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Abstract. Self-organizing diagnosis is studied by applying the dy-
namic propagation of active states derived from the concept of an
immune network. The proposed model is a mutual vote network
which is a modification of the majority net. The model implements
network-level recognition by connecting information from local recog-
nition agents by dynamical evaluation chains. The model has been
further elaborated to address the engineering concerns of identifying
not only sensor faults but also process faults. The sensor faults are
identified by evaluating the reliability of data from a sensor. Process
faults are identified by evaluating constraints that must be satisfied
among these data. We demonstrate that the sensor network works
against both sensor faults and process faults by an illustrative exam-
ple.

1. Introduction

A massively parallel and distributed model has been proposed and studied
based on a neural network metaphor that is elaborated for pattern recognition
as found in backpropagation [1]. In contrast, several researchers proposed
dynamic network models to study the information processing character of
biological systems including immune systems [2-6, 8-12]. Some of them
(e.g., [13-17]) try to extract the information processing mechanism from
the immune systems for the purpose of developing information processing
systems. Similar to this line, we also have proposed a dynamic network
based on the immune network metaphor [14, 18-20]. The motivation of this
work is to elaborate the immune network metaphor as a model for dynamic
networks. More specifically, the objective of this paper is to demonstrate
diagnostic significance, or recognition significance in general, of the network
model by applying it to self-organizing diagnosis.
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Several dynamical networks have been examined for studying the infor-
mation processing character of immune systems or biological systems in a
more general context. The majority network, where the state of each node
becomes the state of a majority of the nodes adjacent to it, has been studied
extensively. The significance of the majority network is that the period of
the state is at most two no matter what the structure of the network and
no matter how many finite states each node may have [21]. The majority
network, with structural symmetry such that each node arranged on a ring is
connected to both r left nodes and r right nodes, has been studied to under-
stand one to many and many to one relations found in a cytokine network
[4, 6]. The majority network model with a cylindrical structure, where rings
of majority networks are layered, has also been studied for the analysis of
information transformation characteristics from genotype to phenotype [5].

A cellular automaton uses any boolean function, instead of majority rule,
to determine the state of nodes. However, the boolean function is fixed for
all nodes, and the structure of the network is symmetrical as in the Agur’s
network described above. Boolean networks, which may have any boolean
function for any nodes, with the network being any structure, have been
studied extensively with regards to their statistical nature using the ensemble
model ([11] and references therein). Our model, proposed in section 2, can
be considered a modification of the majority network where each vote is
weighted by reliability.

Studies to establish information models by investigating the features of
information processing done by them, and by reflecting these features into
the models were performed [2, 4, 5, 10, 16]. The features of information
processing done by immune systems may be summed up with the follow-
ing: memory, recognition, learning, and diversity. As many other researchers
do, we view the immune network as a complex network where not only dy-
namic interaction among the agents but also activation of agents, inhibition
of interactions, and self-reproduction with mutation of agents are controlled.
An adaptive mechanism of immune systems may be formalized as dynamic
interaction among agents as follows.

1. Each agent has not only information but a recognizing mechanism also.

2. An agent activated by an encounter with the antigen will reproduce its
clone in order to enhance ability for elimination of the antigen.

3. The reproduction above will be performed with mutation to increase
affinity with the antigen.

We share this view of dynamic interaction with many other researchers,
and applied it to adaptive diagnosis. However, in the sensor network appli-
cation explored in this paper, we do not adopt the adaptive change of the
population of a specific agent as mentioned in 2 and 3. An immune algo-
rithm which uses 2, 3, and diversity generation by genetic recombination has
been proposed elsewhere [22]. It may be worth mentioning that there are
two basic approaches for implementing these features of immune systems:
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top-down approach (or network-based approach) where network structure is
determined by reflecting the structure of the problem as discussed here; and
bottom-up approach (or agent-based approach) where a population of agents
and communication among them are organized by reflecting interactions with
the environment.

In this paper, rather than building a detailed mathematical model of
immune systems, an attempt has been made to explore the dynamic network
based on the immune network metaphor, as done in neural network models.
It should be emphasized that the model explored in this paper may not
correctly reflect real immune systems. Immune systems could be completely
disregarded in this paper, since our model is just inspired by the concept
of idiotypic networks as has been elaborated for engineering applications as
discussed briefly in section 3 and in [18-20] in more detail.

