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Abstract. In this paper oT-automata on square grids are studied
using a special sequence of polynomials called the 7-polynomials. It
is shown that for m # 4, T4y (n) # 7}, (n), which rules out totally
irreversible m x m grids for m # 4. Results are presented on the
roots of w-polynomials which have direct relevance to the reversibility
question for ot-automata on square grids.

1. Introduction

The study of g-automata rises from two sources: the study of the o-game
and the study of additive (linear) cellular automata (CA). The o-game is a
combinatorial game based upon the battery operated toy Merlin [4]. The
connection of the o-game to two-dimensional CA was first investigated in [7]
and later in [1]. A phenomenological study of CA was undertaken in [12] that
led to an extensive body of work on both theory and applications of CA as in
[11]. Algebraic properties of additive one-dimensional CA were first studied
in [3]. From [8,10], o-automata is defined as a class of binary CA on a graph,
where each node of the graph can assume the states 0 or 1. The state of a
node in a particular time step is given by the local rule, which is equal to the
sum (modulo two) of the states of all its neighbors in the previous time step.
If the underlying graph is a finite D-dimensional grid, then the corresponding
o-automata becomes equivalent to a finite D-dimensional additive CA with
orthogonal neighborhood. The o™ -automata is defined similarly, except that
each node itself is considered to be one of its neighbors.

A configuration of a o(o)-automata is an assignment of values 0 or 1 to
the vertices of the underlying graph. The automata evolves synchronously
in discrete time steps according to the local rule applied individually to each
cell. The global dynamics of such a system are captured by a directed graph
called the state transition graph or the state transition diagram (STD). The
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vertices of the STD are the configurations of the automata and an edge exists
from vertex 7 to vertex 7 if and only if configuration i leads to configuration j
in one time step. Each component of the STD consists of a single cycle with
trees of height > 0 rooted on each cycle vertex (e.g., [3]). A large number of
results on the structure of STD for additive CA are also available in [3].

The transition rule of an n-cell one-dimensional o-automata is given by
the following matrix [1], with entries from GF(2):

01 ... .0
101 .. .0
S, =
0 101
0 10

Note that S, is a tridiagonal matrix with the upper and lower subdi-
agonals having all ones. The characteristic and minimal polynomial of S,
coincides [6,10] and is given by m,11(z) (over GF(2)) defined below (see also
[1,8,10]):

T — 0
m™ = 1
Tn1(x) = amp(x) + Ty () for n > 1.

Alternatively, m,(x) can be written as [10]
() —; <2i+1>x mod 2. (1)
These polynomials have interesting divisibility properties which have been

studied in [1,10]. It turns out that the m-polynomials also satisfy the following
recurrence ([10], see also [1]):

Tptq() = Mg (2)mp (@) + 74 (2)Tp—1 ().

As a consequence, the following properties can be derived.
1. mln iff m,(z)|m.(z).

2. ged(my,(x), T, (x)) = Tyed(mon) (T)-
3. Moy () = 22172 (2).
4 Tona(2) = 7240 () + 72(0) = (o) + ()"

The factorization of the m-polynomials are worked out in [10]. Let 7(z)
be an irreducible polynomial over GF(2). Then the depth of 7(z) is the
least positive integer n = dp(7) such that 7(z) divides m,(z). It is shown
in [10] that dp(7) exists for all irreducible polynomials 7(z) and deg(7) is
the suborder (sord,(2)) of 2 in the multiplicative group Zj,, (recall that
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for odd n, sord,(2) is the least integer j such that 2/ = +1 mod n). So it
immediately follows that dp(7) divides either 248" 4+ 1 or 248 — 1. Let

pula) = TI ).

dp(T)=n

Then p,(z) is called the critical term of m,(z) (e.g., [10]). The number
of distinct irreducible factors of p,(z) is equal to 25041517;)(2) (here ¢(n) is the
Euler function with a value that is the number of positive integers less than
n and coprime to n). It is possible to obtain a factorization of 7, (x) in terms

of p,(x) (e.g., [10]). Let n = 2¥p, where p is odd. Then,

(@) =2 [ 43 (2) = @~ T pala™)

dlp dlp

and degree pg = ¢(d) for d # 1. So if n is prime and ¢(n) = 2sord,(2),
then m,(z) = 72(x) where 7(z) is irreducible. We use this later to derive a
sufficient condition for reversibility of o*-automata.

