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Abstract. Information flow through a neural network learning to rec-
ognize state-transition statistics produced from a nonlinear, bistable
detector under conditions of stochastic resonance (SR) is investigated.
The information flow dynamics are examined in terms of an information-
theoretic cost-function defined by the relative informational entropy
associated with an ensemble of training sets averaged over the tem-
poral evolution of training cycles. The network architecture consists
of a multilayer perceptron evolving under the guidance of the back-
propagation algorithm. For the purpose of emulating SR, a Schmitt-
trigger logic is utilized as the nonlinear detector, and generates state-
transitions exhibiting SR in response to a sine-wave signal superim-
posed with gaussian noise. The output statistics of the Schmitt trig-
ger are used to train the multilayer perceptron towards recognizing
the extent of SR present in the detector state-transition dynamics.
It is demonstrated that information flow dynamics under conditions
of SR are inherently more informatic (or less negentropic) than cases
wherein the state-transition statistics are dominated by nonSR. condi-
tions, that is, under higher or lower signal-to-threshold ratios. Some
details concerning SR in relation to biological neurons are also dis-
cussed.

1. Introduction

In sensory detection and classification applications, the inevitable presence
of noise typically degrades performance of the system. However, in certain
nonlinear systems concerned with the detection and classification of weak,
periodic signals, an optimum signal-to-noise ratio may be encountered at a
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nonzero value of the additive noise level. This phenomenon has been termed
as stochastic resonance (SR).

SR was originally postulated as a mechanism to explain the 100000 year
periodicity of glacial epochs in the climate of Earth [1]. It purported that
a weak periodicity in solar radiation caused by variations in the orbital dy-
namics of Earth could result in periodic transitions of the climatic behavior
of Earth between glacial and interglacial states. The initial experimental de-
tection of SR was obtained from measurements of a signal-plus-noise driven
bistable electronic circuit, namely the Schmitt trigger [2]. (A Schmitt trigger
is a bistable, dual-threshold device that changes its state when an input stim-
ulus crosses the upper threshold from below, or when the stimulus crosses
the lower threshold from above.) SR has also been verified in a bidirec-
tional ring laser, in which a periodic signal not coupled with noise, would
not result in correlated laser modulations [3]. Further, SR has also been
demonstrated in many other dynamical systems such as the single-well po-
tential system, and in the “integrate and fire” dynamics employed commonly
to model the response of sensory neurons [4]. More recently, SR has been
verified in a number of important biological processes such as information-
transfer from mechanoreceptor hair cells situated on the tail of the red swamp
crayfish Procambarus clarkii [5], cercal sensory neurons of crickets [6], signal-
transduction across the voltage-dependent ion-channels of the cell membrane
[7], in neuronal networks prepared from temporal lobe hippocampal sections
of the mammalian brain [8], and even in the exteroreceptive somatic nervous
system [9] as well as muscle-spindle afferents [10] of Homo sapiens. Biolog-
ical neurons operate in an inherently noisy environment, and the fact that
SR has been observed in them indicates that such noise is an integral part
of neurocellular activity. From a signal processing perspective, SR results
in an optimum input/output signal-to-noise ratio at nonzero values of noise
intensity. Viewed from the information theory standpoint, this means that
noise contributes to a significant extent in the development of a maximum
rate of information transfer through the system.

Contemporary studies have applied information measures (entropies or
mutual information) to quantify the noise-induced, maximum information
transfer resulting from SR [11 13]. The relevant results demonstrate that
models of a single neuron do exhibit an information rate maximization at
nonzero noise levels. They do not, however, illustrate whether or not coop-
erative populations of a neural assembly make use of SR in their information
transfer endeavors. The present study, therefore, is intended to elucidate the
influence of SR on neural learning in an artificial neural network (ANN).

