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Abstract. We consider the relationships between ARCH-type and
stochastic volatility models. A new class of volatility models, called
generalized bilinear stochastic volatility, is described following an ap-
proach that transforms an initial GARCH-M process. The focus here
is on the interpretation of some simulation results, with a special care
devoted to model misspecification.

1. Introduction

The strong impulse that motivated the field of financial time series volatility
models,! after the seminal work on autoregressive conditional heteroskedastic
(ARCH) models [11], soon materialized in a wide spectrum of methodological
proposals and applications, making this field a highly desired ground for
testing statistical inferential techniques. Nevertheless, some of the aspects
related to ARCH-type models, and initially pointed out in [11], have not yet
captured the same interest. In this paper we will deal with some of these
aspects, which automatically lead us to look at ARCH-type models not as
structural features of the data-generating process (DGP) for which we have
temporal observations, but as potentially incomplete models, that is, models
with some latent structure or features that are not immediately revealed but
can be possibly discovered in a subsequent stage of the specification analysis.

We propose here a new class of stochastic volatility processes and we com-
pare them to the models from which they originate. We present some simu-
lation experiments. Our goal is to verify the potential of this class of models
for discovering features of the underlying DGP that were not eventually ac-
counted for by the original model because of misspecification. Therefore, the
assumption that some misspecification can possibly occur for GARCH-M
processes with time-varying parameters represents a sort of master hypoth-
esis for our results. We think that this is not a bizarre hypothesis, and we
offer some motivations for it.

*Currently a Postdoc Visiting Scholar at Stanford University, PDP Research Lab.
1See, for example, [5, 23] for discussion and [4] for an extensive review.
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The paper proceeds as follows. In section 2 we briefly introduce ARCH-
type and stochastic volatility models; we also report on the relationships
between them and bilinear processes. In section 3 we describe the model
chosen here for analysis (i.e., the GARCH-M), and show how to switch to
a new and more complex class of stochastic processes. Section 4 deals with
model interpretation and misspecification issues in the light of other authors’
investigations as well. Section 5 reports about some simulation experiments,
and section 6 gives the conclusions.

2. Volatility models

The simple ARCH model is given by the following specification for the ob-
served returns vy, and the related volatility process h;:

Ye=aib+e W
where €,/ F;_1 ~ N(0, h;),? and
he = o+ angly + -+ g, @)

The order of the model is ¢ and the «; coeflicients must be nonnegative
in order to satisfy the nonnegativity constraint required by the conditional
variance h;. A well-known generalization of the ARCH is the GARCH model
[3], and independently [22], which allows for the presence of the lags h;—; in
the specification of the conditional variance:

hy = ap + 01163_1 + Bihy—y (3)

resulting in this case the GARCH(1,1) model.?

An alternative and also popular class of models is known as stochas-
tic volatility (SV). Here a stochastic mechanism is introduced, that is, a
shock that is random and independent (from the past information) drives
the volatility process, together with other predeterminated variables. Now
h: is no longer observable because of the contemporaneous random variability
added by the separate noise.

In [1] a GARCH(1,1) is generalized to a SV model as follows:

€ = hz/zzt (4)
with 2z, ~ 1.1.d.(0, 1) and the volatility process given by
hy = w + Bhy_y + ahy_yuy (5)

with uy ~ 1.i.d.(1,02), uy > 0; (2;) and (u;) are independent of each other and
with respect to F,_;.* Without the substitution, the same equation defines
an example of stochastic autoregressive volatility (SARV) models.

2F,_, is the information available through the observed data up to time ¢ — 1.

3The volatility process is not considered stochastic so far, but it changes according to
the past information set F;_;.

“When the volatility equation is written as hy = w + Bhi—1 + [y + ahs—1]us, replacing
22 | for u; and given v = 0, a GARCH(1,1) is easily obtained. Now h, is measurable with
respect to F;_; and the model is therefore conditionally heteroskedastic.
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Quite interestingly, ARCH-type models have revealed connections with
other general stochastic processes too; for example, the bilinear processes
considered in [15, 24, 25]. In [25] it is shown how difficult it is to try to
separate the dynamics involved in the first two conditional moments of the
distribution of interest when ARCH and bilinearity are contemporaneously
present in a model such as

P Q
H(B)(yr — 1) = 0(B)ee + D > Bijye—i€i—; (6)

i=1j=1

where E(e;/F;—1) = 0 and

R s

hi = ap + Z i€ + 0o — p)* + Z 8 (ye—j — 1)’ (M)
i=1 j=1

with ¢, as the forecast for y; calculated at time ¢ — 1. In [15] a state space

formulation is given for a bilinear process obtained from an ARCH model.

