Complex Systems 10 (1996) 23 41

PECANS: A Parallel Environment for Cellular
Automata Modeling

Luigi Carotenuto
Franco Mele
MARS Center,
via Comunale Tavernola,
80144, Capodichino, Napoli, Italy

Mario Mango Furnari
Renata Napolitano
Istituto di Cibernetica, CNR,
via Toiano 6, 80072, Arco Felice (Napoli), Italy

Abstract. This paper discusses a new methodological approach for
the modeling of complex physical systems and a parallel program-
ming environment that implements it. The methodological approach
is based on a reduction process of a physical phenomenon in compo-
nents; each component is represented in terms of a cellular automaton
(CA) and the relations among different components are represented
by the CA network abstraction.

To implement this approach, the Parallel Environment for Cellular
Automata Network Simulation (PECANS) has been developed. The
CANL language has been defined as a tool to represent models by
means of a network of CA. Some examples of modeling and simula-
tions, carried out following the proposed approach, are reported.

1. Introduction

In many cases natural systems interesting from both a fundamental and
applicative point of view cannot be easily described in terms of differential
equations. In fact, these systems are characterized by a number of different
physical parameters which are mutually coupled in a nonlinear way. In any
case it is difficult to determine the system evolution and in some cases this
representation might not be able to capture the phenomena of interest.

The modeling of these complex systems is difficult due to the necessity
of capturing in a single representation the mutual coupling of the different
parameters. In many cases this problem can be overcome through a reduc-
tion process [1], representing the whole complex phenomenon as composed

© 1996 Complex Systems Publications, Inc.

24 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

of a number of simple models, called model components. Each model compo-
nent represents a physical aspect of the phenomenon (e.g., the motion, the
chemical reactions, the heat flow, etc.); the different model components are
connected in such a way to represent the whole phenomenon. This methodol-
ogy allows one to overcome the difficulties encountered in the representation
of a complex system, as shown by many modeling examples which are based
on a sort of abstraction by means of reduction. However, up to now a sys-
tematic approach has not yet been proposed for this methodology.

To allow the reduction of the phenomenon and the composition of its
components, we have chosen the cellular automata (CA) as a representation
for each model component. A CA is a bidimensional grid of identical cells;
the changes of cell states are represented, at each time step, by the data
variation on the grid according to a transition rule; this rule specifies the
new state for each cell according to its state and the state of neighbor cells
at the previous time step.

In addition, the CA approach offers the following main advantages.

e [t is strongly expressive since the model description is attained by
means of local rules, which also allows the implementation of quali-
tative aspects of the model.

e The computational model is intrinsically parallel.

According to these methodological choices, we propose to represent a phe-
nomenon by a set of model components, each of them being a CA, connected
in a network: we have named this representation cellular automata network.

In order to apply this methodology we have developed a Parallel Envi-
ronment for Cellular Automata Network Simulation (PECANS); this envi-
ronment allows the parallel execution of physical phenomena simulations by
means of a CA network. One of the main objectives was the definition of
a new programming language, specifically dedicated to implement the pro-
posed approach.

In fact, the languages of the qualitative physics as in [2, 3, 4] provide an
interesting methodological approach to carry out modeling through model
compositions. However, these languages do not result in an adequate repre-
sentation for complex physical systems [3, 4]. So we introduced the model
compositions in the context of CA modeling.

The developed Cellular Automata Network Language, (CANL), consists
mainly of the following.

o A set of constructs to describe the components of the whole model.
e A composition mechanism for such components.
An important feature of CANL is the fact that it is functional oriented,

although the possibility to be easily cross-compiled into a standard program-
ming language, the C language, is retained. Furthermore, with respect to

PECANS: A Parallel Environment for Cellular Automata Modeling 25

the standard CA model, we also added the possibility of defining global vari-
ables as well as “real” variables relevant to the modeled physical phenomenon.
However, these extensions did not stimulate us to define a new name for the
structure (form or formalism, etc.) which represents a model component: we
continued to call CA this sort of computational metaphor.