The detection and transfer of information from neural sensory input to
the mammalian brain is known to be encoded in the time-interval sequence
between “firings” of neurons which constitute a train of action potentials. A
statistical examination of these time-interval sequences (or interspike inter-
vals) reveals that the coding follows a stochastic process. Even though the
statistics of action potential trains have been investigated comprehensively
[14], it is not established precisely how the associated sensory information
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is encoded. It has been assumed historically that appropriate mathematical
models which represent the statistics of time-interval sequences of neurosen-
sory action potentials refer to a homogeneous Poisson point process; and,
they belong to the family of modified Poisson point processes with the in-
clusion of temporal refractory effects. These models are inherently renewal
processes, indicating that they predict independent, identically-distributed,
interevent intervals. Such intervals are implicitly uncorrelated; and there-
fore can be described completely (in a statistical sense) by their interevent-
interval histograms (ITH). However, it has also been shown [15] that sequences
of interevent intervals may exhibit positive correlations over long time peri-
ods, and renewal process based statistical models are rather inadequate for
a complete description of such action potential statistics having correlatory
(markovian) attributes. In fact, if one were to measure the action potential
rate in mammalian auditory nerves, it can be observed that fluctuations in
the rate do not often subside to any significant extent even for very long av-
eraging periods; that is, the rate exhibits sustained fluctuations on all time
scales [15]. Therefore, it has been suggested [16] that a complete statistical
model for the action potentials should be based on a fractal-stochastic-point
process.

Interestingly, regardless of the model employed to describe the temporal
attributes of the neural spike occurrences, the presence of interevent correla-
tions do not alter the outcome of the associated ITH. The ITH can, therefore,
serve as a tool to demarcate the presence or absence of SR and is adopted as
a simplified statistical tool to model the sensory neuron response.

In this paper, the information flow through an ANN adapting to the
IIH produced by a simulated neuron in response to input conditions of SR
is investigated. ANNs are a convenient tool for modeling the flow of neural
information. They are loosely based on the information-processing struc-
ture of biologic neurons, and derive their ability to learn complex mappings
from their massively parallel interconnection structure and the inherent non-
linearity of individual neurons. ANNSs, in general, operate in two distinct
phases: The first is the training phase, where the network adjusts its inter-
nal parameters in response to a set of training data or rule-bases. Second,
is the predictive phase, where the trained network responds to input data
and produces a functional mapping. ANNs can be classified generally either
as supervised, or unsupervised architectures. Supervised paradigms require
a “teacher” that produces an error-output in response to the training data,
and minimization of the error (or cost-function) directs the learning process,
which is essentially an adjustment of internal parameters of the network. An
unsupervised network does not require an external teacher to generate an
error, but relies on a rule-base to adjust its internal parameters in response
to the network output during training. ANNs can be classified further as
either feedforward, or feedback types. This classification refers to the flow of
information during the predictive phase of operation.

As pointed out by the authors in [17], the flow of information during
the training phase in an ANN is a competitive endeavor between the posi-
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tive and negative information available. Positive information relates to the
actual learning of the network, namely, its ability to predict the desired out-
come with an increasing degree of confidence. Negative information refers
to confusing the learning process by information arising from extraneous pa-
rameters or due to the inevitable presence of noise. It is therefore indicated
in [17] that it is more appropriate to model the information transfer during
the learning process in terms of the classical definition of information based
on entropy concepts [18]. Further, it is shown in [17] that the dynamics of
information flow during ANN learning correspond to that of a stable, chaotic
system with a dominant (well-defined) attractor basin.

The essence of this paper is to synthesize the dynamical behavior
inherent in SR with the information rate dynamics of neural learning in order
to assess the information transfer characteristics of neural systems learning to
optimally exploit SR. It is demonstrated that the flow of information during
the training phase of an ANN is more informatic when the ANN models a
dynamical system exhibiting SR, than in the case of a similar nonSR system.
That is, a nonSR dynamic results in a larger information-theoretic entropy
(network uncertainty) during learning than the SR case.

