
Complex System s 9 (1995) 477-490

Misspecifying GARCH-M Processes

Enrico C apobianco'
Department of St atisti cal Sciences,

University of Padua,
Padua , It aly

Abstract. We consider th e relationships between ARCH-type and
stochast ic volatility models. A new class of volatility models, called
generalized bilinear stochastic volatility, is described following an ap­
proach that tr ansforms an init ial GARCH-M process. Th e focus here
is on th e interpretation of some simulation results, with a special care
devoted to model misspecification.

1. Introduction

The strong impulse that motivated the field of finan cial time series volatility
models,1 after t he seminal work on aut oregressive conditional heteroskedast ic
(ARCH) models [11], soo n mat eri alized in a wide spectrum of methodological
proposals and applicat ions, mak ing this field a high ly desired ground for
testing stat ist ica l inferenti al t echniques. Nevertheless, some of the aspects
related to ARCH-typ e models, and initially pointed out in [11], have not yet
captured the same interest . In this pap er we will deal with some of these
aspec ts , which automat ica lly lead us to look at ARCH-typ e models not as
struct ural features of the data-generating process (DGP) for which we have
temporal observations, but as potentially incomplete models, that is, models
with some latent structure or features that are not immedi ately revealed but
can be possibly discovered in a subsequent stage of t he specificat ion analysis.

We propose here a new class of st ochastic volatility processes and we com­
pare them to the models from which they originate. We pr esent some simu­
lation expe riments . Our goal is t o verify the potenti al of this class of models
for discovering features of the underlying DGP that were not event ually ac­
counted for by t he original model becau se of missp ecification. Therefore, t he
assumpt ion that some missp ecification can possibl y occur for GARCH-M
processes wit h t ime-varying par amet ers rep resents a sort of mast er hypoth­
esis for our results. We think that this is not a bizarr e hyp othesis, and we
offer some motivations for it .

' Curr ent ly a Postdoc Visit ing Scholar at St anford Uni versity, PDP Research Lab.
ISee, for exa mple, [5, 23] for discussion and [4] for an extensive review.
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The paper proceeds as follows. In sect ion 2 we bri efly int roduce ARCH­
type and stochas tic volatility models; we also report on th e relationships
between them and bilinear processes. In sect ion 3 we describ e the model
chosen here for analysis (i.e., the GARCH-M), and show how to switch to
a new and more comp lex class of stochastic pro cesses. Section 4 deals with
model interpretation and misspecification issues in the light of other aut hors '
investigations as well. Section 5 reports about some simulat ion expe riments ,
and sect ion 6 gives the conclusions .

2. Volatility m odels

The simple ARCH model is given by the following specificat ion for the ob­
served returns Yt and the relat ed volat ility pro cess ht:

Yt= X;b+Et (1)

where Et/:Ft - 1 rv N(O , ht ),2 and

(2)

The order of the model is q and the a i coefficients must be nonnegative
in ord er to sat isfy the nonnegativity const raint requir ed by t he condit ional
vari ance ht . A well-known generalizat ion of the ARCH is the GARCH mode l
[3], and ind ependent ly [22], which allows for the presence of th e lags ht - i in
the specificat ion of the condit ional var ian ce:

ht = a o + a 1ELl+ f31ht-1 (3)

resulting in this case the GARCH(l ,l) model.P
An alte rnat ive and also popular class of models is known as stochas­

tic volati lity (SV). Here a stochastic mechanism is introduced , that is, a
shock that is random and ind epend ent (from the past information) drives
the volatility pro cess , toget her with ot her predeterminated variables. Now
li; is no longer observable because of the contemporaneous random vari ability
added by the separate noise.

In [1] a GARCH(l ,l) is generalized to a SV model as follows:

(4)

with Zt rv i.i.d .(O, 1) and the volatility process given by

ht = W + f3 ht- 1+ a ht-1Ut (5)

with Ut rv i.i.d .(l , (J~ ) , Ut > 0; (Zt ) and (Ut) ar e ind epend ent of each ot her and
wit h respect to :Ft _ 1.4 Without the substitut ion , the same equation defines
an example of stochastic autoregressiv e volati lit y (SARV) models.