In PECANS two main kinds of parallelism are possible. The first one is
the data parallelism intrinsic to the CA computational model, because the
CA computing rules are essentially local. The second one is the control par-
allelism form which concerns the network of CAs, while the data parallelism
concerns each model component.

In dealing with parallelism we tried to move the complexity of managing it
from the user to the system developer, designing the CANL language without
annotation for parallelism; in this way the parallel programming details are
masked to the user.

In the following we examine the modeling of aggregation, to give an exam-
ple of a reduction process in model components and their interconnections.
The rest of the paper is organized as follows. In section 2 the whole struc-
ture of the PECANS environment is described. In section 3, the CANL
language and its features are described. In section 4, two examples of us-
ing PECANS to simulate some physical phenomena are given. Finally, in
section 5 a comparison with other systems and the current implementation
status are reported.

1.1 A cellular automata network example for aggregation
phenomenon

In Figure 1 we report an example of net abstraction that models a simulation
of the colloidal aggregation phenomenon [5]. The sensory analysis [1] of
the physical system revealed an ontological-molecular behavior, that is, the
physical phenomena involved can be locally described by means of a set
of interaction rules among primitive components cells or molecules. The
individual state of each cell is defined by a set of parameters, and its updating
is given by a local rule that takes into account the state of the cell together
with the states of the cells belonging to its neighborhood, providing in such
a way a microscopic description. The time evolution of the states of the
cells determines the global state of the system approaching its macroscopic
description. For this reason the chosen representation is based on a cellular
automata network.

The principal processes we consider are: the motion of single particles
(monomers) and clusters; the mutual aggregations of monomers or the ag-
gregation of a monomer to a previously formed cluster, and the interactions
among clusters. The modeling of these processes involves the following eight
automata.

C1 Determination of interacting particles or clusters and cluster formation.

C2, C3 Determination of particle and cluster masses.

26 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

Figure 1: Cellular automata network for aggregation example.

C4, C5 Determination of particle and cluster mobility.
C6, CT7 Determination of particle and cluster motion direction.

C8 Application of displacement rules, connected as shown in Figure 1.

In our approach, each different aspect of a physical system, for example,
particle aggregation, motion, and collisions, is described by a specific model
component. The whole physical process is simulated by means of a network
of CA.

In our environment powerful linguistic primitives are available; they de-
scribe the dynamic properties of individual particles or clusters of physical
systems. Particular attention is given to the coupling of single automata
(components) that are connected by means of a network.

A CA simulator must allow us to carry out simulation studies within a
reasonable amount of computation time. In other words, the main interest for
developing a simulation environment consists in the possibility of simulating
CA networks so complex to allow capturing the most interesting aspects of
physical phenomena.

2. The parallel environment for cellular automata network
simulation

When developing PECANS the first goal was to maintain the user-experienced
complexity as low as possible, in particular with respect to the parallel pro-
gramming idiosyncrasy. To attain this goal we adopted a modular program-
ming methodology; in this way, the user can concentrate efforts on describing
physical problems using the CANL language. In other words, the user will
be involved only with the complexity of simulating the physical problem and
will not be overloaded with the intricacy of the computing system.

User requirements we have tried to meet are user friendliness, and the
availability of an efficient and expressive programming language to represent
in a clear and simple way the model component computation.

To simplify the user interactions with PECANS we developed a set of
graphic oriented tools. To reduce the programming complexity we defined a
functional-like programming language, where the functional composition is

PECANS: A Parallel Environment for Cellular Automata Modeling 27

the main control structure to compose the behavior of the CA components
into the global behavior of the CA network.

To attain the goal of efficiency the language is cross-compiled in C, and
to deal with the CA modeling intrinsic parallelism we placed its management
partially in the cross-compiler and partially into the run-time system. The
parallelism is managed by the cross-compiler in the sense that it will produce
an annotated code that will be compiled and linked with parallel libraries.
Then, the resulting program will run on different parallel architectures, rang-
ing from vectorial machines, to parallel machines with shared or distributed
memory. The idiosyncracies of these different kinds of architecture are man-
aged by the cross-compiler and the run-time system.