The paper is organized as follows. First, the statistical character-
istics of state-transitions exhibited by biological neurons in response to SR
are reviewed. Next, the Schmitt trigger as a bistable nonlinear detector is
described, and a general threshold parameter is identified to quantify the
signal-plus-noise input in relation to the thresholds of the detector. Re-
sults of computer simulations which generate state-transition statistics of
the Schmitt trigger in response to the signal-plus-noise are then presented
and contrasted to relevant biological results. Comparison of the biological
response statistics with those produced from the computer simulations are
used as a criterion to establish the presence or absence of SR. Pertinent
computer generated response statistics and corresponding detector threshold
parameters are subsequently used as training sets for the ANN. The ANN is
then described, along with details of its implementation that provide a mech-
anism for quantifying the flow of neural information during learning. This
is achieved through the use of an information-theoretic cost function in the
backpropagation algorithm. The results of the ANN learning evolutions are
then quantified and discussed in terms of the average uncertainty perceived
by the ANN during training. Lastly, concluding remarks regarding the flow
of neural information through systems attempting to maximize the extrac-
tion of information from weak periodic signals buried in noise by means of
the mechanism of SR presented in this paper are discussed.

2. Interevent-interval histograms and stochastic resonance
2.1 Biological characteristics of interevent-interval histograms

In [19] measured ITH data obtained 23 years apart from the auditory nerve
fibers of a squirrel monkey, and from the primary visual cortex of a cat,
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subjected to periodic stimulus are analyzed. The following substantiative
features of biologic ITH in response to weak periodic stimuli are observed.

1. Response modes are located at integer multiples of the stimulus period.

2. Response mode amplitudes decay approximately exponentially, as in-
dicated by the linear slope of mode amplitudes on a logarithmic scale.

The second feature suggests that the spike rates are governed by rate pro-
cesses.

Noise is required to produce biologically justifiable ITH for at least
the following two reasons.

1. The firing threshold of the system is above that of the periodic stimulus
amplitude.

2. Noise is required to produce response modes at intervals other than the
stimulus period.

In [19] the sensory neuron information transmission on the basis of bistable
Schmitt trigger dynamics is modeled. By comparing the resulting state-
transition statistics of the bistable model with the experimentally obtained
physiological results, it was concluded that noise is a requisite component in
order to produce experimentally justifiable ITH when neurons are stimulated
by periodic inputs.

2.2 Computer simulations of stochastic resonance

As indicated above, the basic statistical description of interevent intervals
which result from the transition dynamics of nonlinear systems exhibiting SR
have been verified in both biological and electronic systems. In this paper,
the approach due to [19] is pursued and a Schmitt-trigger logic is employed
to simulate the interevent transitions under conditions of SR. Statistics of
the interevent transitions are then extracted as depicted in Figure 1 for sub-
sequent application in the ANN. The Schmitt trigger is a dual-state, dual-
threshold device. Let HI and LO represent the two stable states, and denote
the corresponding thresholds as ay and ag, respectively, where aoy > ag,. The
state-point logic of the Schmitt trigger is that LO—HI if the input crosses
ay from below and the state is not already HI; and, HI—-LO if the input
crosses ag, from above and the state is not already LO.

Let the noise considered be zero-mean gaussian-distributed with a vari-
ance o2. It is added to a periodic process with a peak-to-peak amplitude
of 2A. Relevant to the application of this signal-plus-noise to the bistable
Schmitt trigger, it is assumed that ay > A. The lower threshold o, is
assumed to take a value near A but below ay. An appropriate system pa-
rameter that encompasses the relevant features of signal-plus-noise applied to
a threshold detector is the ratio of threshold excess power, namely (ay — A)?
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Figure 1: Extraction of interevent statistics from a Schmitt trigger
subjected to a small amplitude sinusoid, embedded in noise, producing
conditions of SR.

to the variance (02) of the noise. Hence, the system threshold parameter
can be defined as follows:
oy — A 2

= A (1)
This single parameter can be used to characterize the power of the excess
signal-plus-noise required to initiate a state-transition of the detector relative
to that of the noise. In the case when o — oo, then v — 0 and it is pointless
to attempt extracting useful information from the statistics of the detector
state transitions. If the noise variance is greater than the required threshold
excess power, that is, when (ay — A) < o, it follows that 0 < v < 1.
This parameter regime encompasses the low signal-to-noise conditions and
detector threshold levels which constitute a hallmark of SR. In the event of
the unlikely occurrence that the noise variance and excess power are precisely
matched, then (ay—A) = o, with v = 1; and lastly, if the transition threshold
is set far above the level of signal amplitude in relation to the noise, then
(ay — A) > o, resulting in v > 1.