Immune network (idiotypic network) theory was proposed in [23]. Al-
though immune network theory is disappointing for use in immunology (e.g.,
[24]) and is not much mentioned recently, it does provide a network view with
B-cells that are mutually and dynamically connected by antigen—antibody re-
action. After the proposal of immune network theory in [23], the approach
was used extensively to characterize immune response by dynamical mod-
els. A few examples of the many researches in this line are [7 9, 12, 25 29].
These dynamical models essentially describe population dynamics of antigen,
antibody, and specific immune related cells in a manner similar to models de-
scribing population dynamics of species in mathematical ecology. Features of
the immune network that we have tried to use may be summarized as follows.

e Recognition is done by distributed agents which dynamically interact
with each other in parallel. The agents carry redundant information.
(Sensor values carry the redundant information in our application.)

e Each agent reacts based only on its own knowledge, that is, each sensor
refers to its own state to judge its consistency with others.

e Memory is realized as stable equilibrium points of the dynamical net-
work. Recognition of the network is done by changing the state of
the network from one stable equilibrium to another by disturbances on
the network. (Diagnosis is done by obtaining the stable equilibrium
points where a change in the consistency pattern is considered to be a
disturbance.)

In this paper, we implemented these features in our application of a sensor
network. However, we do not pursue the parallelism between our model and
immune systems further.

The problem of integrating distributed sensors with fault tolerance con-
cerns [30] and different types of sensors for biological adaptation [31] have
been studied extensively with the progress of device technology such as intel-
ligent sensors and their integrating techniques. Our approach aims at sup-
porting self-organization of the sensor networks by enhancing the processing
done in autonomous sensors using redundant information shared by many
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sensors. The sensor network we propose is designed to work especially in the
dynamic and noisy environments found in industrial processing plants. The
motivation for developing the sensor network comes from a practical reason
of using redundant information in the sensors of instrumentation systems. As
a result, it is possible to distribute the knowledge of a normally functioning
process into all the sensors and the relationship among sensors. Thus, the
sensor network is robust in the sense that it would work even with faulty
sensors. It is also flexible in the sense that it can represent knowledge of rel-
ative relationship among sensor values as opposed to representing reference
values specified by permissible maximum and minimum.

Section 2 presents the basic idea of a mutual vote network and discusses
recognition significance by dynamical propagation of weighted votes. Simula-
tions are also conducted for several types of propagation. Section 3 presents
an application of the mutual vote network to a sensor network. Simulations
are conducted by examples to explain the application.

2. Mutual voting by a continuous dynamic network
2.1 Mutual vote network and majority network

We consider a mutual vote network similar to the majority network men-
tioned in section 1. We modify the network step by step, to demonstrate
significant features of our dynamic network. In the mutual vote network,
each agent votes the other agents; whether or not they are reliable. A state
variable (r; and its normalization R;) indicating the reliability of agents is
assigned to each agent. An important difference between this mutual vote
network and the majority network is that the two states (active or inactive)
are asymmetrical in determination of the next state, while states in a major-
ity network are symmetrical in the sense that they can be exchanged without
changing behavior. In other words, states in the majority network are a mat-
ter of labeling. In a mutual vote network, the effect from active states and
that from inactive states are qualitatively different; only votes from active
states are considered while those from inactive states will be neglected in
determining the state of agents.

Figure 1 shows an example of the evaluation chain of mutual voting. The
+/— pattern associated with the evaluation arc shows a case when agents 4
and 5 are unreliable. A positive arc from agent i to agent j indicates that
agent ¢ voted positively for agent j (i.e., considered reliable), and a negative
arc negatively (i.e., considered unreliable). Formally, evaluation results are
assumed to give the following pattern. (Similar assumptions have been made
in self-diagnosable models for fault tolerance, e.g., [32].)

-1 if evaluating agent 7 is reliable and
evaluated agent j is unreliable
T;=41 if both agents u; and j are reliable
—1/1 if evaluating agent ¢ is unreliable
0 if there is no evaluation from agent 7 to agent j.
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Figure 1: An example evaluation chain of mutual voting,.

