellular automaton local rules

A linear cellular automaton (CA) is one whose next state is given by a linear
[multivariate] polynomial in the neighboring states. As might be expected,
the linear (additive) CA have been more amenable to analysis [2, 11, 13, 17,
19]. Accordingly, the authors have applied these results for linear CA to the
study of their multiplicative cousins, the monomial CA [4]. Here, we take the
next logical step in a progressive algebraic approach to the analysis of CAs,
by investigating the bilinear CAs, whose next state is given by a bilinear
form, that is, an inner product of the neighboring-state vector with itself.
This algebraic approach is motivated by a result in [10], which says that
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every CA over a prime number of states admits a polynomial representation
of the local rule.!

In this paper we show that the bilinear CA over Zf are m-universal, that
is, capable of simulating any CA of the same dimension. It follows immedi-
ately that the bilinear CA over ZJ are also T-universal, that is, capable of
simulating any (universal) Turing machine. Hence, there can be no algorithm
to predict the dynamics of a bilinear CA over arbitrary commutative rings or
modules. This contrasts with recent results in [19], indicating that the linear
CA are not T-universal, even over arbitrary commutative rings. However, it
appears difficult to establish whether the bilinear CA over Z,, are T-universal
(witness the proof of the T-universality of the Game of Life [5]), though ev-
idence is given herein that they may be. We also give a phenomenological
classification of the bilinear CA over the state set Z,, of integers modulo m
along the lines of the Wolfram Classes [20].

1.1 Preliminaries

A ring is a set that is closed under two associative binary operations, where
one operation (called multiplication) distributes over the other (called ad-
dition, assumed commutative, having a neutral element and inverses for all
its elements). A ring is commutative if multiplication is commutative. For
example, (Z, +, x), the integers under ordinary addition and multiplication,
form a commutative ring. Also, (Z,,, +, X), the integers under addition and
multiplication modulo m, form a commutative ring. Likewise, (Z[z],+, %)
the polynomials over Z, (i.e., with integer coefficients), in one indeterminant,
under polynomial addition and multiplication, form a commutative ring. As
an example of a noncommutative ring, consider the set of square matrices
with integer coefficients under matrix addition and matrix multiplication.
Next we define an one-dimensional euclidean CA. Let ¥ denote a finite
alphabet. An one-dimensional euclidean configuration space C, is given by

C={s=---5_25_1505152"-+:8; €L} = 58
When endowed with the metric

p (5(1),3(2)) =|Z[®  where K = mlm{z s £ s}
C becomes a topological space equivalent to the product topology, upon
which a dynamical system can be defined. Then a CA is a dynamical system

T : C+ C that commutes with the shift, o : C — C, given by o(s;) = $;41.
That is, T' is a CA if it is a continuous map and

Too = ooT.

This is a fundamental result from [10]. Further background about CA can
be found in [7] and [22].

1The study in [10] was mainly concerned with symbolic dynamical systems in one
dimension, the result is easily seen to hold for CA in higher dimensions, since any neigh-
borhood may be ordered in such a way as to produce a neighborhood vector, and hence a
polynomial representation of the local CA rule.
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Definition 1. A CA is defined as T-universal or m-universal as follows.

1. T-universal if it is capable of simulating an arbitrary (universal) Turing
machine.

2. m-universal if it is capable of simulating an arbitrary CA on the same
underlying lattice .

Now let § : ¥™ — X denote the local rule of a CA over a prime number
of states (ostensibly, ¥ = Z,). Let &; = (z;, Ti1, ..., Tita—1) be a vector of
indeterminates denoting the corresponding states, (herein called the neigh-
borhood state vector). Then there is a unique polynomial P(Z), in n variables
T = z0,...,Tn_1, such that P(Z) = §(Z). P may also can be expressed as a
sum of monomials:

P(@) = %ak (fo]) (mod p).

The ay, € Z, are then the coefficients of the monomial terms. This is another
result found in [10].

For CA over a composite number of states, there may be no polynomial
representation of the local rule, or there may be more than one polynomial
representation of the local rule. However, we may augment the original state
set to obtain a prime number of states, and use a projection of the local rule
from the larger state set onto the original state set. We shall make use of
this technique in Example 1.

Example 1. The general polynomial modulo 2 for an elementary CA (with
m := 2 states and radius r := 1 (3 neighbors) in dimension one is given by

Paem(z_1,%0,21) = co+ 1y + ca%o + 321 + CaT_1%0

+Cs5T_121 + CeTpT1 + CTT_1ToTq.

