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Abstract. Two iterated function systems, resulting in the attractors
generally known as the Sierpinski triangle and the von Koch snow
flake curve, are studied. The complete attractor is considered to be
at the level of precision p = 0; it is divided into smaller replicas
(0 = 1), each of which in turn are considered to be composed of
smaller replicas (1 = 2), and so on up to higher levels of precision. An
algorithm is designed to represent paths at any (finite) level u and a
very simple procedure is found to simulate random orbits. From these
orbits periods may be found. A statistical study of periods shows that,
as the level of precision tends to infinity, the mean period also tends
to infinity

1. Sierpinski triangle, the addresses of its points and their paths
We study the attractor of the iterated function system

wi(z) = i+ Rz
—0.5(v3 +14) + 0.5R(—1 +iV/3)z
0.5(v3 —i) — 0.5R(1 +iV/3)z (1)

which is a Sierpinski triangle [1, 2]. In order to have a totally disconnected
attractor we shall consider the constant R to be less than 0.5. Each of the
equations of the iterated function system has the same opportunity to be
chosen during an iteration n.

The main feature of these notes lies in the fact that the Sierpinski triangle
is studied at different levels, p, of precision The coarser level, defined by
1 = 1, indicates that the iterated points land inside three triangles, which
are replicas of the complete attractor. These three triangles are numbered 0,
1, and 2, counterclockwise, as shown in Figure 1.

At a finer level of precision, p = 2, each of the previous triangles is
divided into three smaller triangles, numbered in the same fashion, and so
on, to higher levels of precision. At a specific level p, a total number of 3#
triangles may be defined.
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Figure 1: Sierpinski triangle obtained with IFS (1). The whole at-
tractor is assigned a level p = 0; the three larger triangles, assumed
to belong to level i = 1, are numbered with the larger digits; smaller
digits indicate the region where points lie if the level of precision is
u = 2. An orbit of three paths (P,, Pyt1, and P,y2), for p = 4,
is shown. The address where P, starts is 1021, and it ends at 0102;
P, 41 ends at address 2201 and the final destination of P, 42 is 1002.

When a particular level p is chosen, the address of a point may be given
by a string of © numbers. For example, the address a = 1021 (see Figure 1)
indicates that the point belongs to replica 1 of level p =1 (first digit of the
string); with a further refinement, we may say it is placed at replica 0 of
i = 2 (second number); it is also inside replica 2 of y = 3 (third number);
and finally, the fourth digit of the address identifies replica 1 of level p = 4.

A path performed by a point during two successive iterations is defined
by the address of the point at iteration n and by the address reached by the
point at iteration n + 1. A path, P,, may be given by a string of 2u digits
such as

P, = aiby asby...a;b;. .. aubu, (2)

where a; 1s the address at iteration n and b; is the address for iteration n + 1.
Thus, as an example (see Figure 1), the path P, = 10 01 20 12 goes from
address a = ayazazay, = 1021 at iteration n, to address b = bybybsb, = 0102
at iteration n + 1.

Through the transformation (into a ternary system),

a; = ai31 + b130 (3)
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equation (2) may be simplified to yield the word for a path,
PP, = ajas0a;...04. ... (4)

Equations (2) and (4) are equivalent words for specifying the same path; the
first is a 2u-digit string, while the latter has only u digits
In general, the number of paths is given by

RE (5)

A very careful numerical study has been performed by the author in order
to confirm the existence of all such paths up to a level of p = 3; some of the
paths have been numerically confirmed for higher levels of precision. In the
following section we develop an algorithm to express the string of paths for
any value of pu.