Simple voting at each agent does not work, since three agents (2, 3, and
5) are all evaluated as unreliable by two other agents and hence cannot be
ranked in terms of reliability. Since an unreliable agent may give unreliable
results, these votes should be weighted. Next, let us introduce the binary
weight for each agent: 0 (inactive or unreliable) when the sum of votes for
the agent is negative, and 1 (active or reliable) when the sum of votes for
the agent is zero or positive. Starting with all agents active, evaluating the
weight would synchronously result in the following sequence of state vector
(R1R2R3R4R5)

(1 111 1)
(1 00 0 0)
(1 11 0 o).

Thus, weighting the vote and propagating the information identifies the un-
reliable agents correctly. Let us map the above discrete model to the con-
tinuous dynamical model. A continuous dynamic network is constructed
by associating the time derivative of the state variable with state variables
of other agents connected by the evaluation chain. A possible association
corresponding to the evaluation chain of Figure 1 would be the following
continuous dynamic network:

dry(t)/dt = RZ() Rs(t) — Ra(t)
dra(t)/dt = Ri(t) — Ry(t) — Rs(t)

drs(t)/dt = Ru(t) — Ra(t) R5(t)
dry(t)/dt = —Ry(t) — Ry(t) — Rs(t) + Rs(t)
drs(t)/dt = —Ry(t) — Rs(t) + Ra(t)

where reliability R;(t) € [0,1] is a normalization of r;(t) € (—o0,00) (we use
a sigmoid function for this normalization as shown later).

Considering not only the effect from evaluating agents, but also that from
evaluated agents leads to the following dynamic network:

dri(t)/dt = ZT]LR +ZTuR 3 > (T +1) (1)

JE{k:T; #0}
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Figure 2: Effect of reliability evaluation.

where

1

Ri(t) = 1+ exp(—7;(t))

We call this model the black and white model, meaning that the network
tries to separate an unreliable agent clearly from a reliable agent; that is,
the reliability of an agent tends to be 1 or 0, not an intermediate value as
shown later by simulation. In [18] we proposed several different variants
of this dynamic network such as the skeptical model and the gray model for
different engineering needs. In this black and white model, it should be noted
that the reliability of one agent is evaluated not only from the opinions of
other agents evaluating the agent, but from the opinions of what the agent
said to the other evaluated agents. The former corresponds to the first term
of the right-hand side of equation (1) and the latter to those of the second
and third term. We call the latter reflection effect. The reflection effect
is somewhat similar to the situation that if you criticize a highly respected
person, it affects your own credit, not theirs. Figure 2 illustrates the effect
from evaluating agents and that from evaluated agents.

Let J;(T, R) denote the right-hand side of equation (1). J;(R,T) will be
positive (negative) if R; = 0(1) makes an inconsistency with the data Tj;
and R;. The dynamical model will change to the direction of canceling the
inconsistency, that is, if J;(R,T') is positive (negative), then r; hence R; will
increase. There is a competitive interaction among agents. When T;; = —1
then, R, = 1 inhibits R; from being 1, and wvice versa. When T;; = 1,
however, the interaction is not symmetric; R; = 1 activates R; to be 1, while
R; = 0 inactivates R; to be 0.
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Equation (1) is known to converge by the following Liapunov function
[33] in the same manner as that of the Hopfield Net Algorithm [34]:

Vi) =-3 /f’{—% > (Tij+1>}R;<yi>dyi—1/ziT{;—RiRj

j€{k:Ty, #0} ,j=1

where

2
dV/dt:ZRg(ri){% E (Ti]--i-l)-i-ZT;;-Rj} <0
i=1 jE{k:Tip 0} j=1
and T:; = Tij + 7}1
Since there are several local minimal points in the energy function, it
may lead to a wrong diagnosis if starting from an inappropriate assignment
of initial reliabilities. Starting with all the agents reliable may be a good
strategy when a relatively small number of unreliable agents exist. In di-
agnosis, minimal diagnosis is often favored, where the number of R; = 0 is
minimal among consistent diagnoses. In order to make such a diagnosis, the
energy function must be modified by adding the energy Fs:

E:E1+E2

where E; is the same energy function as V'(¢) defined previously, and E, =
—a Y7 nR; (a>0). E;is added for making the diagnosis consistent with
the given evaluation pattern and F, is for making the number of unreliable
agents as small as possible in the diagnosis. This new energy modifies the
evaluation function J; of equation (1) as follows:

Ji(T,R) + a.