The global structure of PECANS is built around the following four sub-
systems.

o User interface. It is graphic based and it is implemented on top of
the X-window system. There is a text editor to write the simulation
programs and a graphic interface to look at CA network structures and
simulation results.

e CANL. It is used to program CA networks. It is a functional-like
oriented language, allowing a hierarchical description of problem struc-
tures.

e Cross compiler. It accepts as input a CANL program and produces as
output a C program with the parallel opportunities annotated for dif-
ferent parallel machine architectures. This C program is then compiled
and linked to the simulator with the corresponding parallel run-time
systems.

o Kernel of the parallel run-time. It is implemented on a parallel ma-
chine. Tt accepts the CANL cross-compiled programs and executes
them on a parallel machine, returning the results to the graphic user
interface.

The whole structure of the parallel programming environment for the CA
network is sketched in Figure 2.

3. The CANL language

CANL furnishes the possibility to describe model components and connec-
tions among them. In CANL each component is mainly represented by an
automaton grid and by a transition function that describes the evolution of
the physical system from the state at the step n to the state at the step n+1.
Furthermore, CANL allows the definition of a net for the connections of the
components and expressing in a clear and simple way the model component
computation. To allow users to attain some kind of inter-CA communica-
tions, the use of global variables and the etfai operator were introduced into
CANL.

28 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

Input Tools
(Editor, Graphic Tools, etc.)
* CAN L Language

Compiler

J C Language with Parallel Annotations

Cellular Automata Network Parallel Code

PThreads

(Control Parallel Threads Generator))
Run-Time

Cellular Atomaton Cellular Atomaton
Parallel Code Parallel Code
(Data Parallel Threads) (Data Parallel Threads)

Output Tools
(Debugger, Graphic Tools, etc.)

Figure 2: Parallel simulation environment for CA network structure.

3.1 Cellular automata network definition

A network of CA is represented in CANL by a graph, where each node
represents an automaton, and an edge a precedence relation. Each automaton
is denoted by a name, and its behavior is described by a set of properties, a
transition function, and a neighborhood type. The property of an automaton
represents a particular physical quantity to be simulated.

Let A and B be two automata, if one or more properties of the automaton
A are used inside the transition function of the automaton B, then we say
that B depends on A. Each automaton is the owner of the properties defined
along with it; the writing right on a property is guaranteed only to the owner
of that property, while the reading right is granted to all automata.

At each computational step, the transition functions of all the automata
compounding the network will be executed. According to the precedence
relations, a network automaton can be executed only if the executions of the
antecedent automata in the network have terminated its computational step.

In Figure 3 the primitive function def-net used to define the network of

CA is shown.

(def-net (:no-dip <automata-list>)
(:dip <automaton> <automata-list>)

(:dip <automaton> <automata-list>)

)

Figure 3: The primitive function def-net.

PECANS: A Parallel Environment for Cellular Automata Modeling 29

The expression (:no-dip <automata-list>) takes into account all the
automata that do not have any dependence with other automata for each
step. Nevertheless these automata can refer to other automaton property
values computed at the previous time step.

The values of a property for each single component correspond to a phys-
ical state of the modeled system only at the end of a computational step for
the whole network.

In the following an example of the primitive function def-net, regarding
the CA network simulating the colloidal aggregation phenomenon shown in
Figure 1, is reported.

(def-net (:no-dip (C1))
(:dip C2 (C1)) (:dip C3 (C2))
(:dip C4 (C3)) (:dip C5 (C4))
(:dip C6 (C5)) (:dip C7 (C6))
(:dip C8 (C5 CT7)))

3.2 Global variables definition

In making a model of a physical system it is often necessary (and useful) to
describe some global features of the system (for example the total mass of
a cluster of particles). We decided to introduce the possibility of defining
global features in CANL.

A global feature is represented in CANL by a global variable; it is defined
along with a transition function, whose execution will modify its value. Its
value can be modified during the execution of the transition function of each
cell of the automaton. This value is then available (only in reading mode) to
the successive automata in the network.

It is possible to define two types of global variables: scalar variables and
vector variables. Their definitions are contained in the slot : glob-variables
of the primitive operator def-transition.