Starting from

Y = ehy” (8)

he = ao+oa(yi, — @) + -+ ag(yi, — ) (9)
and given

y? = e2hy (10)

with €2 = 7, + 1 and y? = x; + ayp, after some calculations it is easy to
obtain the bilinear state space representation

ytZ = T+ (ll)

p p
Z QT + Z QT4 iM—1 + QoTe—1 (12)

i=1 =1

Ty

where 7, is distributed as a x? random variable that is not centered and has
a variance equal to 2.

In these examples the models considered were quite simple. We will
study the case where we have a more complicated model setup, given by the
GARCH-M process, and we transform this process to obtain a new volatility
characterization with several stochastic features that differ from the initial
ones.

3. A new class of stochastic volatility processes
3.1 The general framework

Our candidate model for the analysis is the generalized autoregressive condi-
tional heteroskedastic with effects in mean (GARCH-M) [12]. The importance
of the relationships between market risk and expected returns is crucial in
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finance theory, and this model takes into account the risk premium allowing
for the introduction of the volatility process into the conditional mean equa-
tion. Following [9] we represent the GARCH-M model with a time varying
mean-variance ratio:

yr = bihy + e (13)
by = b1+ v (14)
he = ao+am? | + aghsi_y (15)
n = y— B 1(ye) (16)

where e; and v; represent zero-mean uncorrelated white noises whose vari-
ances are respectively h; and @y, h; measures the volatility, and b; is the so-
called price of volatility. The novelty here, compared to the original model,
is the time-varying coefficient that relates the first two conditional moments,
which is assumed to be distributed as a random walk instead of being a con-
stant term. Thus, an additional source of randomness is introduced. Use of
the Kalman filter algorithm is proposed in [9] in order to estimate the model
in the given state space representation; it is well known that a likelihood
function can be obtained via the prediction error decomposition, and the
same function must be maximized with respect to the parameters of interest.
From a methodological point of view, the recursivity of this estimation pro-
cedure seems a suitable and convenient property to exploit in order to avoid
the difficulty of operating a separate estimation of the conditional mean and
variance parameters in the way usually done for other ARCH-type models.
With the state space framework and the Kalman filter built on it, the esti-
mate of the two equations can be executed in two sequential steps at each
observation in the available sample. First, at time ¢, an estimate of the condi-
tional variance h; is obtained and a new innovation value 7; can be computed
from the Kalman filter; then, this last value is used to calculate the updated
quantity hyq, and the process is repeated as before at each observation.

In this more complicated setup, given the presence of various stochastic
influences coacting to drive the underlying observed process, it seems inter-
esting to analyze the possible consequences of misspecifying, for instance,
the price-of-volatility formulation, (i.e., b;), and/or the market risk premium
(i.e., byhy). Both of them represent a very important subject of discussion in
finance, given that no unifying theory exists and there are no homogeneous
results from the empirical side (e.g., [2]) to justify recourse to a particular
functional form for the risk premium or a given price-of-volatility specifica-
tion.

3.2 A new formulation

New interesting formulations can be obtained through a transformation of
the GARCH-M process, whose complexity depends on the variable selected to
represent the volatility process. We show here one of the possible derivations.®

5A more detailed explanation is offered in [8].
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Consider the following GARCH(p, ¢)-M model:

1
hy = Z ozmt it Z Bjhi—; (18)
i=1,p J=1l,q

where v, ~ NID(0, h;) and n, = v — Et_l(bthi/ 2) is the innovation of the
model. The coefficient b; can be described by an AR(p) process:®

&(B)b, = ry (19)
or, equivalently,

by = ¢~ (B)ry (20)
where ¢(z) =1 — ¢z — -+ — ¢p2P and r; ~ WN(0, 02).