Then, the local minimal points are biased to those including more 1s. If both
R; =1 and R; = 0 are consistent diagnoses, then R; = 1 is always selected in
this modified model. The parameter « is chosen so that the minimum point
of the total energy E; 4+ F, corresponds to the correct diagnosis, however,
the modified model may possibly be trapped in the minimal point, not the
minimum one.

2.2 Mutual vote networks of several propagation types

We have studied the following dynamic network where we proposed several
types of the form of the right-hand side function depending upon its engi-
neering use:

dri(t)/dt = [({Ty;}, {Rs(1)})- (2)
The skeptical model has been developed [18] for the case when evalua-

tions, even from reliable agents, may be unreliable. That is, the evaluation
results are defined as follows:

1 if both agents 7 and j are reliable
T;; = —1/1 if either agent 7 or j is unreliable
0 if there is no evaluation from agent 7 to j.
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For this evaluation result, the skeptical model is formalized as follows:

dry(t)/dt = ZT+R (3)

where

T}, + T}, — 2 if both evaluation from i to j and j to 7 exist
T =9 Tj;+Tj;—1 if one of the evaluations from i to j or j to 7 exists
if neither evaluation from 7 to 7 nor j to ¢ exists.

Further, (2) is modified to become the gray model, allowing ambiguous
states of reliabilities rather than forcibly separating into the binary states
reliable and unreliable. This comes from the engineering requirement that
operators want to know the reliability as it is. The gray model is formalized
as follows:

dri(t)/dt = ZT+R i(t). (4)

The second term of the right-hand side of the gray model is the inhibition
term that keeps ambiguous states of reliabilities.

We now briefly describe a simulation of the typical behavior. Figures 3,
4, and 5 show the evolution of reliabilities of agents in the example shown
in Figure 1 by the black and white, skeptical, and gray models, respectively.
Agents 4 and 5 are unreliable agents. For each agent, its corresponding
sensor value (upper part) and its reliability (lower part) are shown in these
figures. All the sensor values N1(t), N2(t), N3(t), N4(t), and N5(t) are
assumed to produce 1.0, however, sensors corresponding to unreliable agents
N4(t) and N5(t) produced 2.0 instead. It can be seen that both the black
and white model and the skeptical model give a clear separation of reliable
agents (whose reliabilities converged on 1) from unreliable agents (whose
reliabilities converged on 0).

Since the skeptical model is more skeptical than the black and white
model, even reliable agents 2 and 3 were dragged a little towards zero. The
reliabilities of the reliable agents 1, 2, and 3 eventually converges on 1 in the
black and white and skeptical models, while those in the gray model remain
ambiguous states between 0 and 1.

3. A sensor network

In this section, the mutual vote network described is applied to a sensor net-
work that reacts to on-line data from sensors. The sensor network not only
self-eliminates sensor faults but also identifies process faults by monitoring
consistency between sensor data and constraints of the target system. Only
an illustrative example is presented to show the basic idea. Industrial appli-
cations and engineering concerns for the application are discussed elsewhere
[18, 19, 22].
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Figure 3: Simulation results of Figure 1 using the black and white
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Figure 4: Simulation results of Figure 1 using the skeptical model:
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Figure 5: Simulation results of Figure 1 using the gray model:

d71(t)/dt = Rl + R2 + R3 - 3R4 — T (t)
d?“z(t)/dt = Rl - 3R4 - 3R5 - 7'2(t)

d?“3(t)/dt = Rl - 3R4 - 3R5 - Tg(t)
d?“4(t)/dt = *3R1 - 3R2 - 3R3 + R5 - T4(t)
d?“5(t /dt = *3R2 - 3R3 + R4 —T5 (t)

3.1 Sensor fault diagnosis by evaluating reliability of data from
sensors

A sensor network may be formed when the sensors s; and s; are related by
any constraint (such as equality, inequality, etc.) that restricts the interval J
of value s; corresponding to the interval I of value s;. In process diagnosis, for
example, temperature, pressure, and flow measured independently often have
such interrelation, and hence interval correspondence between, for example,
high temperature and high pressure, is attained. The following composes an
agent ¢ which will produce the evaluation result T;; by the sensory data of s;
and s;

T — 1 sj € J whens; € 1
Y —1 otherwise.