As an example we report the transition functions relative to the den-
dritic crystal example described in section 4.2. The global vectorial variable
temp-mass is defined and modified in the transition function count:

(def-transition

:function-name count
:glob-variables ((vector-def temp-mass int 1000 0))
:body (if (neq(center label n) 0)

(then

(set (vector temp-mass (center label n))
(+ (vector temp_mass (center label n))
(centerparticles_mass)))))

)

count is used, in reading mode, in the transition function mass_sum of a
successive automaton of the network:

30 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

(def-transition

:function—name mass_sum

:glob-variables 0

:body (if (not(eq (center label_n) 0))
(then

(set (center_w cluster_m)
(vector temp-mass(center label))))
(else (set (center-w cluster_m) 0))))

3.3 The control construct etfai

In a network it may happen that the transition function has to be applied
more than one time on the same automaton of the network, before the comp-
utation of the successor automata (according to the precedence relations)
starts. The number of times the transition function is executed on the same
automaton, depends on a given condition.

To meet this requirement, we introduced the construct
execute-transition-function-again-if (etfai), that can be called in-
side the transition function. This construct takes one or more arguments:
the first one is an exit condition for the iterations; the other ones are op-
tional and may contain, for each property of the automaton, an expression
to initialize the values of a property to the property’s values of an automaton
which the first one depends on. The exit condition is computed locally for
each cell. To have the transition function applied more than one time on all
the cells of the automaton, it is sufficient for the condition to be verified at
least on one cell, during the application of the transition function. In this
respect the etfai construct differs from all the other CANL constructs.

To show the use of the etfai construct we report in Figure 4 the code
that implements particle labeling in a dendritic crystal example, described
in section 4.2.

We have used an algorithm where each cell is compared with the neigh-
borhood cells, and its value is updated to the smallest value among the
neighborhood cells. This procedure is repeatedly executed until no more
updating occurs.

In this example, since the automaton that carries out the labeling process
belongs to a CA network, the labeling must be totally executed before execut-
ing the other automata in the network; this is the reason why we introduced
the etfai construct as a control mechanism.

3.4 Model component definition

In CANL each model component is described by an automaton. The automa-
ton is denoted by a name and its behavior is described by a set (possibly
empty) of properties, by a transition function, and by a neighborhood type.
The properties can correspond to physical quantities (e.g., temperature or
mass) or to some features (e.g., the probability of a particle to move itself).

PECANS: A Parallel Environment for Cellular Automata Modeling 31

=

4
s
-y
s
o
Sy
~
|N N~
~
S
N
3

10

(def-transition
:function-name make label
:global-variables ()
:body
((if (not (eg(center label) 0))
(then (set (center w label)
(min_neighbor label)))
(else (set (center w label)
(center label))))
(etfai
(not (eq (center label)
(center_wlabel)))
(init labelold-label)))

Figure 4: An example of etfai construct for the labeling algorithm.

The values of a property can also be real values. Anyway, according to the
CA model, a property corresponds to a computational grid as in [6].

To take account of the CA structure, we defined a new data structure,
the automaton grid, and a set of operators to access its elements. These
operators have been defined as generic operators, so the user can refer to
the cell neighbors by simply invoking them on the property’s name without
having to specify a particular neighbor cell position. For example, the user
can refer to the neighborhood elements of each cell of the property named
temperature by invoking (centertemperature), (northtemperature), or
(center wtemperature). The operator in the last expression is used for
writing operations, whereas the previous ones are used only for reading op-
erations.

The transition function is built around a set of primitives and user de-
fined functions, called auziliary functions. The current neighborhood types
implemented are North East West South (NEWS), the eight-neighborhood,
and the hexagonal netghborhood.

For each transition function, the border conditions to be used when the
transition function is applied to the grid border cells, has to be specified.
Currently two types of boundary conditions are implemented; the toroidal
one, where the grid is closed on itself, and the adiabatic one, where the
missing neighbor cell is assumed to be the same as neighborhood center.
For each transition function constants can be used in the transition function
body.

