Complex Systems 9 (1995) 491-499

Cellular Automata and Nonperiodic Orbits

Luciano Margara
Computer Science Department,
University of Bologna,
Piazza di Porta S. Donato 5,
40127 Bologna, Italy

Abstract. The periodic behavior of a particular class of dynamical
systems, the cellular automata (CA), is studied. A large class of CAs
is defined, (containing both additive and nonadditive CAs) in terms
of the sensitivity of the local rule on which the CA is based. For this
class, the set of configurations which enter a cycle after a finite number
of iterations is completely characterized and it is proved that this set
has measure zero according to every probability measure that assigns
measure zero to single configurations.

1. Introduction

Cellular automata (CA) are dynamical systems consisting of a regular lattice
of variables, any of which can take a finite number of discrete values. The
state of the CA, specified by the values of the variables at a given time,
evolves in synchronous discrete time steps according to a given local rule. CA
have been widely used to model a variety of dynamical systems in physics,
biology, chemistry, and computer science (e.g., [1, 8, 9, 10, 16]). Despite
their apparent simplicity, many CA display a rich and complex behavior
which is generally very hard, if not impossible, to predict. In particular,
many properties of the temporal evolution of CA have been proved to be
undecidable [4, 6, 14].

Informally, a CA is a pair (X, F'), where X is the space of configurations
and F, F: X — X, is a map that governs the temporal evolution of the CA.
In this paper we consider the following two problems.

1. Given any configuration ¢ belonging to X, we want to know if there
exist two integers 4,7 > 0, 4 # j, such that Fi[c] = FJ[¢|. In other
words, we want to know whether or not ¢ enters a cycle after a finite
number of iterations.

2. Measure the set of configurations that enter a cycle after a finite number
of iterations.
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The analysis of the periodic behavior of a dynamical system is central to the
theory of chaos (e.g., [5, 15, 17]). Slightly different versions of problems 1
and 2 have been studied by several authors. The periodicity of the temporal
sequences generated by a certain class of one-dimensional, binary, nearest-
neighbor CA evolving from arbitrary finite initial configurations on an infinite
lattice is studied in [13]. The periodicity of arbitrary configurations for the
class of additive, one-dimensional, binary CA is studied in [3].

In this paper problems 1 and 2 are solved for a more general class of
CA than those considered in [3] and for a more general set of configurations
than those considered in [13]. More precisely, a class of CA is defined in
terms of a particular property of the local rule; this is similar, in spirit, to
the notion of sensitivity for continuous functions. Informally, a continuous
function f is sensitive to one of its input variables if small modifications to the
value of that variable cause large modifications to the output computed by
f. In the case of discrete maps defined over finite sets, the definition above
needs to be modified in order to fit some additional formal requirements,
for example, one has to specify the meaning of “small modifications.” The
notion of sensitivity we use for discrete maps was introduced in [12] and called
“permutivity.” Here, the class of CA based on local rules that are permutive
to the leftmost and/or to the rightmost variable is considered. This class
of CA, which we call leftmost and/or rightmost permutive CA (L/R-CA),
contains both additive and nonadditive CA. In particular, it contains all the
additive CA defined over alphabets of prime cardinality. Loosely speaking, in
a L/R-CA “information” moves through the lattice at each iteration without
encountering any obstacle.

For the L/R-CA class of CA we prove the following.

e A configuration (finite or infinite) enters a cycle after a finite number
of iterations if and only if it is spatially periodic.

e The measure of the set of configurations which enters a cycle after a
finite number of iterations is zero for any measure function that assigns
measure zero to single configurations.

Note that our results are independent of the number of input variables of the

local rule on which the CA is based.

2. Notations and definitions

In this section some basic notations and definitions are reviewed. Let A =
{0,1,...,m — 1} be a finite alphabet and f, f : A%**1 — A be any map. A
one-dimensional CA based on the local rule f is a pair (AZ, F), where

AZ ={c|c:Z — A} (1)
is the space of configurations and F, F : A% — A%, is defined as

Fld(i) = f(c(i—k),...,c(i+ k), ceA?  ieZ (2)
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f depends on 2k + 1 variables, which will be denoted by z_y, ..., z). For this
reason, we say that k is the radius of f.