As an assumption regarding the squared transform of the coefficient in
equation (20), we allow the following relation to hold:

b? = €41 + k‘-,g (21)

where ¢, = ¢?(B)e;—1 + ¢*(B)k;, with k; that takes only positive values. This
process could be seen as a control input vector whose nature is exogeneous
and therefore independent from the variable of interest (i.e., volatility) in
our context. To verify the last relation, just define ¢, = r? and substitute
first for r? in b7 = ¢~%(B)r} and then for ¢ in its AR formulation. More
generally, a complete signal-plus-noise model related to the process b7 is given
by v = ¢,y + k; and ¢, = Fe,; + Gk, and the framework built up so far
should be interpreted as follows. The first important assumption is that the
risk premium is not time-invariant but varies with an agent’s perceptions of
the underlying economy uncertainty, that is, according to the opportunities
and preferences of the investors toward risk. Another assumption concerns
the choice of relaxing the usually retained random walk hypothesis for the
distribution of the coefficient b, of risk aversion, that is, the slope coefficient
in the conditional mean linear equation relating the excess returns to their
variance.
The following relation is easily shown to hold:

bihy = (o1 + k) (Z oy + Z Bihi—; ) (22)

=1p J=lq

and thus we can obtain h; as

ht = k't Zﬁjhtﬁjbgz + Z,@jht._jﬁt_lb;2
J J

+ > aint e ab;? + kY oy bt (23)

SNote that it is possible to generalize the process for b, to a stationary and invertible
ARMA(p,q).
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The evidence here is that h; represents in fact a process with respectively an
autoregressive term, a bilinear part, a mixed input,” and a not necessarily
gaussian-colored noise.

Defining 2? = (y; — )%, with v, ~ NID(0, k), where h; is distributed
as in equation (18), we do not observe z? exactly; only a noisy version of
it can be measured. Since h; represents a state variable, once an appropri-
ate transformation of equation (23) is taken, a complete state space model
then results. As a first step, we aim at representing a markovian form for
the model. This allows for standard specification and estimation techniques
to be applied. However, it is shown in [21] that in order to do this, some
assumptions are required in cases where nonlinear predictor spaces are con-
sidered. In particular, we must fix the state vector dimension in a way that
both the available information and most of the structure of the original model
are retained.

Therefore we first find a so-called wvectorial bilinear form by fixing the
vector 3= [B;---B3;]T and the state vector H; = [H;(1)--- H}(m)]T, where
the new state variable is indicated by H;(j) = hi—myj, for j =1,...,m. We
are thus assuming that the dimension of the state vector is m.® Then, we have
to apply consequent transformations to the other variables and coefficients
involved. Given the scalar control input, we just adjust for the coefficients «;
(i.e., it becomes a component of the vector a) and the variables n?_; (which
are transformed in 7;). As a last step, we define some new time-varying
quantities, according to p; = ’;—é, q = é, Ay = pf3, By = @8, Cr = gy,
and D, = pa/nf. Thus, we obtain the following new transformed volatility
specification:

Ht* = AtH:—.l + Bth*—let—l + Cf,et—l + Dt (24)
vy = G'H +v, (25)

where G =[0--- et_l]T and v; is an additive noise derived from the represen-
tation obtained under the conditions established by equation (21). Note that
this is a quasi-markovian bilinear representation for the stochastic volatility
process (also called GeBiSV in [8]), where the word quasi stands for the fact
that the usually retained gaussian assumption about the noise’s distribution
is not necessarily satisfied here. Moreover, the original volatility is recovered
by hy = F'H}, where F = [0 0 --- 1]7. The new measurement equation is
the following:

zt = .'L'? + Uy = b?ht -+ UVt (26)

where the new process z, measures with a noise v, the previous process b2h;
. : 1/2 )
and v, ~ NID(0, k), or alternatively, we assume that v, = ht/ g, with uy ~

"In this term different forces are acting together: the lagged squared model innovations,
nZ, the inverted time-varying squared coefficients b, 2 and the lagged process €;_;.