A computer program was implemented with the Schmitt-trigger logic to
produce IIH data for any value of « using a sine wave plus zero-mean gaus-
sian, or uniform noise. The number of points of signal-plus-noise data which
were processed in each simulation was 50000. Figure 2 is a typical ITH that
results from threshold and noise conditions specified by v = 0.8. It may be
noted that the primary response modes are located at integral multiples of
interevent intervals normalized by the period of the sine wave, and the am-
plitude of the modes decay approximately exponentially, in agreement with
the statistics of biological ITH as indicated in [19]. (The optimum range of y
which resulted in biologically plausible IIH ranged from 0.7 to 0.9.)
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Figure 2: IIH produced from a Schmitt trigger subjected to a sine
wave plus gaussian noise with a threshold parameter v = 0.8. The
interevent intervals (t) are normalized with respect to the sine wave
period (T). v is the number count of Schmitt trigger state-transitions
that occurred.
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Figure 3: ITH produced from a Schmitt trigger subjected to a sine
wave plus gaussian noise with a threshold parameter v = 0.1. The
interevent intervals (t) are normalized with respect to the sine wave
period (T). v is the number count of Schmitt trigger state-transitions
that occurred.

61

When values of 7 are less than 0.7, the detector threshold is set slightly
above the level of the periodic signal amplitude, and the resulting state-
transitions are dominated by the periodic signal as illustrated in Figure 3. In
the case of v > 1, the threshold level is excessively distant from the signal am-

plitude (in relation to the noise power), so that the noise fluctuations control
the detector dynamics. The resulting ITH then tends to exhibit amplitudes

distributed across the range of interevent-intervals as shown in Figure 4.
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Figure 4: IIH produced from a Schmitt trigger subjected to a sine
wave plus gaussian noise with a threshold parameter v = 1.5. The
interevent intervals (t) are normalized with respect to the sine wave
period (T). v is the number count of Schmitt trigger state-transitions
that occurred.

3. Multilayer perceptron neural network

In this section a multilayer perceptron ANN is implemented to evaluate learn-
ing dynamics involving SR. The perceptron is a supervised feedforward net-
work (Figure 5). That is, it requires an error-source or cost-function of the
network output in response to training data during the learning phase. The
network architecture is configured in a multilayer structure. Specifically, the
network consists of one input layer, one hidden layer, and one output layer.
The input layer contains 26 neurons, the hidden layer has 15 neurons, and
there is a single neuron in the output layer as depicted in Figure 5.

The input layer serves as a signal-multiplexer, and routes the value of
each input to each neuron in the hidden layer. Connecting each neuron
in successive layers is a trainable weight. The weight between the ith and
jth units, denoted as w;;, is a numerical value which is multiplied by the
output of the ith unit. This weighted value is then presented as one of the
multiinputs to the jth unit. Each weight is modified during the training
process to produce a minimum error output from the network. Neurons in
the hidden and output layers perform computations as follows. Let

represent the weighted sum of the multiinputs z;. This summed input is pro-
cessed by the activation function to produce the neurons output signal O;.
The activation function provides each neuron with a nonlinear transfer func-
tion, so as to allow the processing of large input values devoid of overload,
while simultaneously facilitating sensitive response to low-level input activity.
The activation functions used in the hidden layers are sigmoidal Bernoulli
functions Lg(z), with Q = 1/2, [20] and a linear function in the output layer.
The linear output activation functions allow the network output to converge
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Figure 5: Architecture of the multilayer perceptron implemented to
learn the state-transition statistics associated with SR.

to values outside the £1 interval set by the Bernoulli function bounds. The
input and hidden layer also have an additional bias unit clamped to a fixed
output of —1, connected to each unit in the succeeding layer through a train-
able weight.