Consider an example of a heat exchanger of the condenser type. Two
flows, that is, the flow of the shell side and the flow of the tube side, exchange
heat. Steam enters from the inlet of the shell side, then it is condensed, and
is finally cooled by the flow of the tube side. The flowing object of the tube
side then becomes heated by the flow of the shell side. Now, we consider the
inequalities among temperatures of these two flows:

1. Thi > Tho



Sensor-based Diagnosis by Self-organization 83
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Figure 6: Diagram of a sensor network in a heat exchanger.

2. 7110 > 7_‘17,

3. Thi > Ty

4. Tho > ﬂo

where

Ty; = temperature at inlet of shell side,
Th, = temperature at outlet of shell side,
T; = temperature at inlet of tube side, and
Th, = temperature at outlet of tube side.

Using these constraints among sensors, the sensor network will be con-
structed (see Figure 6). For example, when the relation 1 (Tj,; > Tj,) does
not hold, then either Tj; or T}, can be unreliable. This means that the
sensors measuring values Tj; and T}, are evaluating each other through this
relation.

We have applied this approach to industrial processing plants such as the
firing section of a cement process with twenty thermometers and the blast
furnace of a steel process with about five hundred thermometers [19]. The
main characteristic of the mutual vote approach to process diagnosis is that it
admits relative relation between process values, hence it does not suffer from
the shifting of all the process values (which occurs depending on the load to
the process or a change in the environment such as seasonal temperatures).

3.2 Process fault diagnosis by a sensor network

In order to extend the sensor network so that it can diagnose process faults
as well, we have proposed two methods [20]: (1) simply preparing the agent
corresponding to the process fault, and (2) introduction of a virtual sensor
composed of multiple sensors. In this section, we present another natural
extension based on the insight that the knowledge of a normal process is
embedded in the constraints among sensors. When process faults occur, it
amounts to a violation of the constraints. In fact, when a process fault occurs,
reliability of many sensors related to the constraints become low simultane-
ously. Figure 7 illustrates the situation when a process fault corresponding
to a violation of the constraint between s; and s; occurs.
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Figure 7: Situation when a process fault occurs.

Therefore, one natural way of detecting process faults by a sensor net
is to introduce reliability for evaluating the relation. Let Rr,, denote the
reliability of the evaluation Tj;. Then the gray model (equation (4)) becomes
as follows:

dri(t)/dt = 3 TjR;(t)Rey, —rilt) (5)
A, (Ot = TER MR — 1o, (1) (©
with
R _ 1
it) = 1+ exp(—7;(t))
RTji(t) !

It exp(—rz, (1)

Equation (5) is a modification naturally resulting from consideration of
the effect of the reliability of the evaluation Tj;. The change rate of the agent
i (i.e., dr;(t)/dt) should reflect all the opinions of other agents weighted not
only with the reliabilities of these agents but with those of their evaluation.
Equation (6) comes from the fact that the evaluation relation is considered
to be unreliable only when T};, R;(t), and R;(t) are contradictory; Tj; = —1,
R](t) = 1, and Rl(t) =1.

3.3 Sensor net for multiple evaluations

Constraints among process variables may be expressed by the vector equa-
tion: f(y*,¢t) = 0 where y* is the true value of process variables. The evalu-
ation results for multiple evaluation can be defined as:

1 iRy <a
ﬂ:{—lmnme>% @
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Figure 8: Tank with level and temperature controlled (left) and its
sensor net (right).

where y is the measured value (i.e., sensor values) and €, are permissible
residuals. Let S = {s1,...,s,} be a set of all the sensors and let S; be
the subset involved in the constraint fi,. When there are more than three

variables in fi, equations (5) and (6) can be modified as follows:

dri())dt = 3 {TFRn(t) [[ R} nit) (8)
RS e '5]?:7:51\
dre, () )dt = * , Hs Ri(t) — rr, (2) (9)
with o
R (1) = ’

14 exp(—rr, (1))

where T, = ny,(T), — 1) + A\, g = [Si]: the number of the sensors involved
in the constraint fi, 0 < A, < ny,.