8This assumption, commonly retained, is crucial for some aspects. We follow here the
common practice of fixing a finite dimension, but how to fix it is an open problem. We
are considering this topic for a companion paper.
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NID(0,1).° In a more compact form, the observations from the described
stochastic system are represented by z, = H;h; + Gy, where H, = b? is
the measurement (stochastic) matrix and Gy = I, in the regression case, or
G, = b2,

4. Interpreting the new models

In [11], the seminal work on ARCH models, some misspecification aspects
were discussed for which clear answers have not been found yet. ARCH mod-
els could theoretically be the result of a misspecified underlying regression
model with nonARCH errors, thus implying that some omitted variables or
structural changes are possible features of the DGP which result unobserved
or latent at the first stage of the analysis. In [10,16] this aspect is empha-
sized, likewise the fact that ignoring a residual conditional mean nonlinearity
would have important consequences for the theoretical understanding of the
dynamics involved and the empirical analysis, particularly with regard to
point prediction.

Recent work on nonlinear time series models strongly directs the atten-
tion to this fact, and various important contributions seem to justify the
hypothesis that some nonlinearity is not fully accounted for by ARCH-type
models. For example, in [13, 14] an approximation of the joint density for
conditioning and conditioned variables is introduced using a Hermite series
expansion about the gaussian density, which allows the deviations from it
to be captured by the higher-order terms. ARCH processes can be modeled
too, with particular insight for exchange rates because of residual nonlinear-
ity evidence, even after the conditional heteroskedasticity has been accounted
for.

Other interesting papers, related to the BDS test [19, 20], extended pa-
rameterizations involving the conditional density of normalized errors [17],
and Markov switching structures [6, 16], respectively, indicated that (1) extra
nonlinearity is present in the model after the routine ARCH-type analysis; (2)
there is statistical significance of shape parameters in the error distribution;
and (3) regime shifts have impact on the observed time series.

Therefore, we could reasonably look at ARCH effects more as a phe-
nomenon with a strong misspecification nature than as a structural aspect of
the DGP at hand, at least in many cases and under various conditions. The
present paper suggests what changes could occur in the model once it proves
to be misspecified and it becomes evident, from the graphs of simulations
shown in the next section, that the possible misspecification may be harder
to detect than is expected. While in [25] the intervent of bilinearity is explicit
as a feature of the DGP, here second- and higher-order interactions show up
in the volatility process from a transformation of an original GARCH-M pro-
cess. In our setup, at a first glance, it appears more problematic to try to

9Simply assuming that the disturbance in the conditional mean equation is a white
noise, we obtain a regression model with stochastic regressors h; and time-varying coeffi-
cients b?.
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separate the different sources that drive the observed DGP, thus leaving the
misspecification causes not easily identifiable.

Ignoring the question of which is the best approximating DGP govern-
ing the mean-variance ratio can have important consequences in terms of a
correct model specification. Therefore, a first contribution here given is to
show interesting consequences that derive from a possibly incorrect choice
of the functional form of the market risk premium term for the expected
volatility, (i.e., g(b;)hY). In our example we assume an AR specification for
the mean-variance ratio; then, to choose the functional form of the volatility
term characterizing the risk premium term is important, since we could find
two completely different volatility processes once we deviate slightly from the
initial model conditions. In the following section we complement our tech-
nical results with some simulation experiments that show—mnot surprisingly
perhaps—the similarity existing between different classes of SVM. This is
not a surprise in the light of the many possible empirical phenomena that
can influence volatility and the observations at hand, but nevertheless it is
worthwhile to mention that this same fact can have some relevance for under-
standing covariance-nonstationary settings, which, according to some recent
literature, are gaining more and more credit among researchers in the field

(e.g., [18]).

5. Simulation experiments

We generate data from a GARCH(1,1)-M process with time-varying param-
eters, obtained as a special case of the general framework here presented.
Then another simulated time series is derived from a GeBiSV(1,1) process
obtained in correspondence with the first one. We investigate the degree of
misspecification that we could possibly face when we consider a risk premium
as in the GARCH-M setup without pursuing the investigation of a different
functional form for it.
The general structure of the models we want to generate is given by

yr = ERP1; + e
with ERP; , = b,hy/?, e, ~ NID(0, ), and h, GARCH(1,1)-M specified, and
by

Zy = ERPZ,t + vy
with ERPy,; = b2hy, v, ~ NID(0, hy), and h; given as in the GeBiSV specifi-
cation.