2 :;::t - 1 is t he information availab le through th e observed data up to time t - l.
3T he volati lity process is not considered stoc hast ic so far , but it cha nges according to

th e past information set :;::t-1.
4W hen the volat ility equation is written as h t = W + f3ht- 1 + b + a h t- 1 ]u t, replacing

Zf-1 for U t and given 'Y = 0, a GARCH(l ,l) is easily obtained. Now h t is measurable with
resp ect to :;::t-1 and the model is th erefore conditiona lly heteroskedastic.
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Quite int erestingly, ARCH-ty pe models have revealed connect ions with
ot her general stochast ic pro cesses too; for example, th e bilinear processes
considered in [15, 24, 25]. In [25] it is shown how difficult it is to tr y to
separa te th e dynamics involved in the first two condit ional moment s of the
distribut ion of interest when ARCH and bilinear ity are conte mpora neously
present in a model such as

p Q

¢ (B )(Yt - j.t) = e(B) Et +I: I: (3ijYt- iEt-j
i=lj=l

R S

ht = ao +I: aiEL + 8o(Yt - j.t? +I: 8j (Yt- j - j.t)2
i= l j=l

(6)

(7)

with Yt as the forecast for Yt calculated at t ime t - 1. In [15] a state space
form ulation is given for a bilinear process obtained from an ARC H model.
St arting from

and given

h1/ 2
Et t

ao + a 1(Y;_1 - ao) + .. .+ aq(Y;_q - a o)

(8)
(9)

(10)

with E; = rlt -1 + 1 and y; = x; + ao, after some calculations it is easy to
obtain the bilinear state space representation

Xt + ao
p p

I: aiXt - i +I: ai Xt-i'l7t-1+ a 0'l7t-1
i=l i = l

(11)

(12)

where 'l7t is dist ributed as a X~ random variable that is not cente red and has
a var ian ce equal to 2.

In these examples the models considered were quite simp le. We will
st udy th e case wher e we have a more comp licat ed model setup, given by the
GARCH-M process, and we transform this process to obtain a new volatility
charac terizat ion with several stochast ic features that differ from the initi al
ones .

3. A new cla ss of stochastic vo latility processes

3.1 The general framework

Our candidate mod el for the analysis is the generalized autoregressive condi­
tional heteroskedastic with eff ects in mean (GARCH-M) [12]. The imp ort ance
of the relationships between market risk and expected returns is crucial in
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finance theory, and this model takes int o account the risk premium allowing
for the introduction of the volat ility process into the condit ional mean equa­
tion. Following [9] we represent the GARCH-M model wit h a t ime varying
mean-vari an ce rat io:

Yt bih«+ et (13)
bt bt- 1+ Vt (14)
ht ao + al'TJZ- l + aZht- 1 (15)

T)t Yt - Et-1 (Yt) (16)

where et and Vt repr esent zero-mean uncorr elated whit e noises whose var i­
ances are respecti vely ht and Qt , li; measure s the volatility, and bt is the so­
called pr ice of volat ility. The novelty here, compared to the original model,
is the t ime-varying coefficient that relates the first two conditiona l moments,
which is assumed to be dist ributed as a random walk instead of being a con­
stant term. T hus, an addit ional source of randomness is introdu ced . Use of
t he Kalman filter algorit hm is proposed in [9] in order to estimate the model
in the given state space representation ; it is well known that a likelihood
fun ct ion can be obtained via t he prediction err or decomposition , and the
same functi on must be maximized with respect to the parameters of interest.
From a methodological point of view, the recur sivity of this est imatio n pro­
cedure seems a suit able and convenient property to exploit in order to avoid
the difficulty of operat ing a separate est imation of the conditional mean and
variance parameters in the way usually done for ot her ARCH-type models.
Wi th the state space fram ework and the Kalman filter bu ilt on it , the est i­
mate of the two equations can be execute d in two sequent ial steps at each
observation in the available sample. First, at t ime t , an estimate of the condi­
tional variance ht is obtained and a new innovation value T)t can be computed
from the Kalman filter ; then , this last value is used t o calculat e the updated
quant ity ht+l' and the process is rep eated as before at each observation .