The CANL set of primitive functions for the model component are as
follows.

def-automaton, used to define an automaton of the network;

def-transition, used to define the automata transition function;

32 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

(def-automaton

:name <name>

:neighbourhood-type <neighbourhood-type>
:dimension <dimension>
:border-conditions <border-conditions>
:constants <constants>
:transition-function-name <transition-function-name>
:list-of-properties <list-of-properties>

(def-transition

: function-name <function-name>
:glob-variables <glob-variables>
:body <body>

)

(initialize
tautomaton-name <automaton-name>
:property-name <property-name>
:body <body>

)

(def-aux-fun

: function-name <function-name>
1type <type>
:neighbourhood-type <neighbourhood-type>
:parameters-list <parameters-list>
:body <body>

Figure 5: The automaton data structure and functions syntax.

def-aux-fun, used to define the auxiliary functions that may be called inside
the transition functions of all the automata in the network;

initialize, used to initialize the values of a property at the beginning of a
simulation.

See Figure 5 for their syntax.

The <body> of def-function and def-aux-fun is constructed by using
the functional composition mechanism and some arithmetic and logical prim-
itive operators, together with the assignment and the conditional operators.

To demonstrate the expressiveness and the simplicity of the CANL lan-
guage, we show the main functions of the CANL program for the well-known
game LIFE [6]. LIFE may be thought of as describing a population of stylized
organisms, developing in time under the effect of counteracting propagation
and extinction tendencies.

The transition function is built in the following way.

e A live cell, represented by the grid cell value 1, will remain alive only
when surrounded by either 2 or 3 live neighbors; otherwise, it will feel
either “overcrowded” or “too lonely” and it will die.

PECANS: A Parallel Environment for Cellular Automata Modeling 33

e A dead cell, represented by the grid cell value 0, will come to life when
surrounded by exactly 3 live neighbors.

We first define the automaton, named 1life, using the following function.

(def-automaton

mame life
:neighborhood-type eight

:dimension 256
:border-conditions toroidal
:constants 0
:transition-function-name life-fun
list-of-properties ((organisms int))

)

Next, we define the auxiliary function neighbors_sum to calculate the sum
of all neighbors as follows:

(def-aux-fun

:function-name neighbors_sum

‘type int

neighborhood-type eight

:parameters-list (((property prop) int))
:body (Hnorth prop) (east prop)

(south prop) (west prop)
(north-east prop) (north-west prop)
(south-east prop) (south-west prop)

)
)

where property is a keyword, used for identifying properties’ names. Then,
we define the transition function 1ife-fun for the automaton as follows:

(def-transition

:function-name life-fun
:glob-variables O
:body (case (center organisms)

(1 (case (neighbors_sum organisms)
23) (set (center_w organisms
g
(center organisms)))
(otherwise (set (center_w organisms)
0))))
0 (case (neighbors_sumorganisms
g g
3 set (center_w organisms
g
1))
otherwise (set (center_w organisms
g
(centerorganisms)))))

34 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

4. Simulation examples in CANL

In this section we describe two experiments carried out to validate the ap-
proach adopted for modeling physical systems. The first example is about
the simulation of the interaction of bubbles and drops with a solidification
front in a microgravity setting (section 4.1). The second example is about
the aggregation of small particles to form a large cluster, and how to use a
network of CA to simulate such a complex system (section 4.2).

4.1 Melting and solidification

This simulation was carried out in preparation for an experiment executed
in microgravity during the Spacelab mission IML-2 (July 1994). The exper-
iment intended to study the interaction of bubbles and drops with a solidifi-
cation front. The experiment set-up consisted of a solid sample contained in
a closed cell, to be made molten and then solidified in a temperature gradi-
ent. The performed simulation was aimed at determining the behavior of the
sample under different thermal conditions (temperature gradients, heat ex-
change through the boundary walls); the results provided information needed
to design the experimental cell flown on board the Spacelab.