2. An algorithm to express paths of the Sierpinski triangle

Let us define the following vector:

A(1,1) A(1,2) A@1,3)] [oo o1 02| o 1
A(2,1) A(2,2) A(2,3)|=[10 11 12| =3 4
A(3,1) A(3,2) A(3,3)| |20 21 22| |6 7

(6)

co Ut N

The first matrix with numerical values shall be used to express paths in the
manner of equation (2) and the second matrix to paths defined by equa-
tion (4). Note that each element A of the vector is related to addresses

by
14(.[/7 M) = aLbM = CLL31 + bM30 (7)

where a, = L — 1 and by; = M — 1.
The second (and last) definition is the cyclic vector

B(1,1) B(1,2) B(1,3)| |1 2 3
B(2,1) B(2,2) B(2.3)|=|2 3 1 (8)
B(3,1) B(3,2) B(3.3)| |3 1 2

With the aid of equations (6) and (8) a path at any finite level ;1 may be
identified by

p—1
P, =102V A(T, 0, o) + Y 102U ™ A0, B( Ty T )1 (9)
m=1
If the indexes Ji n, Jon, and Jp 42, are randomly chosen between 1, 2, or 3,
then a particular path is selected; if the indexes are given the values 1, 2,
and 3, then equation (9) expresses all paths belonging to level pu.
As an example with p = 4, if we choose

Jl,n = 2; JZ,n = 17 J3,n = 1a J4,n = 3a and JS,n = 27
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the resulting path is, from equations (6) through (9),

P, = 1000000 x 10 4 10000 x 01 4+ 100 x 20 + 12 =10 01 20 12
or

PP, = 3165.

This example is represented in Figure 1; it is the path which goes from
address a = 1021 to address b = 0102.

2.1 Orbits

The successive addresses of a point (as defined in previous paragraphs, for
particular levels ) during iterations n, n+1, n+2, n+ 3... form an orbit.
The specific iterated function system (IFS) now studied yields only three
new possible paths during iteration n 4+ 1, which may follow a given path
performed during iteration n.

Algorithm (9) provides one path, but a similar algorithm may be used to
calculate one of the three aforementioned possible paths which may follow.
This is achieved by a simple shifting of the elements of P, one place to the
left, in order to start at the address where P, has arrived at during iteration
n. Thus, a new path, P,;1, following P,, shall be found with,

Py = 102(‘L—1)A(J1,n+1;=]2,n+1)

p—=1
+ ST 102 ALT o iy, B(J s Ty )0+ 1] (10)
m=1
where
Jl,n+1 = JZ,nv
Jomt1 = 1,2, or 3 (chosen at random),
and

Jm+2,n+1 = B(J'nu ']m+1)n-

The values of the cyclic vector B(Jy,, Jmi1)n of the last of equations (10),
used to calculate the new J,, 42,41, belong to the previous path, P,.

As an example for the application of equation (10), we would like to
determine one of the paths following P, = 10 01 20 12, given in a previous
example. If Jp 41 = 3 is (randomly) chosen, then from equation (10),

Sy = Jan=1,
Jz,n+1 = 3,

J3ui1 = B(J1, Ja)n =
Jins1 = B(Jy, J3)n = B(1,1) =1,
Jsmi1 = B(J3, Jy)n
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and

P, 11 = 1000000 x 02 + 10000 x 12+ 100 x 00 + 21 = 02 12 00 21
or

PP, = 2507.

(Note that we apply the rule: 100 x 00 = 00 00.)
The other two possible paths are

Pup1=00100121, or PP,y =0317 (for Jo, =1)
and
Pop1 = 01110221, or PP,y =1427 (for Jonpi = 2).

It may be seen that the algorithm is austere and specially suited for
computation due to the few arithmetic operations needed.

2.2 Recurrent periods

Figure 1 shows an orbit composed of three paths at level u = 4. It simulates
a point lying at the address 1021 at the first iteration n; then it follows a
jump to 0102, then a step to 2201, and finally reaches the address 1002. If
iterations were to be continued, the point may eventually reach the same
address where it started from during a particular orbit. The number of
iterations performed in order to repeat an address shall be called recurrent
period, and denoted with 7. (When p tends to infinity the recurrent period
would tend to a true period.)

As mentioned in previous paragraphs, for a finite level p there is a fi-
nite number of paths. If the orbit is made up with equations (9) and (10),
then each of the paths would appear along the orbit with different recurrent
periods, in the range

Tmin S T S Tmax- (11)

The value of the minimum recurrent period is precisely unity, thus denoting
that during an orbit a point may land in the same address during two succes-
sive iterations; this would be the case when one of the equations of IFS (1)
is (randomly) chosen twice and the replica of order yu lies in the vicinity of
a fixed point. On the order hand, the maximum recurrent period (large but
finite) is strongly dependent upon level pu.