In this more complicated setup , given the presence of var ious stochas t ic
influences coacting to drive the underlying observed process, it seems inter­
esting to analyze the possible consequences of misspecifying, for instance,
the pri ce-of-volatility formulation , (i.e., bt ) , and/or the market risk premium
(i.e., btht). Both of them repr esent a very important subject of discussion in
finance, given that no unifying theory exis ts and t here are no hom ogeneous
result s from the empirical side (e.g., [2]) to justify recourse to a particular
functional form for the risk premium or a given pri ce-of-volatili ty spec ifica­
tion .

3 .2 A new formula tion

New interesting formulat ions can be obtained through a t ransformation of
the GARCH-M process, whose complexity depends on the var iab le selected to
represent the volat ility process. We show here one of the possible deriva tions.P

5 A more detailed explana tion is offered in [8].



Misspecifying GARCH-M Processes

Consider t he following GARCH(p, q)-M model:

1

bth ; + I t

L O!i'f/L + L (3j ht- j
i=l,p j=l,q
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(17)

(18)

where I t ~ NID( O, ht ) an d 'f/t = Yt - Et- 1 (bth;/2) is the innovation of the
model. T he coefficient bt can be described by an AR(p) process:"

(19)

or , equivalently,

(20)

where ¢(z ) = 1 - ¢ lZ - ... - ¢pzP and rt ~ WN(O,CJ; ).
As an assumption regar ding the squared transform of the coefficient in

equ ation (20) , we allow the following relation to hold:

(21)

(22)

where Et = ¢ 2 ( B ) Et_ l +¢2(B )kt, with kt that t akes only positive values. This
pro cess could be seen as a control input vector whose nature is exogeneous
and therefore independent from the variable of interest (i.e., volatility) in
our context. To verify the last rela t ion , just define Et = r; and substitute
first for r; in bi = ¢-2(B)r; and then for Et in it s AR formulation. More
generally, a complete signal-plus-noise model related to the process b; is given
by bi = Et-l + kt an d Et = F Et-l + Gk t , and the fram ework built up so far
should be int erpret ed as follows. The first important ass umption is that the
risk pr emium is not time-invar iant but vari es with an agent 's perceptions of
the underlying economy un certaint y, t hat is, according to the opport unit ies
and pr eferences of the invest ors toward risk. Another ass umption concerns
the choice of relaxing the usually ret ained random walk hypothesis for the
distribution of the coefficient b; of risk aversion , that is, the slope coefficient
in the condit ional mean linear equat ion relating the excess returns to their
variance.

The following relation is easily shown to hold:

b;ht = ( Et-l + kt) (~p O!i'f/;-i + j~/jht-j )
and thus we can obt ain li; as

ht = kt L (3jht_jb; 2 + L (3jht_j Et_l b; 2
j j

+ L O!i'f/;_i Et_ l b;2 + kt L O!i'f/L b;2 . (23)

6Note that it is possible to generalize the pro cess for bt to a stationary and invertible
ARMA(p,q).
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The evidence here is that ht represent s in fact a pr ocess with respectively an
autoregressive term, a bilinear part , a mixed input ," and a not necessarily
gaussian-colored noise.

Defining x; = (Yt - It)2 , with It rv NID( O, ht ), where ht is distr ibuted
as in equation (18), we do not observe x; exact ly; only a noisy version of
it can be measured . Since ht repr esents a state vari ab le, once an appropri­
ate t ransformation of equat ion (23) is taken , a complete state space model
then results. As a first step , we aim at representing a markovian form for
the model. This allows for standard specificat ion and est imation techniques
to be applied . However , it is shown in [21] that in ord er to do this, some
assumpt ions are requ ired in cases where nonlinear predictor spaces are con­
sidered . In par ticular , we must fix the state vector dimension in a way that
both the availab le information and most of the struct ure of the original model
are ret ained .