Throughout this paper, F[c] will denote the result of the application of
the map F' to the configuration ¢ and ¢(7) will denote the ith element of the
configuration ¢. We recursively define F"[¢] by F"[c] = F[F"![c]], where
F°[c] = c. The set SP(n) of spatially periodic configurations of period n is
defined as

SP(n) ={c|Vie Z, c(i) =c(i+n)}. (3)
The set SP of periodic configurations is now defined by

SP = |J SP(n). (4)

neN

A configuration ¢ € AZ is of time period n for the map F if and only if
F™[¢] = ¢. When no confusion arises, it can be said that a configuration is
of period n instead of time period n. Let (A%, F) be a CA. The set EP of
eventually periodic configurations for /' is defined as

EP ={c|%,j €2, i,j >0, i #j, Fild=Fild}. (5)
We now give definitions for the permutive and additive local rule.

Definition 1. From [12]; f is permutive in z;, —k < ¢ < k, if and only if,
for any given sequence Z_y, . .., Zi_1, Tip1, - - - , T € A, we have

B+ 55 Tt B Bt By 35 Th) g, = A (6)
Definition 2. f is leftmost permutive (rightmost permutive) if and only if
there exists an integer ¢, —k <1 < k, such that

e 1 <0[i>0],
e f is permutive in the ¢th variable, and

e [ does not depend on z;, j <1, [j > 1.

We denote by L/R-CA the set of CA which are leftmost and/or rightmost
permutive.

Definition 3. From [18]; f is additive if and only if it can be written as
k
FlE iy oo s 20) = Z Aiz; | mod m, (7)
=k

where \; € A.
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From now on, we say that a CA is permutive or additive if the local rule on
which it is based is permutive or additive.

Let g, g : A — A, be any map. We say that alocalrule f, f : A%+t — A
is trivial if it satisfies f(z_g,...,zr) = g(zo). The evolution of a trivial CA
can be easily determined and it is not interesting neither from the topological
nor from the metric point of view. The following remark can be easily verified.

Remark 1. If A is an alphabet of prime cardinality and (A%, F) is a non-
trivial additive CA, then (A% F) is a L/R-CA.

As an example, the class of additive, one-dimensional, binary CA studied in
[3] are L/R-CA. L/R-~CA also satisfy other interesting properties. It has been
proved in [11] that L/R-CA are topologically transitive dynamical systems.
Loosely speaking, a dynamical system (X, F') is topologically transitive if it
cannot be broken into two or more subsystems that do not interact under
iterations of F'. Moreover, it has been proved that in the class of elemen-
tary CA (one-dimensional binary CA with radius 1) L/R-CA are the only
transitive CA. In [2], it has been proved that topologically transitive CA
are sensitive to initial conditions. Intuitively, if a map possesses sensitive de-
pendence to initial conditions; then, for all practical purposes, its dynamics
defies numerical approximation. Small errors in computation introduced by
round-off may become magnified upon iteration. The results of the numer-
ical computation of an orbit, no matter how accurate, may be completely
different from the real orbit. Note that many definitions of chaos for general
dynamical systems are based on these two properties (e.g., [7]).

3. Main results

In this section we consider the class L/R-CA and prove the following two
results.

1. A configuration ¢ belongs to EP if and only if it is spatially periodic,
that is, EP = SP.

2. For any probability distribution P defined over the space of the config-
urations AZ that assigns probability 0 to single configurations, we have

P(SP) = 0.

The following theorem proves that each configuration which lies on a cycle
of a L/R-CA must be spatially periodic.

Theorem 1. Let (A%, F) be a L/R-CA based on a local rule f with radius
k. Let ¢ € A% be a periodic configuration for F, then c is spatially periodic.