From the general model we have the following GARCH(1,1)-M model:

v = by’ he = ayr;_y + crhyy
with by = by + ¢1b:—1 + 7. Then the correspondent GeBiSV(1,1) model is
given by:

z = Yh+ v

he = kefihyry '+ Brhuoreayy 4 canp gy 4 kot
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GARCH-M and GeBiSV(Normal(mean=1, st. dev.=0.3)) simulated series
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Figure 1: First experiment: gaussian case.

and, defining kv, = my, it follows that ,_19; ' = 1 —my,, and thus we have,

after some more calculations, the following final form for the volatility:
¥

m
hy = Bymghe_y + ﬁl#ht—let—l + am;y.
2

This last equation, together with the z; variable, is the GeBiSV model that
was simulated.

Three experiments are presented; for each of them the size of the sim-
ulated set of observations is n = 300. They differ for the distributional
assumptions about the k; innovation influencing the risk aversion coefficient
v: that characterizes the GeBiSV formulation. In one case (Figure 1) we
adopted normal(p = 1,0 = 0.3) distribution; in another case (Figure 2)
a uniform(0,1) distribution; and still other results (Figure 3) under the
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GARCH-M and GeBiSV (uniform) simulated series
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Figure 2: Second experiment: uniform case.

hypothesis of a Poisson distribution whose mean is 0.05. The parameter
structure of the conditional mean, risk aversion coefficient, and volatility co-
efficients in the three experiments is fixed at the following values: by = 0.5,
d)l — 04, T~ NID(’U, — 0,0’ = 02), ho = 04, a; = 01, c = 07, S = 08,
£ =0.2, and a; = 0.2.

From the visual inspection of these generated DGPs and the related
volatilities we can notice that, under some conditions about the residual
distributions and the model structure, stochastic processes with very similar
characteristics but different nature and order of complexity can be derived
from the variation of the functional form of the systematic term in the con-
ditional mean equation. Even if the resulting data patterns are quite close in
our models, important differences are introduced, since both the risk aversion
coefficient and the volatility process present a different stochastic character-
ization compared to the starting GARCH-M model.
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GARCH-M and GeBiSV(Poisson) simulated series
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Figure 3: Third experiment: Poisson case.

Further experiments were done in order to verify the sensitivity of the
generated DGPs and volatilities to the parameter model structure and in-
novation distributions (e.g., gamma innovations); the results suggested that
the range of parameter values and distributional hypotheses that present
the previously mentioned interesting features with regard to the simulated
returns and volatilities is not particularly restrictive. In summary, under a
value around 0.5 for the autoregressive coefficient in the risk aversion relation
and controlling the GARCH-M and GeBiSV volatility coefficients in order
to avoid contemporaneous (i.e., with regard to both the autoregressive and
the exogenous model components) near-unitary situations, the framework
proves to be quite stable. Two different level coefficients were adopted in the
volatility equations so that it would be easier to recognize the similar pattern
structure characterizing these two different volatility formulations.
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A first consideration that derives from the given results is that if we con-
sider the case where one or more regime shifts are encountered in the condi-
tionally heteroskedastic data at hand, from the analysis of some subsample
periods we could find that stock returns show volatility structures with dif-
ferent underlying dependence laws. In other words, according to the various
possible regimes, one can observe different volatility shapes. As a result, we
could misspecify our initial model and not be able to recognize the presence
of covariance nonstationarity for the series at hand. In this important but
(in the light of the previous results) possible case, it would be possible not
only to misspecify the true model, because of the misacknowledgment of the
presence of a switching regime stochastic nature for the GARCH-M process,
but also to ignore the fact that different volatility processes could plausibly
be suspected of coacting and thus characterizing the various regimes. There-
fore, a shift between classes of volatility models, not simply between models
in the ARCH class, could occur, according to the regime considered.

6. Conclusions and future research directions

The results given in this paper extend the analysis of the relationships be-
tween volatility stochastic processes and allow for interesting conjectures
when the starting point of the analysis is a GARCH-M model. The structure
of the GARCH-M model has not been unanimously and uniquely specified
yet, particularly with regard to the choice of the risk premium functional
representation. Thus, misspecification is possible if one deviates from the
usually retained assumptions, and this comes to be relevant for the inferen-
tial aspects involved, since different classes of volatility stochastic processes
can underly the observed time series.

References

[1] T. A. Andersen, “Stochastic Autoregressive Volatility: A Framework for
Volatility Modeling,” Mathematical Finance, 4 (1994) 75-102.