Since the number of states is a prime p = 2, each of the 2% = 256 distinct
binary assignments for the coefficients ¢;, corresponds to a distinct elementary
CA rule. We note that the table given in [22] provides boolean exzpressions for
the elementary CA, which is not the same as the polynomials representation
modulo 2, given here (the difference lies in the XOR operation used here
instead of the OR used in standard boolean forms).

Definition 2. A bilinear CA is one whose local rule § : ¥2"+1 — 3 is of the
form

i

where Y is the finite set of states with an addition and multiplication by a
set of scalar coefficients, ZT is the transpose of #, and B = (b;;) is the matrix
of coeflicients with entries b;; € ¥ = Zy.
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The Elementary Bilinear CA
(in Wolfram numbers)

0 6 10 12 18 20 24 30
34 36 40 46 48 54 58 60
66 68 72 78 8 8 90 92
96 102 106 108 114 116 120 126

130 132 136 142 144 150 154 156
160 166 170 172 178 180 184 190
192 198 202 204 210 212 216 222
226 228 232 238 240 246 250 252

Table 1: Wolfram numbers of the elementary bilinear CA.

We distinguish bilinear CA from quadratic CA, which in addition to a
sum involving products of pairs of neighboring states, also have a linear
component and a constant term:

= 3% bixmuant ) Gty e
ik 3

Since z7 = x; (mod 2), we can present the following example.

Example 2. A general polynomial for the elementary bilinear CA is

P(z_1,%0,T1) = CeZoTy + C5T_121 + C4T_1Tp
+c3x1 + CoTp + 11 (IIlOd 2),

which is the polynomial of Example 1, with ¢y = ¢z = 0.

Hence, there are 26 = 64 elementary bilinear CA. Table 1 lists the elementary
bilinear CA by their Wolfram numbers.

While in [22] it is indicated that the elementary CA seem to be too
simple to be T-universal, [16] indicates that the elementary rule 54 might
be T-universal. Hence, the presence of rule 54 in Table 1 suggests that the
bilinear CA over Z,, might be T-universal. However, we have been unable
to find a bilinear polynomial representation for a known T-universal CA. For
example, we have established that John Conway’s Game of Life [5] cannot
be expressed as a bilinear polynomial over Z,, for any modulus m. (A proof
is available from the authors.)

2.  m-universality of bilinear cellular automata over ZJ

In [19], previously known results about linear CA [2, 11, 13, 17] have been ex-
tended to linear CA with state sets over arbitrary commutative rings. Hence,
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it is reasonable to explore the T-universality of bilinear CA over commuta-
tive rings other than Z,,. We show that, in contrast, the bilinear CA over Z§
are m-universal, and hence T-universal. Our result relies upon the original
construction in [1] of an one-dimensional 7-universal CA (UCA). In the same
paper, the following was also established.

For every CA A with m states, there exists an one-way CA A’
which simulates A twice slower and A’ needs at most m2 + m
states.

Hence, there exists an one-way m-UCA U, with m = 14® + 14 = 210 states
and n = 2 neighbors. If we add one more state, we obtain a prime number
of states, p = 211. This also adds 2112 — 210? new neighborhoods on which
U are not defined. However, we may obtain a new one-way m-UCA U’, over
p = 211 states simply by assigning a random next state, (say 0), to the new
neighborhoods. One is then assured by Theorem 19.1 in [10] that the local
rule §(x;, z;41) = U'(z); has a polynomial representation P(zg, ;) over Zai;,
such that P(z;, z;41) = 6(2i, Tig1)-

Now P(zg, ;) can be expressed as a bilinear form in the powers of z
and x7, with coefficient matrix B = (b,,,) as follows:

P(zg,21) = Z by,zgzr] (mod p). (1)

0<uv<p

We therefore expand each cell z;, to a p-tuple Z;, consisting of the powers of
z; over Z,, (with the convention z = 1, even when z; = 0), that is,
2 p—l)_

P 0 .1
Ty = (gm0

The expansion of z; to Z; can be illustrated for one-dimensional CA, by
writing Z; vertically under x;:

g = [z | [%ip]
0 0
:cll $§+1
mzz :c%_‘_l
z = Z; Tit1
=1 p—1
Z; Tiy1

Note that the jth component of Z; is z‘l(j )

a polynomial in 2p unknowns, given by

= 1, so that P may be written as

—1 -1 o sdfF ey
P(:I:?,m}, e 75”? >$?+1’1"1!+17 ces :1’5?+1) = P($i7$i+1) == w?B$i+1~

Let C = Z? denote the configuration space of U’, that is, the set of bi-
infinite strings over Z,. Then P : C — C is the bilinear form of U’ given

in equation (1). Similarly, let CP denote the configuration space consisting
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Figure 1: Lift to a bilinear CA.