3.1 Training phase

The objective of the training process is to allow the network to learn the func-
tional mapping of input data to the desired output vector. This is achieved
by repeatedly presenting to the network a known set of input/output pairs
(training sets) and adjusting the weights to minimize some measure of er-
ror, or cost-function, between the desired output and the computed network
output. In the case of the multilayer perceptron, the conventional error mini-
mization approach refers to the so-called backpropagation algorithm [21, 22].
The fundamental entity used in the weight adjustment process is the error
€; of the network output O; at the ith unit, deviating from a target value
T;. Tt is used to calculate the effective gradient of the weight modification
term in the backpropagation algorithm. The effective gradient ¢; has two
distinct definitions depending on whether or not a target value is available
for a particular unit. In the case of network output units, for which a tar-
get is known, §; is defined as the distance (error) of the jth unit times the
derivative of the activation function evaluated at the output value of the ith
unit. That is, §; = (90,/9X,)e; where X; represents the ith unit input to
the activation function. When the unit resides in a hidden or input layer, a
target value is not available for computation of the network error €. In this
case, the definition is modified such that the product of cumulative effective
gradients from the next layer and the interconnection weights are backprop-
agated to these units. In other words: &; = (90;/9X;)Y; 6;w;;. With the
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appropriate expression for the error gradient in hand, the basic prescription
for adjustment of weights at the nth training step is given by the well-known
Widrow—Hoff delta rule [21], namely,

wij(n) = wij(n — 1) + 16;0; = wij(n — 1) + Aw;;(n)

where 7 is the learning rate.

In regions of the error surface where large gradients exist, the § terms
may become inordinately large. The resulting weight modifications will also
be large leading to extensive oscillations of the network output, preventing
convergence to the true error minimum. The learning coefficient can be set
to an extremely small value to counteract this tendency; however, this would
drastically increase the training time. To avoid this situation, the weight
modification can be given a “memory” so that it will no longer be subject to
abrupt changes. That is, the weight change algorithm is specified by:

where A is known as the momentum parameter. If A is set to a value close
to 1, the search in the parameter space will be determined by the gradient
accumulated over several epochs instead of a single iteration, improving the
stability of the network towards convergence.

In order to train the network as robustly as possible, it is desirable to
expose it to an ensemble of training sets during the learning phase. This will
avoid incorporation of details specific to a particular training pattern into the
memory of the network. Therefore, the network is trained with L distinct
training patterns for each realization of signal-plus-noise and threshold con-
ditions. These L training patterns are presented sequentially to the network
at each learning step n.

3.2 Cost-function

The cost-function commonly employed in ANN training is the euclidean dis-
tance which is specified by ¢; = (T; — O;). This error-metric is usually
represented in absolute terms as the root of the square error

€SE = (E - Oi)2

and is referred to as the square error (SE) cost-function. The SE is solely
a measure of the network deviation from the desired goal, and it does not
quantify implicitly the information flow dynamics of the learning process.
Alternatively, the cost-function can be specified in terms of relative informa-
tional entropy (erg) between the present state of the network output and the
desired network goal [18]:

14T, +7)  1-T, 1-T
€RE = 108;[ }‘i‘ 108,[ } (2)

2 B+ 0; 2 B+ 0;
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where

2ab
tanh(aO;) tanh(bO;)

[)):a2+b2

(tanhl(bOi) > 2 - (m&w» ) |

and a = (3Q+1)/2,b = (3Q —1)/2, with Q as the parameter of the Bernoulli
activation function Lg(z). During learning, weight modifications are made
proportional to the gradient of the network error. In the information-theoretic

domain, this means that learning is taking place concordant with the rate of
information flow towards or away from the desired goal as dictated by the
instantaneous stochastic state of the network.