The two-dimensional model system considered is described as follows.
The sample is represented by a matrix of elements (cells of a CA) bounded
by two lateral walls and two plates. The cell status is represented by two
(real values) properties: the temperature and the phase, defined as the per-
centage of solid phase content. Each cell exchanges heat by diffusion with
its neighbors; at each step the heat exchanged is computed to determine the
new temperature. If the temperature evolution crosses the melting point,
the phase transition is modeled as follows: part of the computed heat ex-
changed is needed to reach the melting point; the remaining part of the heat
exchanged is available for phase transition; then the corresponding phase
variation can be evaluated. Once the transition is completed, the cell tem-
perature can change again according to the Fourier law. In the following we
report the definition of the automaton.

(def-automaton

:name melting_sol
:neighborhood-type 4

:dimension 100
:border-conditions adiabatic

:constants ((solid 1) (liquid 0)

(Tm0 51) (densil 0.7682)
(densi_s 0.796) (K10.001525)
(Ks 0.00158) (Cl2.512)

(Cs 2.303) (Q 251.43)
(alpha_l(/ K1 (* Cl densi_1)))
(alpha_s (/ Ks (* Csdensi-s)))

)

PECANS: A Parallel Environment for Cellular Automata Modeling 35

:transition-function-name transition
:list-of-properties ((temperature double)
(phase double)
(containerint)
)

)

The transition function action can be summarized by these lines:

if the cell grid corresponds to the container
then do nothing
else if the cell is solid or liquid
then compute the new temperature (according to the
Fourier law)
if the transition is started
then compute the new phase
else the phase is the same (solid or liquid)
else (it is in the transition phase)
compute the new phase,
if the transition is terminated,
then compute the new temperature
else the temperature is the melting point.

The simulation has been validated by comparing the results for a one-
dimensional case with the corresponding analytic solution. A temperature
difference was imposed between the plates, at constant and uniform temper-
atures of, respectively, Ty and Ty + AT'; adiabatic conditions were imposed on
the lateral walls; the sample was assumed to be pure liquid tetracosane (the
model substance used in the Spacelab experiment); the tetracosane melting
point is 51°C; its initial temperature was uniform and equal to Ty + AT'.

Figure 6 shows the temperature profile in the sample after 75 simulated
minutes; the position of the solidification front is indicated by the edge. The
agreement with the analytic solution is completely satisfactory.

4.2 Dendritic crystal started from multiple cell-seeds (each cell
is a potential seed)

The understanding of the aggregation of small particles to form large clusters
is fundamental for a number of scientific and technological fields. The main
mechanisms of aggregation are based on particle-cluster and cluster-cluster
interaction. The relative importance of these mechanisms is influenced by the
dynamics of the suspension. Simulations performed up to now generally do
not consider all the mechanisms involved in the aggregation. Many studies
have been conducted on the Witten—Sander model [7], based on the particle-
cluster interaction: single particles diffuse towards a fixed seed, where the
cluster grows. This process has also been simulated with CA [6].

36 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

55 & &
541
531
AN Simulation
—~ Analytic solution
g st
£ sof
5
? 49t
& a8l T hot=55°C
T cold=45°C
47 time=75 minutes
46 [
45 1 1 1 1 1
0 2 4 6 8 10 12 cm

Figure 6: Comparison between CANL simulation of solidification and
analytical solution.

Other simulations have been conducted considering cluster-cluster inter-
action using a Monte Carlo approach [8]: larger clusters were formed by
sticking together two smaller clusters with a random relative orientation.

The goal of our simulation is to model all the different interaction mecha-
nisms together and to determine their dependence on the dynamic conditions.
Our methodological approach allows the representation of each physical as-
pect as a model component. Both particles and clusters move according to
the considered model (e.g., free diffusion, diffusion and sedimentation, etc.)
and interact when they are in contact. A sticking probability can be intro-
duced to take into account the case of a potential barrier slowing down the
aggregation rate.

In order to execute this simulation, we defined an eight cellular automata
network, whose structure is sketched in Figure 7.

The network structure definition by the def-net operator is as follows.

(def-net
(:no-dip (LABEL))
(:dip DIRECTION (LABEL))
(:dip CLUSTER_DIRECTION (DIRECTION))
(:dip MASS_.COUNT (LABEL))
(:dip MASS_CLUSTER (MASS_.COUNT))
(:dip MAYBE MOVE (MASS.CLUSTER))
(:dip MAYBE.MOVE._CIL, (MAYBE MOVE))
(:dip MOVE (CLUSTER_DIRECTION MAYBE_MOVE_CL))

)

In the following we report the task of each automaton.