For one-dimensional ot -automata, the transition matrix is given by S} =
S + I, and the characteristic and minimal polynomial of S is given by
w51 (®) = Tnpa(1 4 x). Similar divisibility properties hold for the 7'-
polynomials. Any irreducible polynomial 7(z) divides 7 (z) for some m
[10].

A o(o)-automata is said to be reversible if and only if the corresponding
linear transformation is invertible. Reversibility is an important phenomena
for this class of automata (see also [8]). It means that the state transition
graph consists entirely of cycles, and as a result it is possible to start from one
configuration and return to it after a finite number of steps. The o-automata
on an mXn grid are reversible if and only if 7,11 (z) and 7,41 () are relatively
prime if and only if m 4+ 1 and n + 1 are relatively prime. This result has
been derived using different methods [1,7,8,10]. The coprimeness of m + 1
and n 4+ 1 present a nice characterization of reversibility. Unfortunately,
for the oT-automata obtaining such a simple characterization seems to be
difficult, though it is known [1,10] that ocT-automata on an m x n grid are
reversible if and only if 7}, | () and 7,41 (x) are coprime. The problem has,
however, been solved for certain special cases [1,10]. Reversibility of higher
dimensional o(o*)-automata have also been studied [5].

In this paper we study o™-automata on square m x m grids. Our work is
motivated by two open problems posed in [10]. Before we state them we need
to introduce the concept of total irreversibility. In what follows we denote
the polynomial obtained from p(x) by the map z — 1 + x over GF(2) with
p*(z).

The concept of total irreversibility is introduced in [10] for o*-automata
on product graphs G = H x P,, where H is an arbitrary graph and P, is
the path graph on n vertices. We, however, describe the concept only for
graphs of the form P, x P,, that is, m x n grids. The corank (dimension of
kernel) of the o*-automata on an m x n grid is given by cork(m;},, (S,)) =



124 Palash Sarkar

cork(m} (S,)) (e.g., [1,10]). If the corank is zero then the automata is
reversible and if the corank is positive then it is irreversible. Thus the max-
imum value of the corank in some sense captures the notion of maximum
irreversibility and leads to the following definition of total irreversibility. The
oT-automata on an m x n grid is totally irreversible if it has the maximum
corank, that is, if cork(m;},(S,)) = n if and only if 7} ,(S,,) = 0. But
Tm+1(z) is the minimal polynomial for S,, and hence divides 7,7, ,(z). The
least value of n for which this occurs is defined to be the weak period of
P,,, the path graph on m vertices. For some interesting results on weak
periods see [10]. For the case of square grids, m = n and 7,41 () | 751 (2)
implies m,,11(z) = 7} (). So a square grid is totally irreversible under
ot-automata if and only if m,,41(z) = 7}, (z). Now we can state the two
open problems from [10] that are studied.

1. “For the m x m grid to be reversible under rule ¢* we must have
6/m + 1 and for all odd e > 3 such that e|m + 1 and 7|p, irreducible:
dp(TT) fm+1. Ts there a simple algorithm to test the second property?”

2. “Are there any totally irreversible squares other than 4 x 47 Equiva-
lently, is there any m > 4 such that m,,1(z) = m} (2)?”

It is conjectured in [10] that the answer to the second question is no and
here we prove that indeed it is no. Doing this also proves that the corank of
the oT-automata on a square m x m grid is strictly less than m for m # 4.

As for the first question we derive an alternative equivalent condition
for reversibility and use it to obtain several sufficient conditions for both
reversibility and irreversibility. The analysis leads us to obtain a complete
characterization of irreducible polynomials 7(z) over GF(2) with 7(z) =
7F(z). It turns out that characterizing the depths of such polynomials is
essential for obtaining a simple characterization of reversibility. Our results
indicate that this in general is difficult.

2. Total irreversibility

In this section we prove that totally irreversible grids do not exist for m # 4.
We essentially prove that m,,.1(z) # mh 1(z) for m # 4. Then the result
follows from what has been discussed in the introduction. We start by proving
some preliminary results.

The following can easily be proved by induction.