T herefore we first find a so-called vectorial bilinear form by fixing the
vector (3 = [(31 ' " (3j jT and the state vector Ht' = [Ht'( I) '" Ht'(m)jT, where
the new st ate variable is indicated by Ht'(j) = ht - m +j , for j = 1, . .. ,m. We
are thus assuming that the dimension of the st ate vector is m. 8 T hen, we have
to apply consequent transform ations to th e ot her variables and coefficients
involved . Given the sca lar control input , we just adjust for the coefficients Q i

(i.e., it becomes a component of the vector Q) and the variab les r';_i (which
are transformed in 77;). As a last step, we define some new time-varying

t i . di . t k, 1 A (3 B (3 C ' *quan iti es, accor mg 0 Pt = [;2 , qt = /;2 , t = Pt , t = qt , t = qtQ 77t ,, ,
and D; = PtQ'77; . T hus, we obtain the following new transformed volatility
spec ificat ion:

H *t
Yt

At H;_l + B t H;_l tt-1 + Cttt-l + D,
G'H; + Vt

(24)

(25)

where G = [0· . . tt_dT and Vt is an ad dit ive noise derived from the repr esen­
tation obtained under the condit ions established by equation (21). Note that
this is a quasi-markovian bilinear r-epresentation for the stochastic volatility
process (also called GeBiSV in [8]), where the word quasi stands for the fact
tha t the usually ret ained gaussian assumpt ion about the noise's distribut ion
is not necessarily sat isfied here. Moreover , the original volatility is recovered
by ht = F' Ht', where F = [0 0 . . . 1jT. The new measurement equa t ion is
the following:

(26)

where the new process Zt measures wit h a noise Vt t he previous pro cess b;ht
and Vt rv NID(O, ht ), or alte rnat ively, we assume that Vt = h~/2Ut , with Ut rv

7In this term different forces are acting together : the lagged squared model inn ovations,
7); , th e inverted time-vary ing squared coefficients bt:2 , and the lagged process Et - 1 '

8T his assumption, commonly retain ed , is crucial for some aspects . We follow here the
common practice of fixing a finite dimension , but how to fix it is an open pr oblem. We
are considering this topic for a companion pap er.
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NID(0 ,1 ).9 In a more compact form, the observat ions from the described
stochastic system are repr esented by Zt = Ht h t + GtUt , where H; = bZ is
the measurement (stochast ic) matrix and Gt = I , in the regression case , or

G - h- 1/ 2
t - t .

4 . Interpreting the n ew models

In [Ll ], the seminal work on ARCH models, some missp ecification aspects
were discussed for which clear answers have not been found yet . ARCH mod­
els could theore tically be the result of a misspecified underly ing regression
model with nonARCH errors , thus imp lying that some omit te d var iab les or
stru ctur al changes are possible features of the DGP which result unobserved
or lat ent at th e first st age of the analysis. In [10,16] this aspect is empha­
sized , likewise the fact that ignoring a residual conditional mean non linear ity
would have important consequences for the theoretical understanding of the
dyn ami cs involved and the empirical an alysis, par ti cularl y with regard t o
point predict ion .

Recent work on non linear t ime series models st rongly directs the at ten­
tion to this fact , and various impor tant contributions seem to justi fy the
hypothesis that some nonlinear ity is not fully accounted for by ARCH-typ e
models. For example, in [13, 14] an approximat ion of the joint density for
condit ioning and condit ioned vari ab les is int roduced using a Hermite series
expansion about the gaussian density, which allows the deviations from it
to be captured by the higher-order terms. ARCH processes can be modeled
too , with particular insight for exchange rates because of residual nonlinear­
ity evidence, even after t he conditiona l het eroskedasticity has been accounted
for.

Ot her interesti ng pap ers, related to the BDS test [19, 20], extended pa­
rameterizations involving the condit ional density of normalized errors [17],
and Markov switching structures [6, 16], resp ect ively, indi cated that (1) extra
nonlinearity is present in the model aft er the routine ARCH-typ e analysis; (2)
there is statistical significance of shape parameters in the err or distribution;
and (3) regime shifts have impact on the observed time series.