[2] D. K. Backus and A. W. Gregory, “Theoretical Relations between Risk Premi-
ums and Conditional Variances,” Journal of Business and Economic Statis-
tics, 11 (1993) 177-185.

[3] T.Bollerslev, “A Generalized Autoregressive Conditional Heteroskedasticity,”
Journal of Econometrics, 31 (1986) 307-327.

[4] T. Bollerslev, R. Chou, and K. Kroner, “ARCH Modeling in Finance: A
Review of the Theory and Empirical Evidence,” Journal of Econometrics, 52
(1992) 5-59.

[5] T. Bollerslev, R. F. Engle, and D. B. Nelson, “ARCH Models,” in Handbook
of Econometrics, 4 (1994).

[6] J. Cai,“A Markov Model of Unconditional Variance in ARCH,” Journal of
Economic and Business Statistics, 12 (1994) 309-316.



Misspecifying GARCH-M Processes 489

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

E. Capobianco, “Metodi e modelli per la stima della volatilita’ in serie fi-
nanziarie,” (Ph.D. dissertation, University of Padua, Padua, Italy, 1994).

E. Capobianco, “A New Characterization of Stochastic Volatility Processes,”
paper presented at the sixth meeting of the European Conference Series in
Quantitative Economics and Econometrics, December 14-16, 1995, Aarhus
(DK).

R. Chou, R. F. Engle, and A. Kane, “Measuring Risk Aversion from Excess
Returns on a Stock Index,” Journal of Econometrics, 52 (1992) 201-224.

F. X. Diebold and J. A. Nason, “Nonparametric Exchange Rate Prediction?”
Journal of International Economics, 28 (1990) 315-332.

R. F. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates
of the Variance of U.K. Inflation,” Econometrica, 50 (1982) 987-1008.

R. F. Engle, D. M. Lilien, and R. P. Robins, “Estimating Time Varying Risk
Premia in the Term Structure: The ARCH-M Model,” Econometrica, 55
(1987) 391-407.

A. R. Gallant, D. A. Hsieh, and G. Tauchen, “On Fitting a Recalcitrant
Series: The Pound/dollar Exchange Rate, 1974-1983,” in Nonparametric and
Semiparametric Methods in Econometrics and Statistics, edited by W. A.
Barnett, J. Powell, and G. Tauchen (Cambridge University Press, Cambridge
1991).

A. R. Gallant and G. Tauchen, “A Nonparametric Approach to Nonlinear
Time Series Analysis: Estimation and Simulation,” in New Directions in Time
Series Analysis, Part I, (Springer-Verlag, New York, IMA volumes in Math-
ematics and its applications, 1992).

D. Guegan, “Les modeles ARCH univaries,” (Universite Paris-Nord, Working
Paper Number 90-2, 1990).

J. D. Hamilton, “Autoregressive Conditional Heteroskedasticity and Changes
in Regime,” Journal of Econometrics, 64 (1994) 307-333.

B. Hansen, “Autoregressive Conditional Density Estimation,” International
Economic Review, 35 (1994) 705-730.

B. Hansen, “Regression with Nonstationary Volatility,” FEconometrica, 63
(1995) 1113-1132.

D. A. Hsieh, “Testing for Nonlinear Dependence in Daily Foreign Exchange
Rates,” Journal of Business, 62 (1989) 339-368.

D. A. Hsieh, “Chaos and Nonlinear Dynamics: Applications to Financial
Models,” Journal of Finance, 46 (1991) 1839-1878.

D. Pham, “Bilinear Markovian Representation and Bilinear Models,” Stochas-
tic Processes and their Applications, 20 (1985) 183-204.



490 Enrico Capobianco

[22] S. Taylor, Modeling Financial Time Series (John Wiley, Chichester, 1986).

[23] S. Taylor, “Modeling Stochastic Volatility: A Review and Comparative Stud-
ies,” Mathematical Finance, 4 (1994) 183-204.

[24] H. Tong, Nonlinear Time Series (Oxford University Press, Oxford, 1990).

[25] A. A. Weiss, “ARCH and Bilinear Time Series Models: Comparison and
Combination,” Journal of Business and Economic Statistics, 4 (1986) 59-70.