Lemma 2.1. If m is even, then we have the following.

1. Tmy1(x) contains only even powers of x, that is, for odd r the coefficient
of £ in Tpy1(x) is 0.

2. The coefficient of ™72 in w1 (x) is 1.

Lemma 2.2. If 7, () = Tpmi1(2), then m = 4 mod 16.
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Proof: We prove this in four steps.

Step 1: If 7}, (z) = Tppa(z), then m must be even.

If ay,...,q,, are the roots of m,41(x) then 1 + ay,...,1 4+ «,, are the
roots of 7}, ().

The coeficient of ™" in my,11(x) is 17, «; and the coefficient of =
inmh (z)is X7 (14 ).

So if m} 4 (z) = Tpya(x), then

m—1 m—1

m m

o= (1+wm)

=1 =1

which gives that m mod 2 = 0. Hence m must be even.

Step 2: If 7}, (z) = Tpia(z) then m = 0 mod 4.

By Step 1, we have that m is even, say equal to 2r. Hence m41(2)
contains only even powers of x (by Lemma 2.1(1)). Let «ay,...,«,, be the
roots of Tpmy1(x). Then Y7, a; = 0.

So if w1 (z) = Tpmy1(x), equating the coefficient of ™72, we get,

Z OéiOéj = Z (]. =+ 0[1)(1 + Oéj)
i=1j=i+1 i=1 j=i+1
= < 7;1 mod 2+ (m—1)Y o
=1
+Z Z ;0
i=1j=i+1
m m m
= <2 mod2+ZZala]
i=1j=i+1
= ( 9 ) mod2=0
2r(2r — 1
( g ) mod 2 =20

= r must be even

= m = 0 mod 4.

Step 3: If Tpia(z) = mh 1 (z), then m = 4 mod 8.
By Step 2, we have m = 4k. Since by assumption 7, (z) = T4 (z)
equating the coefficient of 2™~ on both sides we get,

Yo oo, = Y (T4 au)(1+ag)(1+ai) (1 + ay,).
11,02,13,%4 11,02,13,%4

Again using the fact that m is even, we know that m,,,(z) contains only
the even powers of x, hence

ZO{Z‘ = Z Ay O, Oy = 0.
%

11,22,03
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Therefore,

Z Qiy Qi QG O, = (T) mod 2 + <m22> mod2Zailai2

11,52,03,14 11,2
+ E QO O, O,
11,62,03,%4

Now,

m — 2 4k — 2
( 9 >mod2:< 9 >m0d2

_ @k—2)(k-3)

2
=1

and by Lemma 2.1(2), 32, ., o o, = 1.
So we get

m
<4>mod2 =1

Ak(4k — 1)(4k — 2)(4k — 3)
1x2x3x4
k(4k —1)(2k — 1)(4k — 3
Mk D)2k (k=)
= k must be odd

= m = 4 mod 8.

mod2=1

mod2=1

Step 4: If 7} 1 (z) = Tpmia(z), then m = 4 mod 16.

By Step 3, we have that m = 8k + 4.

So assuming () = T,41(z), we equate the coefficient of 2% on
both sides to get,

Z Qo Qg Z(l—l—a“)(l—i—als)

U1 yeensl8

:( >mod2+( 6_2>m0d22ai1ai2

11,52

8
< >m0d2 S ooy,
"2

U1yl

>m0d2 Sy

11,0006

+ Z Qoo Qg

i1, is

Now for m = 8k + 4 we have

m 8k+4)\ _
(8) ( 8 ):kmodZ
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m— 2 _ 8k+2)\ _

( 6 )( 6 >:0mod2
m—4 8k\ _

( 4 ) = <4>—0m0d2
<m2—6) = <8k2_2>zlmod2.

So we get
k mod 2 + Z Qi ...y, = 0.
i1 it
But ¢ = ¥, i, @y ...y is the coefficient of z™°
determined as follows (using equation (1)),

_ m+1+m—6)\ 2m — 5 [ 2m =5
T\ 2m=-6)+1 ) \2m—-11)" 6
_ (16k+8—5>:(16k+3>:0m0d2.

in Tpe1(z) and is

6 6

Hence it follows that k£ must be even and so m = 4 mod 16. m
Let ¢(m, 1) be the coefficient of ' in ,,(z). Then using equation (1) we
can prove the following.