Therefore, we could reasonably look at ARCH effects more as a ph e­
nom enon with a strong missp ecificat ion nature than as a st ruct ural aspect of
the DGP at hand, at least in many cases and un der var ious conditions . T he
present pap er suggests what cha nges could occur in the model once it proves
to be misspecified and it beco mes evident, from the graphs of simulat ions
shown in the next sect ion , that the possible missp ecification may be har der
to detect th an is expec te d . While in [25] the intervent of bilinearity is explicit
as a feature of the DGP, here second- and higher-order interact ions show up
in the volatili ty process from a t ransformation of an original GARCH-M pro­
cess. In our setup , at a first glance , it appears more prob lemat ic to t ry to

9Simply ass uming that the disturbance in th e condit ional mean equat ion is a white
no ise, we obtain a regression model with st ochastic regressors h, and time-vary ing coeffi­
cients b~ .
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separate the different sourc es that dr ive the observed DGP, thus leaving the
misspecification causes not easily ident ifiable.

Ignoring the question of which is the best approximat ing DG P govern­
ing the mean -var iance rati o can have important consequences in terms of a
correc t model specificat ion . T herefore, a first contribution here given is to
show int eresti ng consequences that derive from a possibly incorrect choice
of the funct ional form of t he market risk pr emium te rm for t he expected
volat ility , (i.e., g( bt)hf). In our example we assume an AR specificat ion for
the mean-var ian ce rat io; then, to choose the fun ct ional form of the volat ility
term characterizing the risk premium term is important , since we could find
two complete ly different volat ility processes once we deviat e slight ly from the
initi al mod el condit ions . In the following sect ion we comp lement our tech­
nical resu lts wit h some simulation experiments that show- not sur pr isingly
pe rhaps-the similarity exist ing between different classes of SYM. This is
not a surprise in t he light of the many possible empirical phenomena that
can influence volatility an d the observati ons at hand , but nevertheless it is
wort hwhile to menti on that this same fact can have some relevance for under­
st anding covariance-nonstationary set tings , which, acco rding to some recent
literatur e, are ga ining more an d more credit among researchers in the field
(e.g., [18]).

5. Simulat ion experiments

We gener ate data from a GARCH(1,I )-M pro cess wit h t ime-varying param­
et ers , obtained as a spe cial case of the general fram ework here present ed.
T hen anot her simulated t ime series is derived from a GeBiSY(I ,I) pro cess
obtained in correspo ndence with the first one. We investigat e the degree of
missp ecification that we could possibly face when we consider a risk premium
as in the GARCH-M set up without purs uing the investi gat ion of a different
fun ct ional form for it.

T he general st ruc ture of the models we want to generate is given by

Yt = ERP1,t + et

with ERP1,t = bth~ !2 , et ~ NID (O, ht) , and ht GARCH(1,I )-M spec ified , and
by

Zt = ERP2,t + Vt

wit h ERP2,t = b;ht , Vt ~ NID(O, ht) , and ht given as in the GeBiSY specifi­
cat ion .

Fro m the general model we have t he following GARCH(I ,I )-M mo del:

Yt = bth~ !2 ; ht = a(f1;_l + c1ht-1

wit h bt = bo + ¢ l bt- 1 + Tt . T hen t he correspo ndent GeBiSY( I ,I) model is
given by:

Zt 'Ytht + Vt

ht kt/31ht_l'Yt- 1 + (31ht- 1Et-l'Y; 1+ Q1TJ;_lEt-l'Y;1 + ktQ1TJ;_1'Y;1
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GARCH-M and GeBiSV(Normal(mean= l , st. dev.=O.3)) simulated series
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Figure 1: First experiment: gaussian case.

and, defining ktl t
1 = m t, it follows that Et_llt 1 = 1- m t, and thus we have,

afte r some more calculat ions , the following final form for the volat ility :
\

T his last equation, together with the Zt variable, is the GeBiSV model that
was simulated .