of bi-infinite strings of expanded cells ; over Z§. And let £ : C — C?
given by E(z); = Z; be the map that lifts C to C?. We shall construct a
bilinear polynomial @ : C” — CP? for the CA operating on the expanded
neighborhoods.
First, we define a polynomial PY) (&, Z;,1), the jth component of 7; =

E(P(z;,x;11)), as the jth power of P:

P(J)(f’hf't-i»l) = (P(fmfz—}—l))] = Pj(flythl)
Thus, each P9 is bilinear in &, Ziv1:

P(j)(fi,fi+1) = fTB(J)£Z+1
We may therefore define a bilinear polynomial Q([#], [Zi1]) over Z2, (p direct
products of Z,), by

o1

QUE] [Bsa]) = Y POE,Eipa) (2)

=0

so that the diagram in Figure 1 commutes.
We have thus established the following theorem.

Theorem 1. There exists an euclidean one-dimensional, m-universal, bilin-
ear CA over Zb, that is, it is capable of simulating any other one-dimensional

CA.
Moreover, we may generalize this result to obtain the following theorem.

Theorem 2. The multilinear CA over Zb are w-universal, capable of simu-
lating any other CA of the same dimension.
Proof. As a sketch of the proof we first expand the neighborhoods N; of each
cell ¢ with size n = |N;| into n vectors, as follows:

Ni - (fiyfi—)—l,---yfi-l—n—l)-

Now the polynomial representation of a CA defined over Z,, for some prime
p, can be expressed as a sum of monomial terms, that is,

pP n—1 .
Ples, ity Biga—i) = Z Cl H Ifij-
k=1  j=0
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Three Extensions of
the Logical AND
z wip || T | To | Ty | T2
0 0 0 0 0 0
0 1 0 0 0 0
0 2 und | 0 | O | 2
I 0 0 0 0 0
1 1 1 1 1 1
1 2 und | 0 | O | 2
2 0 und | O | O | 2
2 1 und | 0 | 0 | 2
2 2 und | 0 2 2

Table 2: Three possible extensions of the logical AND to Zs.

We interpret each power xf_{_j as a component of Z;y;, so that P may be
expressed as a multilinear polynomial over Zb, (as a sum of the component
polynomials P7). The rest of the argument is the same as that for bilinear
CAs, but independent of neighborhood size and dimension. m

An example

As an illustration of the preceding sketch, consider the following one-way
one-dimensional CA, the logical AND of x; with x4, given by

T(z); = wzwiy (mod 2).

For the sake of our illustration, we shall extend T to include a rule with state
set Zs. There are several possibilities, three of which; Ty, T, and T3, are
given in Table 2. For rule Tj, the next state of each neighborhood containing
the new state 2, is assigned state 0. For rule T,, the next state of each
neighborhood containing state 2, is assigned state 2. Rule T; is the match
rule, which returns x; = x;44 if ; = z;; and 0 otherwise.
The corresponding polynomials P, P;, and P, over Zj are:

Po(zi,mip1) = @imipr + ity + 2iwe + oiady, (mod 3),

Pl(l'i, ZZ?Z'+1) = 2.’Ei.’I}i+1 (.’Ll + $i+1) (lTlOd 3)7

Pz(ll?i, J;H—l) - 21’1 -+ 2$i+1 + (Zl,‘l + .117;+1)2 + :E?l’,?+l (mod 3)
Naturally, we choose to employ the simplest polynomial, P;, for the pur-

poses of illustrating our methods. First, we give the polynomials for each
component of the next state:

P (%, 01) = 1 (mod 3),

Pll(ilii, mi—l—l) = 212’1714_1(931 + -'E'H—l) = 2%?.’17,;_4_1 + 25C-;$?_H (I'I'lOd 3),
P (i, %ig1) = xzzxz2+1(%2 + 22240 + 5'712-4-1)

2zl2} 4 + 2241 (mod 3).
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Combining the P (z;, :41), j = 0,1,2 into Q; ([Z;], [Fi11]) over Z3, we get

0 0
1 x%) xé 1
Q([@], [Fira]) = 0 xﬁ 5564-1
0 Ty Tit1
2 1 1 2
0 %z :vzl 1 0 %1 xlz 1
+ | 2 xé wé | T 2 :1:gL xé 1
0 Z5 Zit1 0 Zi i1
1 1 2 2
0 Z; Tig1 0 Z5 Tig1
1 1 2 2
+ 10 xi :1311 1 |+ |0 a,LZ arlz 1
2 Z; Tit1 2 T Tiy1
a
where { b } € Zb, and multiplication is component-wise.
C