Lemma 2.3. For m = 4 mod 16:

c(m+1,m)=1mod 2

c(m+1,m—2)=1mod 2
m+1,m—4)=1mod 2
m+1,m—6)=0mod 2

(
o
(
(m+1,m—28)=0mod 2
(
(

¢
¢
c¢(m+1,m—10) =1 mod 2
c(m+1,m—12) =1 mod 2

NS sk LN =

Proof. As the proofs of 1 through 7 are similar, we only prove 7.
Since m = 4 mod 16 we can write m = 16k + 4. So from equation (1) we
get

cm+1,m—12) = <m+1+m12) mod 2

2(m—12)+1
2m — 11
= <2m_23>m0d2

2m — 11
= < 12 )modZ
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32k — 3
= ( 19 >m0d2

32k — 432k — 632k — 832k — 1032k — 1232k — 14

= Y mod 2
4 6 8 10 12 2
= 1lmod2
a2k—3 32k =5 32k =7 32k 0 32k—11 32413
where Y = : — o . u
Lemma 2.4. For m = 4 mod 16 the coefficient of z™ 2 in 7%, (z) is 0.

Proof. From equation (1) we have
Tong1(z) = Z( 2%+ 1 )x mod 2

n . m+1-+1 i
=mia(x) = ;( 9+ 1 (14 z)" mod 2.
If C is the coefficient of 2™~'% in 7}, | (x) then
m+1+m—1241 m—12 414
C= Z( m—12+i) +1 )( m— 12 )
Using Lemma 2.3 and the fact that m,,,1(z) contains only even powers

of x we can conclude that the first term is nonzero only for i = 0,2, 4, 10, 12.
Hence,

C = m — 12 n m — 10 " m—4 n m—2 n m
T \lm—12 m — 12 m — 12 m — 12 m — 12
—C=14 m — 10 " m—4 n m— 2 n m
- 2 8 10 12
Since m = 4 mod 16 we can write m = 16k + 4 and so

R
(ms_4> - <m152> = (12) = 0 mod 2.

Hence, C =14+1=0mod 2. m

Theorem 2.1. 7,,41(z) = m},, () if and only if m = 4.

Proof. For m = 1,2, or 3 it is easy to verify that m,,.1(z) # m,,(z) and for
m = 4 it is also easy to verify that m,4(z) = 7, (2).

If m > 4 then assume that ), (z) = m,41(z). Then by Lemma 2.2
it follows that m = 4 mod 16. But by Lemma 2.4 it then follows that the

coefficient of z™7'* in ) (z) is 0 and by Lemma 2.3 the coefficient of
2™ in 0 (z) is 1. So this means that 7%, (z) # mpyi(z), which is a

contradiction to our assumption. Hence the result follows. m
So this proves that totally irreversible grids do not exist for m # 4.
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3. Reversibility

In this section we address the problem of characterizing reversible o*-autom-
ata on square m X m grids. A necessary and sufficient condition for reversibil-
ity from [1,10] is that 7,41 () and 7;\,, | (x) are relatively prime. For the case
of g-automata on an m x n grid, the analogous condition for reversibility is
that 7,41 () and 7,41 () are relatively prime [1,10]. Thus on a square mxm
grid, o-automata are always irreversible. For the oT-automata on a square
grid an equivalent condition for reversibility is stated in [10]:

“6fm + 1 and for all odd e > 3, such that elm + 1 and 7|p.
irreducible: dp(7%) fm + 1.7

The author asked for a simple algorithm to test for the second property.

Here we view the problem from a different angle. We translate the condi-
tion for reversibilty into a condition on the roots of T4 (). From this we are
able to derive certain simple sufficient conditions for both reversibility and
irreversibility. We also indicate why a simple characterization of reversibility
is difficult. Note that reversibility may be determined in O(N3) steps (where
N is the number of cells) by forming the adjacency matrix and reducing it
to its Hermite canonical form (HCF). The HCF will also provide the corank
(dimension of the kernel) of the o operator.

The following characterizes reversibility of ot-automata on a square m x
m grid.