LABEL This automaton determines the interacting particles and/or clus-
ters, making the labeling for the new clusters.

PECANS: A Parallel Environment for Cellular Automata Modeling 37

IK

LABEL
T

MASS_COUNT
y

| DIRECTION | | wmass_cruster |

| cLusTer pirecrion | | mavBE_MOVE |

MAYBE_MOVE_CL

[MovE |
v

Figure 7: Automata network structure for dendritic crystal simula-

tion.

MASS_COUNT and MASS_CLUSTER These two automata determine
the cluster total mass, where the cluster mass is given by summing the
mass of each particle belonging to the cluster.

DIRECTION and CLUSTER_DIRECTION These two automata as-
sign to each particle or cluster the motion direction. The first automa-
ton finds a direction for each particle according to the considered model
(for instance, using a random number generator, built in the system,
in case of Brownian motion), while the second automaton ensures that
the direction is the same for all the particles belonging to the same
cluster.

MAYBE_MOVE and MAYBE_MOVE_CL These two automata deter-
mine at each step if a particle or a cluster will move. In general, the
relative mobility of clusters depends on cluster mass, according to the
conditions being modeled. For instance, under microgravity conditions
the probability to move diminishes when the cluster mass increases,
while under normal gravity this probability increases with the cluster
mass in the gravity direction.

MOVE This automaton moves the particles and the clusters, taking into
account their directions and probabilities of movement. If, according to
these directives, two or more particles want to occupy the same place,
then in this place the new particle will have a mass given by summing
the mass of all these particles.

As an example, we report in Figure 8(a) and 8(b) two aggregations sim-
ulated with a 400 x 400 grid; in both cases the initial condition is given
by a uniform distribution of particles, scattered randomly in the plane. In
Figure 8(a) the cluster mobility increases with the mass; this case is similar
to the Witten Sander model, but the clusters are not symmetric because no

38 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

Figure 8(a): Aggregation with cluster mobility increasing with cluster
mass.

W
m?’".;*
{»;A?fi, ,Q, >
A G A v

Figure 8(b): Aggregation with cluster mobility decreasing with cluster

mass.

seed is present. In Figure 8(b) free diffusion has been modeled: the cluster
mobility decreases with the mass. This condition is expected for microgravity
experiments.

5. Some comparisons and conclusions

Our aim was to propose a new methodological approach for the modeling of
systems characterized by a molecular ontology. This approach is essentially
based on creating physical models by means of a reduction process in model
components. To this end we have extended the CA model to a network of CA,
where each automaton can have an unlimited number of properties. Each
property of an automaton can have real values, and it is possible to use global
variables and the control construct etfai. We have defined the PECANS
environment and the CANL language as tools to apply this approach.

Our prerogative has been to develop an user-friendly programming envi-
ronment and a language with good expressiveness and simplicity in its use.

PECANS: A Parallel Environment for Cellular Automata Modeling 39

In this respect, it may also be possible to capture some qualitative physical
aspects.

The environment is implemented to run on a parallel machine. Neverthe-
less, no overhead for parallelism is burdened on the programmer; everything
is automatically done by the environment. In fact, PECANS can also run
on a sequential architecture, with no perceivable modification for the CANL
programmer, except for time performance.

Other CA environments have been proposed in the last few years. The
CAM-6 machine [6] is perhaps the only way to deal with a language specif-
ically dedicated to CA that allows the programmer to be unaware of the
implementation details. But the high efficiency is due to the hardware im-
plementation, and this causes constraints in its use. In fact, it is suitable
only for representing CA with a number of states not higher than sixteen,
being the number of possible values of a single cell and the number of com-
putational planes limited by the hardware constraints.