The bilinear form of @, over Z3 is:

Q1[T], [Fia]) =
(221N /717 [o] Jo] N
) 0 0 0 9,
2N o] o] o] | 20, |
[z} ] 07 [0 O] [l ]
] 0 0 2 2l
| = | o] 2] 0] | @l |
[ 22 ] 07 [o] [o] [ 22, ]
7 0 2 0 22,
|z | o] o] [2] | 9 |

Theorem 1 raises the question of how simple the state set can be made for
bilinear CA to remain w-universal. It implies the existence of a m-universal
automaton over Zb for small p, but we have been unable to settle the matter
for a cyclic, or even prime, number of states.

3. Classification of bilinear cellular automata over Z,,

If we assume that the bilinear CAs over Z,, are T-universal, then as an al-
ternative to a complete analysis, we might settle for a classification along the
lines of the Wolfram Classes [20]. In this section, we present a classification
of the bilinear CA over Z,, according to properties of the coeflicient matrix.

Definition 3. We define the following bilinear CA rule types.

1. A column rule is a bilinear CA where all the nonzero coeflicients appear
in one column, that is, b;; = 0 for j # k (fixed), and by, # 0 for more
than one <.
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2. A transverse-diagonal rule is a bilinear CA where all the nonzero coeffic-
ients appear in the transverse diagonal, that is, b;; = 0 for j # n—1—1,
and b;,,—1—; 7 0 for more than one 7. Also we require that the central
entry b, # 0.

3. A main-diagonal rule is a bilinear CA where all the nonzero coefficients
appear in the main diagonal, that is, b;; = 0 for ¢ # 7, and b; # 0 for
more than one 4.

4. A randomly-distributed rule is a bilinear CA where the nonzero coeffic-
ients may appear anywhere in the coefficient matrix b;;.

Observation 1. For bilinear CAs over Z,,.

1. The column rules fall into (an extended version of) Wolfram’s Class L

2. The transverse-diagonal rules fall into (a restricted version of) Wol-
fram’s Class II.

3. The main-diagonal rules fall into (a restricted version of) Wolfram’s
Class III.

4. The rules with random coefficients appear to exhibit Wolfram’s Class
IV-like behavior.

Note that our classification is not consistent with the equivalence classes
formed by diagonalizing B in the manner of classical [bi]linear algebra, (e.g.,
[14]). For example, any diagonal form for a transverse-diagonal rule would
indicate that the global dynamics exhibits Class III behavior. This is the
reason why we refer to diagonal bilinear CAs as main-diagonal rules.

We shall illustrate each class with a typical example. As most of these
examples consist of symmetric bilinear CAs, we define symmetric CAs next.

Definition 4. A CA rule d, is symmetric if, upon reversing the order of the
neighborhood, then the next state remains unchanged, that is,

S Zigry oy Tig1, Tiy Tiz1, -+, Tiy) = By womn 5 Bt 5 By B womn 5 i

A Dbilinear CA, whose matrix of coefficients in given by B = (by;), is
symmetric then if

Zbi]‘xil‘j = an—-i»lzn~‘j—17
ij ij

that is, if the matrix B is symmetric about the transverse diagonal. This is a
sufficient condition, but of course probably not a necessary condition, since
there may be bilinear CA whose matrix does not have this property, but
due to the particular values of the coefficients matched with the modulus, is
nonetheless symmetric. Such cases occur with the elementary bilinear CA.
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Figure 2: Typical evolution of a column rule.

3.1 Class I: Column rules

Example 3. The simple column rule:

P(z) = x,Zz] (mod m).

The matrix of coefficients for the simple column rule consists of nonzero
entries down column [/, and Os everywhere else:

T
i seel  mgg Qo z;
Tjq1 0---0 Qg 0---0 Ti41
Tignd Gvoell gy Oeerl Tipmot

Qualitatively, the global dynamics of a column rule exhibit fixed barriers
within which the behavior is cyclic, usually a fixed-point, that is, they fall in
Class IT under Wolfram’s scheme.

Figure 2 provides a typical evolution in dimension one for k = 15 states
and radius = 3, n = 7 neighbors.

Note that the nonzero cells are isolated by domain walls, within which
the behavior is usually fixed, (and not periodic). Due to the preponderance
of fixed points, we say that the column rules fall in an extended version of
Class I. In section 3.2, we show that the transverse-diagonal rules are very
similar to column rules in exhibiting domain walls within which the nonzero
behavior is restricted. However, transverse-diagonal rules are more likely
to exhibit periodic behavior within the walls, and not fixed-point behavior.
Hence, we say that transverse-diagonal rules are in a restricted version of
Class II.
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Analysis

A polynomial expression for a (centered) column rule is given by

P(@) = miny ajz; (mod m).