Lemma 3.1. The ot-automata on an m X m grid is irreversible if and only
if there exist roots a and 8 of T,41(x), such that a + 5 = 1.

Proof. First note that the roots of 7, () are 1+, where the ;s are roots
of Ty1(z). Then the result follows simply from the fact that o-automata
are irreversible if and only if 7,,41(z) and 7}, (z) are not relatively prime
if and only if T,41(2) and 7}, (x) share a common root. m

For a more general result on multidimensional automata see [5]. From
the above result we can see that irreversibility can occur in the following two
ways.

1. There exists an irreducible factor 7(x) of m,,41(x), such that 7(z) has
two roots a and  with o+ 3 = 1. Later we show that for such 7(z) it
holds that 7(z) = 7+(x).

2. There exists two distinct irreducible factors 7;(x) and () of T4 1(z)
having roots « and 3 respectively with a + 5 = 1. We will prove that
under this condition 7»(z) = 71 (1 + ).

Now it is easy to see why the condition in [10] holds. It essentially says
that for any irreducible polynomial 7(z), both 7(x) and 7%(z) should not
divide 7,41 (2), that is, the depths of both 7(z) and 7% (z) should not divide
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m+1. (Note that 6/m+ 1 means that my(x)|m,,11(z) and 73(x)|m,ne1(z), and

mo(x) = x and m3(x) =

(1+2)%)

One can generate 7,,+1(z) and () and run the ged algorithm on
them to check if they are relatively prime. This procedure will in general be
more time efficient than determining the HCF and will require less storage
space. An interesting related problem is to compute p*(z) where p(x) is an
arbitrary polynomial over GF(2).

Let ¢(m,i) and c¢*(m,i) denote the coefficient of 2% in p(z) and p*(z)

respectively. Then,

ctim,m —r)

Z (14+a,)(l+ay)...(1+a;)

1<41<i2<...<1ip, <M

(") (72 ) i

+<T_22> mod 2¢(m,m — 2) + ...

+< o ) mod 2¢(m,m — r)
S Dl — i v — i)e(m, m — i)

=0

r

where D(m —i,r — i) = (m_; ) mod 2.

So,

pt(z)

m
Zchmmfr:v -
r=0

<2T: D(m =7 = i)e(m,m — i)) "

Therefore, if Pascal’s triangle (modulo 2) is available up to integer m, it
is easy to compute p*(z).

Proposition 3.1. Ifany one of the following conditions hold then o -automata
on an m X m grid are irreversible.

1. 6jm+1
2. 5m+1
3 17m+1

Proof.

1. 6jm+1 & 2/m+1and 3lm+1 < mo(z)|my41(z) and m3(2)| T g1 ()
& () and (1+2) () & 2(140)] 0d(myy1 (1), T s ().
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2. ms(x) = 2+ 22 +1 = (2 + z + 1)2. Let o and 3 be the roots of
22+ + 1. Then a + 3 =1 and so if 75(x)|mq1(2) then o and § are
also roots of m,,41(x) and so irreversibility occurs. But 7s(x)|m,1(x)
if and only if 5[m + 1.

3. Consider 7(z) = z*+x + 1. Then 7 is an irreducible (in fact primitive)
polynomial over GF(2) with roots a, o2, 02", and a®’. But o'+ a =1
since «v is a root of 7. So if for some m, 7(z)|mm41(2), then ot-automata
on an m X m grid are irreversible. Since the depth of 7 is 17 this can
happen if and only if 17|m + 1. m

To extend the ideas of 2 and 3 in the previous proof one should be able
to do the following.

e Characterize all irreducible polynomials 7(x) having two roots « and
[ with a4+ g =1.

e Compute the depths of all such 7(x).

Next we obtain a complete characterization of all irreducible polynomials
7(z) having two roots @ and  with a + 3 = 1. It turns out that these are
the irreducible polynomials which are fixed under the map z — 1 + z, that
is, 7(z) = 77 (). In what follows we use some standard results on irreducible
polynomials over finite fields which are all available in [2].

Lemma 3.2. Let 7y (z) and 72(x) be two irreducible polynomials over GF(2).
Let « be a root of Ti(x) and 8 be a root of 75(x), with # = 1 + «. Then
To(z) = 7 (1+ ).