Proof. Without loss of generality, we assume that F is rightmost permu-
tive. Since ¢ is a periodic configuration for F), then there exists an integer
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number n such that F"[c] = c. We partition ¢ into a sequence {¢/},_,, of
subconfigurations each of length 2kn defined by
(i) = c(2knj +1i), 0<i<2%kn, j€Z. (8)

Let a; € A™ and ay € A™ be two finite configurations of length n; and
ngy, respectively. We use ajas to denote the configuration of length n; + ny
defined by

N ] a(@) 0 <i<n,
maz(d) = { az(1) ifng <i<ny. (9)
We define the directed graph G, = (V, E) as
V ={§ € A%" | § = ¢ for some integer j}, (10)

this is the set of all configurations of length 2kn which appear at least once
in the partition of ¢. The arc (dy,d2) belongs to F if and only if there exists
an integer number i such that 6,8, = c’c**'. One can easily verify that G is
connected and that each node of G has in-degree at least 1. We now prove
that each node has out-degree 1. Assume that both (4, ;) and (6, ;) belong
to E' with §; # é5. This means that ¢ contains both §0; and §d,. Assume
that ¢ contains 09, starting at position p and §d, starting at position g.

Let &', 0", 61, 07, 65, and &5 be configurations of length kn such that
00" = 6, 016] = 01, and 8505 = dp. At least one of the following two
inequalities holds: 0] # 04 or 67 # 65. Assume that ] # &,. Let ¢ < kn be
such that ¢1(z) = 65(i), 0 <4 < t, and 6j(¢) # 4(t). Since F is rightmost
permutive, we have that

F™d(p + kn +t) # F"c](q + kn +t). (11)

Since ¢ is periodic of period n and it contains ¢ starting both at position p
and at position ¢, we have that

F'd(p+i) = F'd(g+1i), i=0,...,2kn—1. (12)

From equations (11) and (12) we have a contradiction. Thus, 8] = 3. As-
sume now that 87 # 0. Let ¢ < kn be such that §7(z) = §5(z), 0 <17 < ¢,
and 67 (t) # 64(t). Since F is rightmost permutive, we have that

F™c|(p + 2kn +t) # F™[c)(q + 2kn + t). (13)
Since c is periodic of period n and §] = 0}, we have that
F™c|(p+1i) = F™[c](q + 1), t=0,...,3kn—1. (14)

From equations (13) and (14) we have a contradiction. Note that if all the
nodes of a finite graph have out-degree 1 and in-degree at least 1 then they
have in-degree exactly 1.

Summarizing, we have that E is of the form

E = {(a1, ), (a2, 03),. .., (an-1,04), (an, a1)} (15)
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for some integer h. Consider now the configuration @ = a5 - - - . One can
easily verify that

c(2hknj + 1) = a(i), 0 <% < 2hkn, j € Z, (16)

that is, ¢ is spatially periodic of period 2hkn. m

Theorem 1 guarantees that if a configuration is periodic then it is also
spatially periodic. This does not imply that a configuration which is not
spatially periodic might enter a cycle after a finite number of iterations. The
next theorem guarantees that this is not possible.

Theorem 2. Let (A%, F) be a L/R-CA based on a local rule with radius
k. Let a € A? be a spatially periodic configuration for F' and b is one of its
predecessors. Then b is spatially periodic.

Proof. Assume that there exists a spatially periodic configuration a that has
a predecessor b which is not spatially periodic. Since a is spatially periodic,
then there exists an integer n > 1 such that

a(i +nj) = a(), 0<i<mn, jEZ. (17)
We partition b into subconfigurations #', j € Z, of length n defined as
V(i) =b(+nj), 0<i<n, jE€Z (18)

Since the number of distinct b’ is no greater then m™ (where m is the car-
dinality of A), b must contain two subconfigurations of the type b'b" and
bib! such that b" # b'. Assume that b contains b*b" and b*b' starting at po-
sitions p and g, respectively. Assume that b"(i) = b'(i), 0 < i < t < n,
and b"(t) # b(t). Without loss of generality, assume that F is rightmost
permutive. Thus,

Fbl(p+n+t—Fk)#Fbl(g+n+t—k). (19)
Since p = ¢ + nj for some integer j, and F[b] = a, we have

alg+nj+n+t—k)#alg+n+t—k). (20)
From equations (17) and (20) we get a contradiction. m

Corollary 1. Let (A% F) be a L/R-CA and let a € A? be any configura-
tion. Then a enters a cycle after a finite number of iterations if and only if
it is spatially periodic.