J

We may omit the subscript [, in the coefficient a;;, since [ is fixed, and write
the global dynamics T'(z) of a column rule as

T(@) = o) D sy (mod m).

Here, the superscript [, used with the shift ¢, indicates shifting z; by [ places,
resulting in o!(z); = ;4.

Now T'(z) is just the Hadamard (pointwise) product of a shift o!(z); =
%y and the linear rule L(z); = Z?:o a;T;y;, Written

T(z) = o'(z) ® L(z).

Now Y ajziy; =0 (mod m) for dk™* values of (z;, %11, .. -, Tizn_1), where
d = ged(ag, as, ..., an-1,k). And since zt,; = 0 = zit!' = 0, T'(z) must be
“shrinking,” that is, the number of nonzero sites must be decreasing. This
implies that column rules behave much like the monomial CAs investigated
in [4].

Now consider the following fixed-point equation over a finite field Z,,
(which affords us a necessary cancellation law), for [ = 0:

z = z® L(z),

n
T = ﬂfizaﬂiﬂ‘ (mod p),
=

1 = > ajzyy; (mod p).
i=0

This equation has dnP~! solutions, where d = ged(ag, as, - . ., an_1,D).

In order to investigate the possibility of periodic orbits, consider an iso-
lated x; # 0, that is, z;4; = 0 for j = 1,...,n — 1. Then for | = 0,
L(z) = agx;, and therefore the equation for an m-cycle is given by

T; = aom:cf,
_ m
1 = aguz;,

which always has a solution over Z,. (Of course, the cycle length is actually
a divisor of m.)

Remark 1. Any bilinear CA Tp, can be expressed as a quasilinear combi-
nation of column rules, that is,

Tp(z)i = [z ® Lo(z):] ® [o(z:) ® Lu(z)i] © -+~ @ [Un_l(%‘) ® Ln—l(ﬂ?)i] ;
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3.2 Class II: Transverse-diagonal rules

Example 4. The simple transverse-diagonal rule:
P@@) = Y xizy-1—; (modm).

The matrix of coefficients for the simple transverse-diagonal rule consists of
1s down the transverse diagonal, and Os everywhere else:

z; T /0 ...001 z;
Lit1 0 --- 010 Tit1
Titn—1 1r---000 Titn—1

Qualitatively, the global dynamics of a transverse-diagonal rule exhibit
fixed barriers within which the behavior is cyclic, that is, Class II behavior
under Wolfram’s scheme. Figure 3 provides a typical sample evolution in
dimension one for k = 6 states and radius r = 3, n = 7 neighbors.

Analysis

In an attempt to analyze the transverse-diagonal rules, we iterated the simple
transverse-diagonal rule algebraically:

2
T(z); = i+ zi1%iy1,
2. 2 2 2
T*z)i = (%i+Tic1Zipa)” + (2521 + Ti2m:) (T34, + TiTita)
4 2 2 2
(@7 + 2zi127 i1 + T T5y)
2 .2 2 2 . 2222,15)
F(2p 2+ T ZiTis + Ti oTiTL + T 2T Tiy s
4 2 2 .2
= z; + 20, 1% Ti + 227 1T,

2 2 2
+T;_1TiTita + Tia%iT; ) + Ti2T; Tiqa.
Over Zs, this reduces to

2
T#): = @i+ BB + BiaBiTipr + TiaTiiys

= Zi+ Z; (Ti1Tiga + TiaTiy1 + Ti2Tiya) -

In comparison, a similar transverse-diagonal rule on a neighborhood of radius
2 is given by

T(:L‘)Z = I;+ XL;—2%442 + Li—1Ti41 (mod 2)

It is still not clear from this analysis why transverse-diagonal rules should
exhibit the observed behavior. However, there is the following observation.