3.3 Gross-features of network uncertainty

Since the relative entropy error measure is an implicit measure of the relative
informational entropy, an examination of the neural learning curve under the
direction of relative entropy quantifies the flow of neural information during
the learning endeavor. Specifically, the value of relative entropy (egr) at any
discrete learning step n, averaged over the L input training patterns, will
quantify the average relative uncertainty of the current network organization:

Hi(n) = %; en(n). (3)

Further, it is necessary to ensure that the network training is truly rep-
resenting the average information available for processing during learning.
Therefore, we seek to minimize the possibility that a single network learning
cycle, consisting of n = 1,2,..., N sequential presentations of the L input
patterns, would result in an unrepresentative network evolution due to a
particular choice of random numbers that were selected to initialize the in-
terconnection weights. To avoid this, the network is trained m =1,2..., M
times, with the L training sets presented IV times, using a different random
number seed to initialize the network weights for each of the M runs. The
average network uncertainty at a particular learning step n for L training
sets after M training cycles, is then given by:

Hu(n) = % > Hipln) (4)

This quantity represents the average informational relative entropy of the
network goal-directed organization as the network seeks to minimize the di-
vergence of its output from that of the desired goal. It will be used to exam-
ine the discrete-step temporal evolution of neural learning as the multi-layer
perceptron learns to recognize the statistics of SR.
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4. Simulation results

The perceptron is trained to learn the functional mapping from ITH input, to
threshold parameter output, for the cases of SR and nonSR discussed earlier
in section 2.2. The number of training sets for each threshold parameter real-
ization is L = 10. The network was trained M = 10 times for each threshold
parameter specification with a distinct random number seed in each case.
The inputs to the ANN are the amplitude values of the ITH computed from
the Schmitt-trigger logic, corresponding to a fixed value of v (the ordinate
of Figures 2, 3, or 4). The inputs are specified at 26 values covering the
range from 0 to 12.5 in increments of 0.5, corresponding to the interevent
intervals normalized by the forcing period (the abscissa of Figures 2, 3, or
4). The network output is defined by the respective value of the threshold
parameter 7. The ANN was trained via the backpropagation algorithm with
the relative entropy error-metric. A learning coefficient of n = 0.0015 was
adopted along with a momentum term of A = 0.9. In order to provide a
valid comparison of learning dynamics for different threshold parameter con-
ditions, the random number generator which sets the initial interconnection
weights is initialized with the same seed for each of the successive M train-
ing cycles at the start of each training run. For example, to compare the
learning dynamics for v = 0.8 and v = 0.1, each of the M training cycles
for the distinct values of v are started with the same random number seed.
This ensures that the evolution of network dynamics for each value of v are
initiated identically.

Figure 6 compares H); as a function of training iterations for the case of
SR (v = 0.8) with that of the nonSR statistics where the detector dynamics
are dominated by the periodic signal (y = 0.1). It can be seen that when
SR is present, the informational entropy during the early learning stage is
significantly lower than when it is absent. It is also observed that the SR
network configuration completes learning (cessation of oscillatory behavior)
at n = 60, while for the nonSR case, network convergence is achieved at
n = 70. There is not a significant deviation from these values up to n = 120
learning steps, the maximum extent of the simulations.

A comparison of the network information dynamics of the SR case (v =
0.8) with the noise-dominated statistics, v = 1.5, is presented in Figure 7. Tt
is observed that the early learning phase is not significantly different, except
for the large uncertainty of nonSR dynamics at the initiation of training.
Both systems have converged to a stable network configuration at n = 60,
however, the nonSR system has migrated to a state of larger entropy. The
nonSR system is, therefore, less certain about the proximity of its output
to the goal than in the SR case. Figures 6 and 7 demonstrate that the
nonlinear detector statistics inherent under conditions of SR result in a more
efficient organization of information flow during neural learning than when
SR is absent. Therefore, the learning of an ANN under conditions of SR are
robustly more informatic (less negentropic) than under similar conditions
when SR is not present.
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Figure 6: Evolution of ANN average information flow for threshold
parameters of v = 0.1 and v = 0.8.
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Figure 7: Evolution of ANN average information flow for threshold
parameters of v = 0.8 and v = 1.5.