As an illustrative example, consider the process of keeping the level and
temperature in a tank as shown in the left image of Figure 8. The right
image of Figure 8 shows the sensor network of this process consisting of eight
sensors and eight evaluations among the sensors. The model of this sensor
network follows:

drg,(t)/dt

TirRr(t) Ry, (t) + T R, (t) R, (t)
+T PR () R, () Ry, (t) — 15, (2)
drp,(t)/dt = TiFRp,(t)Rr(t) + Ty Rp(t)Rp,(t) Ry, (t)
+T5 Ry, () R () Ry (t) — 75, (1)
drr(t)/dt = T Rp,(t)Rr,(t) + T Rr, (t)Rp, (t) Ry (t)
+T5" Ry, () Ry (t) Ry, + Ty Ry, () Ry (t) Ry () — 71 (2)
dri, (t)/dt = Tf Ry, (t)Rr,(t) + Tg Re, (1) Rr. (1) Ry (t) — 77, (1)
drpe(t)/dt = T Ry, (t) R, (t) + T Ry (t) Ry (1) Ry (t) — 77 (2)
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drv, (t)/dt = T Rp, (t)Rr,(t) + T Ri(t) Rr(t) R, (t) — 7v,, (t)
dre(t)/dt = Ty Ry, (t)Rp(t)Re, + T3 Ry (t)Ri(t) Ray () — ro(2)
drv,.(t)/dt = T5 Rp.(t)Rr,(t) + T3 Rr(t) Rp(t) Ry (t) — v, (1)
dr(Ofdt = S(TF ~ DRr(ORL() -~ ra(0)

drp, (8)/dt = %(T;—l)RFO(t)RF,(t)RL(t)—m(t)

dr, (t)/dt - = %(T;—l)RT(t)RvH(t)RL(t)—TT-Z(t)

drr,(t)/dt - = %(Tg—l)RT(t)va(t)RL(t)—TTz(t)

drr (/e = ST ~ ) Rey (6 Ry (8) — 72,0

drr O/t = S(T = 1) Re )Ry, (1) = rr, ()
drny(0/dt = (T3 = )R, ()R, ()R, (1) = 71, (1)
drr, 0/t = S(TF = 1) Re (0 Re, (6) = 1o 1),

In the simulation that follows, the parameter A; is set to be 2. Figure 9
shows the time evolution of the reliability of sensors and those of evaluation
relations when there is a leakage in the pipe between F; and Fy or between
Fr and Fe. In this case, the constraint F; = Fy + Fe (i.e., the evaluation
relation Ty) will be violated (T = —1). It can be seen that although there is
some decrease in the reliability of the sensor Fy, there is a significant decrease
in the reliability of the evaluation relation Tg. Thus, the process fault will be
known. Figure 10 shows the time evolution of the reliability of sensors and
those of evaluation relations when the sensor Fy is unreliable (Tg = —1, T, =
—1). Again, although there is some decrease in the reliability of evaluations
related to the unreliable sensor Fy, there is a significant decrease in the
reliability of the unreliable sensor Flg. Thus, sensor fault can be concluded
without difficulty.

4. Conclusion

We developed a dynamical network architecture based on the idea of a chain
of active state propagation found in immune (idiotypic) networks. Fault
recognition features of the mutual vote network are also discussed. The
dynamic network model is elaborated as a sensor network that can diagnose
not only sensor faults by evaluating reliability of data from sensors but also
process faults by evaluating reliability of constraints among data. The sensor
network dynamically reacts to the on-line data from sensors. It can self-
identify the unreliable sensor and unreliable constraint by moving from one
equilibrium to another, reacting to the change of the relationship among
data.
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Figure 9: Time evolution of the reliability when there is a leakage in
the pipe between F; and Fy or between F7 and Fe.
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Figure 10: Time evolution of the reliability when the sensor Fp is
unreliable.
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