Remark 2. For k = 2 states, the transverse-diagonal rule given in Exam-
ple 4 is the identity CA map.
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5 4 1 2 1 1 2 1
1 2 1 4 4 1 1 2 4 1
1 1 4 1 2 5 4 4 1
1 2 1 4 2 1 4 2 1 4 4 4 4 1
1 1 4 3 2 3 2 2 2 1
1 2 1 4 3 4 5 4 4 4 1
1 1. 4 3 4 4 3 4 4 2 4 4 1
1 2 1 4 5 4 1 4 4 2 4 1
1 1 4 4 3 2 5 4 4 2 2 1
1 2 1 4 4 1 5 4 4 4 4 1
i 1 4 1 4 1 2 2 2 1
1 21 4 2 3 2 3 4 i
1 L 4 4 1 4 3 4 2 1
1 2 1 4 3 2 4 3 4 -4 1
1 1 4 5 4 4 1 4 4 2 2 1
1 2 1 4 4 3 4 4 1 4 4 4 4 1
1 1 4 4 1 2 3 2 2 1
1 2 1 4 5 2 4 1 4 2 4 1
1 1 4 4 3 4 3 4 E 1
1 2 1 4 4 5 3 4 2 1
1 1 4 2 1 3 4 1
1 2 1 4 1 3 4 2 1
1 1 4 2 1 3 4 1
1 2 1 4 1 3 4 2 1
1 1 4 2 1 3 el 1
1 2 1 4 1 3 4 2 1

Figure 3: Typical evolution of a transverse-diagonal rule.

3.3 Class III: Main-diagonal rules

Example 5. The simple main-diagonal rule:
P@@) = Yz} (modm).

The matrix of coefficients for the simple main-diagonal rule is the identity
matrix, that is, 1s down the main diagonal and Os everywhere else:

T

T; 1 00 0 T;
Ti+1 010 0 Ti+1
Titn—1 000 -1 Titn—1

Qualitatively, the global dynamics of this main-diagonal rule exhibit un-
limited growth for every modulus m, with space-time trajectories reminiscent
of Class III linear CA, such as rule 90: zi*' =zf_ 42! | (mod 2). Indeed,
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1
.1 1 1
1 2 3 2 1
1121 2 11
12 2 21 2 2 2 1
1 1 1 1 1 1 L 1T i
1 2 3 2 2 2 3 2 2 2 3 21
1 1 2 1 1 1L 1 1 11 2 11
12 2 2 2 2 2 2 3 2 2 2 2 2 2 21
y S [ | 1 1 1 1 11

Figure 4: Typical evolution of a main-diagonal rule.

the bilinear CA rule zi™ = (2!_))2 + (2!_,)? (mod 2), is precisely rule 90.
Figure 4 provides an example of a typical evolution of an one-dimensional
case for k = 4 states and radius r = 1, n = 3 neighbors.

Linear cellular automata in bilinear form

It seems appropriate at this point to consider when a bilinear CA is in fact,
a linear CA. In order for a bilinear CA to be linear, we must have

Zbija:ia:j = Zaixi (mod m).
i i

Such linear bilinear CAs are rare. In fact, a cursory study indicated that the
set of bilinear CA rules lie at the maximum hamming distance from the set
of linear CA rules.

However, when b;; + b;; = 0, we would only need

Zbuzf = Zaimi (mod m).

Furthermore, if b;; = a; then we would only need z? = ;. A general condition
such as this one is clearly true for Z,, but only partially true for other moduli.
That is, there may be a subset of states S C Z,, with the property that
Vs € S, s = s, so that certain bilinear CAs are linear on configurations
whose sites have states in S.

Quasilinear bilinear cellular automata

In [12] the basin volumes, maximum cycle lengths, and etcetera have been
calculated for rules 18 and 126, which are both noted to be Class III rules.
“Intriguing properties of global structure” are found between them. Indeed,
in [8, 9] it is noted that under certain block transformations, rule 18 is similar
to the linear rule 90. The idea of block transformations are used in [13] to
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find exact solutions to the forward problem for rules 18 and 126, which are
bilinear CAs, and rule 146, which is not a bilinear CA.
Rule 18 is given by:

Tlg(ill)i = T+ Tip1 + Tia%; + T T (IIlOd 2)

Two equivalent matrices for rule 18 are:

O O =

0
1
1

> OO =

Rule 126 is given by:

Ti26(%); = i1 + T; + Tig1 + Tica1Ti + TiaZipr + TiTipr (mod 2).

Two equivalent matrices for rule 126 are:
111 100
011 110
001 1 1 1

Other Class III bilinear cellular automata

In addition to the linear and quasilinear CAs, there are other Class III bilinear
CAs. In particular, in [21] it is suggested that the elementary bilinear CA
rule 30, given by:

ng(E)i = T + xT; —+ Tit1 + TiTit1 (mod 2)
is an excellent random number generator. Two equivalent matrices for rule

30 are:

100
010
011

OO =
S = o
= O

3.4 Class IV: Random rules

In [6] “Candidates for the Game of Life in Three Dimensions,” are investi-
gated and the following two criteria for rules that are “life-like” is given.