Figure 2 shows the results of a typical statistical study of the frequency
distribution of recurrent periods for a particular level p. It is a frequency
distribution, f(T'), of the Poisson type

F(T) = Aexp(=AT) (12)

where A\ = 1/Tnean; and Tean is the mean recurrent period.
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Figure 2: Orbits of two million paths were numerically generated
with the algorithm (10) for g > 8, one million paths for the range
6 < p < 8, and one-half million for 4 < 6. A recurrent period 7' is
defined as the number of iterations necessary to repeat an address. A
statistical study for these periods allows the determination of a mean
recurrent period Tiean, and a maximum mean recurrent period Tipax.-
For this level 4 = 8 and this particular experiment, Tihean = 19210
and Thax = 226178. Frequency distribution curves are similar to this
one for all levels p; it may be seen that the most frequent periods are
the smaller ones.

Numerical experiments were performed with orbits composed of one-half
million paths for 2 < p < 5, with one million paths for 6 < p < 8, and with
two million paths for 8 < p < 10. Higher levels u, or longer orbits, were not
studied due to computational limitations.

Figure 3 shows the results of several numerical experiments trying to
describe the behavior of the mean recurrent period as a function of level pu.
Its dependence upon p may be expressed with a function of the type

Tean = 3.53exp(1.07p)  (r? = 0.9998). (13)

Equation (13) gives an approximation on how fast the mean recurrent
period tends to infinity as p does so, thus suggesting that the studied IFS
has no period at all. This conclusion may not be a simple consequence of the
random choice of one of the equations of IFS (1).

With respect to the maximum recurrent period Figure 3 also shows that
it varies with a function similar to equation (13), in this case given by

Tax = 45.4exp(1.07u)  (r? = 0.9995), (14)
denoting that T,,.. is simply a multiple of T}, can-
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Figure 3: A summary of results for Sierpinski triangle concerning
recurrent periods numerically determined with equation (10). As p
tends to infinity it may be assumed that the IF'S has no period at all.

Slight variations in the constants of equations (13) and (14) may be ex-
pected if longer orbits for p > 8 are studied.

3. von Koch attractor and a simulation of its paths and orbits

This particular attractor may be designed through iterations over the system
of equations

wi(z) = —i+ Rexp(ia)z,
wy(z) = —i+ Rexp(—ia)z, (15)

where @ = 145° and R = 0.6 have been chosen for this study (see Figure 4)
in order to avoid overlapping. Each of the two members of the IF'S have the
same opportunity to be chosen for each iteration.

As we have done with the Sierpinski triangle, we consider the whole at-
tractor to belong to level 4 = 0. Then we inspect it in more detail by dividing
the region into two replicas (identified with the larger digits 1 and 2 in Fig-
ure 4); they belong to level = 1. A further refinement of the inspection is
shown at level p = 2, also with numbers 1 and 2 (smaller digits in Figure 4).
The number of divisions into replicas may reach any level of precision.

The observation of IFS (15), and numerical experiments, show that at
level = 1 a possible path is P, = 12, meaning that a point travels from
address 1 at iteration n to address 2 at iteration n + 1. The other three
possible paths are P, = 21, 22, and 11; the latter identifies points which
remain in the same replica during two consecutive iterations.
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Figure 4: von Koch attractor resulting from IFS (15) The whole at-
tractor is assumed to belong to a level of precision p = 0; if it is
inspected with more detail, p = 1, two replicas, numbered 1 and 2
with the larger digits, may be identified; smaller digits (also 1 and
2) correspond to level p = 2. The digits for each level are placed
approximately at the center of gravity of the replica they belong to.
Three paths, obtained with equations (19) are identified with lines
and arrows, together with the addresses where each path starts and
ends its traveling. If an address is repeated after N iterations, then a
recurrent period 1" = N is said to exist.