Three experiments are presented ; for each of them the size of the sim­
ulated set of obse rvat ions is n = 300. T hey differ for the dist ributional
assumptions about the kt innovation influencing the risk aversion coefficient
It that charac te rizes the GeBiSV formulat ion . In one case (F igur e 1) we
adopted n orrn aliji = 1, o = 0.3) distr ibution ; in anot her case (Figur e 2)
a uniform(O ,I) distr ibution ; and still other results (Figure 3) under the
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GARCH-M and GeBiSV (uniform) simulated series
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., -fl--'--+----'/-11f-'--.l--'l-- -I----+-+--+It--+-- +-t+-l-------'-f---i-H----'t-- ---jf

-2 +-- - -+--- ----- ---+------------- t-----t

-3+----------------- - --------- - - -----
1- y z I

generated volati lities

Figur e 2: Second experiment: uniform case.

hypo th esis of a Pois son distribution whose mean is 0.05. The par ameter
st ructure of the conditional mean , risk aversion coefficient , and volat ility co­
efficients in the three experiments is fixed at the following values: bo = 0.5 ,
4>1 = 0.4, T rv NID(p, = 0, a = 0.2), ho = 0.4, a1 = 0.1, C1 = 0.7, So = 0.8,
(31 = 0.2, and a 1 = 0.2.

From the visual inspection of these genera ted DGPs and the related
volatiliti es we can not ice th at , under some condit ions about the residual
distribut ions and the model st ructure, sto chast ic processes with very similar
characterist ics but different nature and order of comp lexity can be derived
from th e variation of the functional form of th e systema tic term in th e con­
ditional mean equation . Even if the resulting data patterns are quite close in
our models, imp ortant differences are int roduced , since both the risk aversion
coefficient and the vola tili ty pro cess present a different st ochastic character­
ization compared to the starting GARCH-M model.
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GARCH -M and GeBiSV (Poisson) simulated series
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-3 L - - - - - - - - - - +_

I-Y ------- z I

generated vo latilities

Fig ur e 3: T hird exp eriment : Poisson case .

Further experiments were done in orde r to verify the sensitivity of the
generated DGPs and volat ilities to the parameter model structure and in­
novation distributions (e.g. , gamma innovati ons) ; the result s suggeste d tha t
the range of parameter values and dist ributional hyp otheses that present
the previously mentioned int eresting features wit h regard to the simulated
returns and volat ilit ies is not particularly restri ctive. In summary, under a
value aro und 0.5 for the autoregressive coefficient in the risk aversion relation
and controlling the GARCH-M and GeBiSV volatility coefficients in ord er
to avoid cont emporaneous (i.e., with regard to both the autoregressive and
the exogenous model component s) near-unitary sit uations, the framework
proves to be quite stable. Two different level coefficients were adopted in the
volatility equations so that it would be easier to recogn ize the similar pattern
structure characterizing these two different volatility formulations.
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A first considerat ion that der ives from t he given resu lt s is t hat if we con­
sider the case where one or more regim e shift s are enc ounte red in t he condi­
t ionally heterosked asti c dat a at hand, from t he analysis of some subsample
p eriods we could find t hat stock ret urns show vola t ility struc tures with dif­
ferent underlying dependence laws . In ot her words , according to t he various
possible regimes, one can observe different vola t ility shap es. As a resu lt , we
could missp ecify our initi al mo del and not be able to re cogni ze the presence
of covariance nonsta ti onarity for the series at hand. In t his im por tant but
(in t he light of t he previous results) possible case, it would b e possib le not
only to missp ecify t he t rue model, because of the misacknowledgment of t he
presence of a switching regime stochast ic nature for the GA RCH-M pro cess,
but also to ignore t he fact that different volatility processes could plausibly
b e suspected of coact ing and thus characte rizing the various regimes . There­
fore, a shift b etween classes of volatility models, not simply b etween models
in the ARC H class, could occur , according to the regim e cons idered .

6 . Conclusions and fu t u re research directions

T he resu lt s given in this paper exte nd t he analysis of the relationships b e­
tween volatility stochas t ic processes and allow for interesti ng conject ur es
when t he start ing point of t he analysis is a GARCH-M model. T he structur e
of t he GA RC H-M model has not been unanimo usly and uniquely specified
yet , parti cul arly wit h regard to t he choice of t he risk premium fun cti onal
representa tion. Thus, missp ecificati on is possible if one deviates from the
usu ally retained ass umpt ions, and this comes to b e relevant for t he inferen­
t ial aspects involved , since different classes of volatility stochast ic pro cesses
can underly the observed t ime series .
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