1. All primordial soup configurations must exhibit bounded growth.

2. A glider must exist and must occur “naturally” in the evolution from
primordial soup configurations.

In addition, it is conjectured that these criteria, (which we refer to simply
as bounded growth and gliders), are sufficient grounds for T-universality. Now,
since the bilinear CA over Z are T-universal, and rule 54 is a Class IV
suspect, there are already ample grounds for the conjecture that the bilinear

CA are T-universal. Here we present more evidence. We have found separate
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3 3 2 3 2 3
11 1 3 2 2
1 3 1 1 3 3
3 2 1 1 2 1 2
1 11 2 2 1 2
21 3 21 31 1 2
2 3 1 2 11 2 11 2
2 313 2 2 1 3 2 3 1 1 2
2 3 1. 2 1 1 2 2 1 2 3
2 21 1 2 11 3 1 2 3 3 2 2
2 2 1 3 3 2 3 3 3 1 3
2 21 1 2 31 1 2 2 1 2
2 211113 233 2311312 2
2 3 111 3 2 1 3 1 3 3
2 2 1 111 2 3 1 1 3 1 1 2
2 212 313 233332311 1 2
2 3 1 1 1 31 3 1 11 3 1 2
2 3 1 1 3 11 3 1 1L 1 4 2 1 2
2 21 3 1 1 3 3 3 1 3 1 1 3 2 2
2 21 3 1 1 1 1 1 1 311 2 3
2 21 3 1 3 3 1 3 3 311 2 3 2 2

Figure 5: Example of bounded growth in a bilinear CA.

bilinear CAs that satisfy at least one of the two criteria. However, we have
yet to find a single bilinear CA rule that satisfies both criteria.

Figure 5 provides an example of the bounded growth criteria, based on the
following matrix of coefficients modulo 4:

SO Wk WN
ON = O N
-0 = W
ON = ON
S W~ W

Figure 6 provides an example of a glider, based on the following matrix
of coefficients modulo 6:

DN W o
= ot W
O = N

Actually, the glider behaves more like a soliton (e.g., [3, 18]).
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4 3
2 4 3
4 3
2 4 3
4 3
2 1
3 4
3 2 4
3 4
3 2 4
3 4
4 3 3 3
2 4 3 3 3
4 3 3 3
2 4 3 3 3
1 3 3
5 1 3
3 3 1
3 3 5 4
3 3 3 4
3 3 3 2 4
3 3 3 4

Figure 6: Example of solitons in a bilinear CA.

Rule 54

Perhaps the most important bilinear CA, due to a combination of its sim-
plicity and its candidacy for Class IV, is rule 54, given by:

Tsa(x)i = @ic1+ o+ i1 + o2 (mod 2).

Two of the possible matrices for rule 54 are:

1 01 1 00
010 010
001 1 01

Note that the only nonzero entries off the main diagonal appear on the trans-
verse diagonal.

To investigate the dynamics of rule 54, we examine the fixed-point equa-
tion:

T, = T+ 2+ T + Ty (mod 2),
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010
01110
0100010
011101110
01000100010
0111011101110
0100010001000O0T1TP0
01110111011101110
010001000100O0T1O0O0O0T1T0

Figure 7: Perturbation 0110 of 0 under rule 54.

0 = 21+ Tip1 + 21Ty (mod 2).

This means z; = 0 for every cell 4, or = 0 is the only fixed-point. (Here, 0 is
used to indicate the equivalence class of configurations, ...00000. .., modulo
the center cell, e.g., [4].)

Perturbing 0 by 010, and applying 7', we get the evolution in Figure 7,
which tends to the 4-cycle 0001.

The following calculation shows that there are no 2-cycles:

T524(-T)i = T54($)z‘—1 + Tsa(z); + Tsa(x)igs + T54(33)i-1T54(33)i+1
(Timz + TiaTip1 + Ti—aTiys + TipaTioy + Tiya)
+ (Zicg + TicaTig1 + TicaTigo + Tigaliog + Tiy2) T;

+ (i1 + Ti) Ta

If z; = T%(x);, then

;=0 — (Bi_g + Tiaips + Tiaita + Titaliq + Tiye) =0,
;=1 — x4 + T4 = 0.

But neither of these conditions can be satisfied.

Further investigations of this kind have indicated that the phase portrait
of rule 54 may consist solely of the apparently repelling fixed-point 0, and four
apparently strange attracting 4-cycles: 0001, 0101, 0110, and 0111. (These
are periodic configurations obtained by repeating the given period infinitely
in both directions.) However, the true phase portrait for rule 54 may well be
uncomputable.