Proof. If a is spatially periodic then it is clear that after a finite number of
iterations a enters a cycle. If a is not spatially periodic, by Theorem 2 we
know that F™[a], n > 0, is not spatially periodic and then, by Theorem 1 it
cannot enter any cycle. m

In Example 1 we exhibit a one-dimensional binary CA that is neither
rightmost nor leftmost permutive and which does not satisfy Theorem 2.
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Example 1. Let (A4, F) be the CA based on the following local rule

1 if$_1+$0+.’131:1,

0 otherwise. (21)

f(x—bxo,ﬂ?l) = {

One can then easily verify that the spatially nonperiodic configuration ¢
defined by

. 0 ifi=0,
o) = { 1 otherwise, (23]
enters a cycle after one iteration, while the spatially periodic configuration

¢ defined by c(i) = 1, Vi € Z, has infinitely many predecessors that are not
spatially periodic.

Note that the local rule of Example 1 differs from the rightmost and leftmost
permutive local rule

1 if (z_y + 2o+ 21) mod 2 =1,

0 otherwise, (23)

g(m—l'; 3)0,7}1) = {
onlyifx_y =xg=2; = 1.
Consider now the family P of probability measures (or, more generally,
measures) defined over the set A? that satisfy the property

VYPcP, VeeA?, P(c) =0. (24)

In Example 2, a probability distribution over the space A% which satisfies
Property 24, the so-called Bernoulli distribution, is given.

Example 2. Let A = {0,...,m — 1} be a finite alphabet. We define the
cylindric set Cyl(6_,,...,d,) C A% by

CYl 0y ..., 0,) = fc€E AZ | c(i)=0;, i € A, i=—n,...,n}. (25)

Cylinders are open and closed sets that form a basis for the topology of AZ.
We define the probability distribution on the set of cylinders of AZ as follows:

P(Cyl(6_p,...,0,)) = ﬁ Prob(d;), (26)

i=—n

where Prob(d;) stands for the probability of the singleton d; to occur. If Prob
is the uniform probability distribution over the set A, we have

1
P(Cy].((sﬁn, ey n ]___[ — = m2n+1 (27)

’L_'—‘TL

It is easy to check that for any configuration ¢ € A% we have P(c) = 0, that
is, PeP.
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We now prove that for L/R-CA the set of configurations that eventually
enter a cycle has measure zero according to any probability measure P € P.
Absence of periodicity can be interpreted as further evidence that L/R-CA
are chaotic dynamical systems.

Theorem 3. Let (A%, F) be a L/R-CA. Let P € P be any probability
distribution. Then P(EP) = 0.

Proof. By Corollary 1 we know that, starting with a configuration a € A%,
a cycle is entered if and only if a is spatially periodic, that is, SP = EP. We
now prove that P(SP) = 0. Since SP = {oy,...,0,...} is a countably infinite
set, we have that

P(SP) = ZP 0;)=0.m (28)

4. Conclusions

In this paper a particular class of CA were defined according to the sensitivity
of the local rule on which they are based: the leftmost and/or rightmost
permutive CA (L/R-CA). For this class of CA, we prove that the measure of
the set of configurations which enter a cycle after a finite number of iterations
is zero for any probability distribution that assigns probability zero to single
configurations. In [2] and [11] it has been proved that L/R-CA are chaotic
dynamical systems according to Knudsen’s definition of chaos and it has
been conjectured that they are chaotic in the sense of Devaney as well. Since
the absence of periodicity is a widely accepted feature of chaotic behavior,
the results can be considered as more evidence that L/R-CA are chaotic
dynamical systems.
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