A path at level g may be expressed with the string,

Pn = albl 021)2 (L3b3 . aibi e aubu,

where a; is the original position of the point and b; is its final destination,
both at level p = 4 and during two successive iterations.
If we define the matrices

‘A(l,l) A(l,Z)‘ . ‘11 12‘ (16)
A(2,2) |21 22
and
B(1)| |2
= 1] an
the word for a path at level p is given by
p—=1
P, =102 YAy, Joy) + S0 1027 AL T4 0, B( o)1) (18)
m=1

where the indexes Ji ,,, Ja,,, and Ja,,41,, are chosen at random between 1 and
2, and the factors 1021 and 102k—1-m) (as it was done with the Sierpinski
triangle) are designed to place a;b; in the correct place inside the string.
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There are only two possible paths which may follow P,; the paths are
obtained by a random choice and a simple shifting of the addresses, since
P,1 at iteration n + 1 should start at the address where P, has arrived at
during iteration n. The two possible paths following equation (18) are given
by the set of equations

Py = 102(M71)A(J1,n+laj2,n+l)

p—=1
+ 102(M_1_m)A[.]2m+1,n+1, B(J2m,1)n + 1] (19)
m=1
where
Jl,n+1 = ']2,7“
Jan+1 = 1 or2 (chosen at random),
and

J2m+1,n+1 = B(JZm—l)n-

The orbits in equation (19) for von Koch attractor have the same structure
of the orbits in equation (10) for Sierpinski triangles.

If a computational algorithm is used to draw orbits of the von Koch
attractor it is more convenient to use a binary system since it will use half
the amount of digits, if compared with an orbit given by equation (19). For
this purpose, the path may be given by

PP,=a1 a0 03...05...0 (20)
where
;= (a; — 1) x 2"+ (b; — 1) x 2°. (21)
The matrix given by equation (16) should be replaced by
A(1,1) A(1,2) ‘ . ‘0 1
A(2,1) A(2,2)] |2 3
and for the pointers, 1021 and 102~ 1=™) a new pair should be used:
10#~1 and 10#71—™,
A study of the frequency distribution of recurrent periods was performed
with the algorithm (19) for increasing values of u (2 < p < 6) and for orbits
composed of 600000 paths (see Figure 5). Though the number of paths for

each orbit and the range of levels u do not seem to be large enough, the
results for mean recurrent periods follow a curve given by (see Figure 6)

Trnean = 1.01exp(0.73p). (22)

, (16.1)

Maximum recurrent periods can be represented by the function
Trnax = 37.7exp(0.67p). (23)

The exponential increase of periods with an increase in the level u sug-
gests that periods would tend to infinity when p does so, thus denoting that
IFS (15), just like IFS (1), have orbits without a period.
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Figure 5: Frequency distribution for recurrent periods for the von
Koch attractor at u = 6 with orbits of 600000 paths. For this par-
ticular level of precision the mean recurrent period is found to be
Tiean = 75.15, and a maximum was found with Ty, = 2013. As
with Sierpinski triangles, the most frequent periods are the smaller
ones.
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Figure 6: Summary of results for mean and maximum recurrent peri-
ods for increasing levels of precision pu, for the von Koch attractor.
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4. Conclusions

An iterated function system of three equations yielding a Sierpinski trian-
gle, and another IFS of two equations drawing a von Koch attractor (both
without overlapping), are divided into replicas of decreasing size, each replica
corresponding to an assigned level of precision (or depth) p.

Since there is a finite number of paths for each level u, two very simple
algorithms were devised for the studied IFSs to express all possible existing
paths for each level y. Similar algorithms are devised to calculate orbits. The
condition imposed upon these algorithms is that a new path starts at the
address where the previous path has arrived at, thus simulating an iterative
procedure.

A particular orbit for a specific level p, randomly made up with the
algorithms, may repeat addresses; the number of paths generated in order to
repeat an address is herein called recurrent period.

An orbit thus generated shall have a number of different recurrent periods.
Statistical studies show that the frequency distributions of recurrent periods
are of the Poisson type, defined by a mean recurrent period, Tyean-

Numerical results show that the mean recurrent period increases expo-
nentially with p. This result should be an indirect (but strong) suggestion
that the IFSs under consideration (and perhaps all IFSs, with or without
overlapping) have no period at all when p tends to infinity.

References

[1] Barnsley, Michael F., Fractals Everywhere, second edition (Academic Press
Inc., 1993).

[2] Mandelbrot, Benoit B., The Fractal Geometry of Nature (W. H. Freeman and
Co., New York, 1983).