4. Diagonalization

Following the line of classical work in linear algebra (e.g., [14]), it is natural
to attempt a classification of the bilinear CAs based upon the diagonalized
local coefficient matrix. The idea is to find a nonsingular matrix P, such
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that D = PBPT is a diagonal matrix. This defines an equivalence relation
~, on the set of n x n matrices over a given field, (Z, in the present case).
That is, B ~ D if and only if (3P)(PBPT = D). Then, the set of matrices

C(D) = {B: (AP)(PBP" = D)}

is an equivalence class.
Put in terms of bilinear CAs, we would like it if

Tp(Tp(z)) = Tp(Th(z))
where

However, the overlapping neighborhoods of a CA prevent this possibility.
As an example, consider the simple transverse-diagonal rule in one dimension
with radius r» = 1 over Zs. The matrix of coefficients is given by:

001
B = 010
100

B is diagonalized by the matrix:

010
P = 10 3
301

Applying PBPT = D results in the identity matrix:

As indicated in section 3, the identity matrix corresponds to the simple main-
diagonal rule, whose dynamics are similar to the unlimited growth of linear
rules. On the other hand, the dynamics of the simple transverse-diagonal
rule is that of periodic behavior within definite walls. Since these two bilinear
CAs are quite dissimilar dynamically, it is apparent that diagonalization will
fail in general to produce a topological conjugacy between the corresponding
dynamical systems. Yet it is still possible to “diagonalize” a bilinear CA in
a more general sense, which we now show.

Consider the following scenario, where T'p is a linear transformation, (us-
ing some P that diagonalizes B), that lifts a “horizontal” n-tuple to a “vert-
ical” n-tuple, reminiscent of the higher block presentation of a subshift (e.g.,
15)).

We use the matrix P to encode x in the following way:

B,

5 .
I

&
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Tp Tp

Q-
4

T

Figure 8: Standard diagonalization of bilinear CA.

Tp
¢ — €
Tp + Tp
CcC — C
Ts

Figure 9: Desired conjugacy for a bilinear CA.

This results in the following diagram:

T = " Tl T Tigl

Ui—1 Ui Uipd

TP(.’L‘)

Il

Vi-1 Ui Vip1
Wi—1 W; Wiqy

We may then define a diagonalization T, such that Ts(z) = Tp(Tr(z)).
However, T is a strictly local rule, that is,

U; ¢ U;
TD(P(.’E)),, = V; D v;
w; w;

We may summarize this as in the diagram in Figure 8.

Diagonalization over an extended field

Naturally, we would prefer that the diagonalization of the diagram in Figure 8
take triples to triples in C, so that we might have the diagram in Figure 9.

We have attempted such a diagonalization over an extended field Zs[o] via
the irreducible polynomial P(z) = 2® —2z® — 1, (which leads to the reduction
formulas o® = 2a® 4+ 1, and o* = o + o+ 2). An element of the extended
field Z3[a] has the form a;a® + aza + a3, which we write (horizontally) as the
triple (aq, as, az). Unfortunately, the resulting system has no solution.

We next thought that perhaps the transverse-diagonal rule is somewhat
special in its defying our attempts at diagonalization. So we tried to diago-
nalize the following simple bilinear CA:

Te(z): = zi (€51 + Tiy1) -
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The matrix of coefficients B, is given by:

010
B = 001
0 00
However, there is apparently no matrix P to diagonalize B over Zs, or
Zs. And based on the general equations for a diagonalization over Z, for p
prime, we conjecture that there is no diagonalization of B over Z,. Hence, it
appears that even if there were nice (canonical) diagonal forms over Z,, not
all bilinear CA would admit to a diagonalization.

5. Conclusions

We have established the 7-universality of bilinear CAs over ZE, and have
provided evidence for the T-universality of bilinear CA over Z,,. However, a
proof remains elusive. But if the bilinear CA over Z,, are indeed T-universal
(as we suspect), then there is no possibility of a general purpose algorithm
for predicting the global dynamical behavior of any nonlinear CA. The best
we can do is to attempt a phenomenological classification along the lines of
that presented herein.

On the other hand, if it turns out that the bilinear CA over Z,, are not
T-universal, then the question becomes whether the quadratic CA over Z,,
are T-universal. Barring that, is there a T-universal cubic CA over Z,,7
While these questions also remain open, the authors have found a quartic
polynomial representation for Bank’s computer, a known T-universal CA.
However, Bank’s computer is a two-dimensional CA, so another question
arises as to whether there exists a T-universal CA in one dimension with
degree less than 4. So far, the authors have not found a T-universal CA in
one dimension whose polynomial representation has degree less than 18.
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