After training the ANN, it is of interest to assay the total extent of
relative entropy experienced by the network during the learning process.
This cumulative average uncertainty perceived by the neural complex during
learning can be quantified in terms of the relative entropy error measure
for the M distinct ensemble presentations of the L input patterns, over N
discrete learning steps as:

i = 5 3 (o) 6

This average informational entropy was computed for the neural learning
curves shown in Figures 5 and 6 and is presented in Table 1 for two values of
the terminal learning step N. The cumulative uncertainty of equation (5) was
computed for the two terminal values of N, since the question of “when has
the network converged?” is always open for interpretation. Examination of
the early learning stage, N = 50, reveals that the total relative uncertainty
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Table 1: Total extent of average network uncertainty Hys n perceived
during the learning phase.

Learning Steps | Threshold Parameter
N 0.1 0.8 1.5
50 1.148 | 0.586 | 1.009
70 0.844 | 0.462 | 1.019

for the SR conditions (y = 0.8) are roughly one-half of those when SR is
absent. This condition remains valid for a terminal training step of N = 70,
at which point it is clear that the network has fully organized in all cases.
Therefore, the informational uncertainty experienced by the neural complex
during the learning of a SR process has about one-half of the uncertainty
associated with it than the nonSR process.

5. Conclusion

Stochastic resonance arises in a wide variety of nonlinear detectors exposed
to the coupling of a weak periodic signal with noise. In the case of a bistable
system, one of its attributes is the quasiperiodic modulation of the transition
probabilities of dichotomous states of the bistable potential. This indicates
that for a neuron modeled as a nonlinear bistable detector, a pulse train con-
stituted of quasiperiodically modulated state-transitions can serve as a robust
representation of proliferating neural events along a time axis. In a biological
sense, this model refers to the firing events as triggered by threshold cross-
ings of the membrane potential undergoing a biased random walk, driven by
excitatory and inhibitory synaptic potentials in the presence of intra- and/or
extraneural disturbances. It also reflects the robustness of competitive ne-
gentropic and posentropic synergism leading to a stable attractor point for
the neural dynamics as observed recently by the authors [17, 23] and others
[24]. This robustness refers to achieving an isomorphism between the map-
ping of information flow at the input and output sets of the neural network
that preserve certain properties of the input domain set.

The relative information in the domain space (D) and the range space
(R) can be considered in terms of an information density function defined
as the difference between the maximum entropy and the observed entropy.
In the case of the network output range: Hr = (HE™* — HP®). Simi-
larly, the information density over the input domain space can be defined
as Hp = (HZ™ — HgP). Within these bounded values of entropy associated
with the input domain and the output range of the network, the fidelity of
narrowing the output range of information (being close to a target value)
can be improved (without sacrificing the variety associated with it), if the
input domain of information is manipulated within a narrow range of additive
noise corresponding to established signal amplitude and detector threshold
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conditions. The added noise at the input domain increases the maximum
value of disorder so that the network training robustly self-imposes certain
constraints and ordering. As a result, the Shannon redundancy is introduced
implicitly to reduce the range of uncertainty at the output. The domain-to-
range concept of stochastic resonance isomorphism when viewed in Shannon’s
perspective, indicates that the more negentropic (less informatic) aspect of
the input domains, and less negentropic (more informatic) certainty of the
output range settling in the basin of convergence, is a synergistic endeavor
which utilizes both the randomness (introduced via noise) and the order-
liness achieved through self-organization of the network. This endeavor is
specific to set detection thresholds, facilitating the maximization of net in-
formation transfer. The added noise robustly allows the search-process of
self-organization in the network to find a more compact set (of less cardinal-
ity) which can be accommodated in the global minimal basin of attraction.

Stochastic resonance in both real and artificial neural networks re-
fer implicitly to an adaptive scheme of information processing. As indicated
by simulation studies in [25], neural networks require a “parametric tun-
ing” in order to force them to display a robustness in converging towards
a steady-state. Otherwise, initial behavior of the network would typically
either degenerate rapidly to zero activity, or would tend to an unstable dy-
namic with wide oscillatory fluctuations of neural firing. Considering stochas-
tic resonance, the parameter tuning can be introduced via a narrow range of
additive noise with respect to the set detection thresholds, which influences
the spatiotemporal neural activity and maximizes the information transfer
through the network. The result is an efficient convergence towards network
stability.
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