The CAMEL [9] environment is implemented on a transputer network,
and there is no practical limit to the number of states for the elementary
automaton; this fact is one of the motivations that make it suitable for re-
alizing interesting simulations. It also has the efficiency features, since it
is implemented on a transputer network, with a load balancing strategy to
introduce time optimization, without charging the user for that. However,
there is no real programming language to make the environment implemen-
tation transparent to the user.

The CAPE [10] parallel environment is also implemented on a transputer
network, in which no overhead for parallelism is charged to the user. The
same user program can be executed either sequentially or concurrently. But
the user program has to be written in FORTRAN, and the number of states
that an automaton cell can have is limited.

In [11] a shared MIMD machine is used, as in our implementation, and
data parallelism is achieved by dividing the cell grid updating among the
available processors. But there is no language for CA programming.

We conclude this paper by reporting the current implementation status
of PECANS, and how we intend to proceed in our work.

At present, the kernel of our environment implements essentially the
data parallelism intrinsic to each automaton. The system runs on paral-
lel machines; the automaton grid is split according to its topology and each
partition is associated to a thread. We observed that the speed-up fac-
tor attains the limit values on increasing the transition function complexity,
and it is essentially independent of the number of times the transition func-
tions are iterated, but it is strongly dependent on the automaton grid size
[12].

At present, we are working on tuning the implementation of our run-time
system for different parallel architectures; this involves only a few modifica-
tions to our program, because it is written in a modular way. Obviously the
CANL programs will be the same for all the architectures; the only thing
to do is to specify the architecture type during the environment installation.

40 L. Carotenuto, F. Mele, M. Furnari, and R. Napolitano

This feature is very important, because it allows the system to be portable
to different architectures.

We are also working on control parallelism, that is, to produce the code
to run more than one automaton concurrently according to the precedence
relations described by the network of CA.

Acknowledgements

The authors are grateful to Professor S. Di Gregorio not only for the useful
discussions and suggestions, but mainly for his encouragements. However,
he is not responsible for the contents of this paper.

This study has been conducted under the sponsorship of the Italian Space
Agency.

References

[1] P. A. Fishwick, “Process Abstraction in Simulation Modeling,” in Artificial
Intelligence, Simulation, and Modeling, edited by L. E. Widman et al. (Wiley
Interscience, 1989).

[2] B. Kuipers, “Qualitative Simulation,” Artificial Intelligence, 29 (1986) 289—
338.

[3] S. Bandini, G. Cattaneo, S. Cordioli, and G. Vian, A Qualitative Descrip-
tion of Field Theory in Terms of Molecular Ontology, Proceedings 1°National
Conference of Italian Association of Artificial Intelligent, Trento, (1989).

[4] P. Hayes “Naive Physics I: Ontology for Liquids,” in Formal Theory of the
Commonsense World by J. R. Hobbs and R. C. Moore (Ablex Pub. Co., NJ,
1985).

[5] L. Carotenuto and F. Mele, Simulation of fractal aggregation in microgravity
using cellular automata approach, Forty-second Congress of the International
Astronautical Federation, Montreal (1991).

[6] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environ-
ment for Modeling, (MIT Press, 1987).

[7] T. A. Witten, L. M. Sander, Physical Review Letters 47 (1981) 1400.
[8] P. Meakin, Journal of Physics A, 20 (1987) L1113.

[9] D. Barca, G.M. Crisci, S. Di Gregorio, and F. Nicoletta, “Cellular Automata
for Simulating Lava Flows: A Method and Examples of the Etnean Erup-
tions,” Transport Theory and Statistical Physics, 23 (1994) 195 232.

[10] M. White and M. G. Norman, CAPE Cellular Automata and Beyond ..., Tech-
nical Report ECSP-TN-39, Edinburgh Parallel Computing Center (1989).

[11] M. Tomassini, “Cellular Automata Calculations on a Shared Memory Mimd
Machine,” Supercomputing Review, November, 1990.

PECANS: A Parallel Environment for Cellular Automata Modeling 41

[12] M. Mango Furnari, F. Mele, and R. Napolitano, “A Parallel Environment
for Cellular Automata Network Simulation,” in Second Workshop on Massive
Parallelism, edited by M. Mango Furnari (Capri, Italy October 3-7, 1994,

World Scientific Press).