2 r1—1 .
2 ...,a%"" where r; is the degree of

7(z). Similarly the roots of 75(z) are 3, 42,8%,...,6%* " where ry is the
degree of m(z). Now,

Proof. The roots of 71(z) are o, a?,

B = (1+oz)2i =1+a”

since we are working over a field of characteristic two.

Also (1 +a*) (0 < i <7y — 1) are the roots of 7;(1 + x) (which is also
irreducible) and (1+ ozzi) (0 <i <71y —1) are all distinct. So 75 > r;. Now if
r9 > 11, then 71(1 + x) properly divides 75(x) which is a contradiction since
T2(x) is irreducible. So 7, = ry and all the roots of 71(1 4 x) are the roots of
To(z). Hence mp(z) =1 (1 +2). =

Lemma 3.3. Let 7(z) be an irreducible polynomial such that it has two
roots o and 3, with a4+ 3 = 1. Then the degree of T must be even.
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Proof. 8 = o2 for some i € {0,...,7 — 1} where r is the degree of 7. So
a+ 3 =1 means

=S (@+a®)? =1 0<j<r—1

This gives r equations,

i
o+ o =
it1
a? + a? =1
r—1 itr—1
o 4o = 1.

Summing up the left- and right-hand sides we get,

r—1 . r—1 g
J 1T
Za2+2a2 = r mod 2.
=0 =0
But
r—1 . r—1 i
27 2i+i
Yot = Ya
=0 j=0

=rmod2=0

and so r is even. W

Lemma 3.4. Let 7(z) be an irreducible polynomial over GF(2). Then
7(x) = 7% (z) if and only if T(z) has two roots @ and (3, such that a+ 3 = 1.

Proof. If 7(x) = 7% (z) the result is easy, so we only prove the other direction.
Since a + 3 = 1, 7(x) has two roots o and o + 1. But then 7+(z) also has
the roots o and o + 1. This means that ged(7(z), 7% ()) is nontrivial. But
then it must be whole of both 7(z) and 7% (z). =

From the preceding two lemmas we can see that the irreducible polyno-
mials which are fixed under the map x — 1 4+ & must have even degree.
From the proof of Step 1 of Lemma 2.2, it follows that for any polynomial
p(z), if p(z) = p*(z), then the degree of p(z) must be even. Combined with
Lemma 3.4, this provides an alternative proof of Lemma 3.3. Next we have
the following important result.

Theorem 3.1. Let 7(x) be an irreducible polynomial over GF(2). Then
7(z) = 7+(2) if and only if T(x)|(x® + = + 1) for some i.
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Proof. If 7(z) = 77 () and if « is a root of 7(x), then a+ 1 is a root of 77 (z),
which must also be a root of 7(z). But the roots of 7(z) are of the form o
for some i. Thus it follows that o2 + a + 1 = 0 for some i. Since 7(z) is the
minimal polynomial for «, it follows that 7'(:6)|(a:2 +ax+1).

Again, if 7(z)|(z* + 2 + 1), then o* + a + 1 = 0 for any root « of 7(x).

i

Then 1 4+ a = o® and hence both « and «a + 1 are roots of 7(z). Therefore
by Lemma 3.4 it follows that 7(z) = 7+ (z). =

Lemma 3.5. Let 7(x) be an irreducible polynomial of degree 2d, such that
m(z) = 7+(x). Then 7(x)|z* + z + 1 and 7(z) J2* +z + 1 fori < d.

Proof. Let a be a root of 7(z). Since 7(z) = 7+ (z), we must have 1+a = a?"

for some 0 < k < 2d:

22k

:>1+0z2k=a
22k

= =«

= 2k = 0 mod 2d.

This, along with 0 < k < 2d, implies k = d and hence « satisfies 2 +r+1.
So 7(z), being the minimal polynomial for «, divides 2 +z+ 1.
If possible let 7(z)|z% + = + 1 for some i < d. Then

2i

1+a = «
:>1+oz2l:oz221

:>oz221=oz

= 27 = 0 mod 2d

= dli,

which is a contradiction. m
Corollary 3.1.

1. The highest degree of all irreducible factors of 2" + x 4+ 1 is 2n.
2. If 7(x) of degree k is an irreducible factor of z*" + x + 1, then k|2n.

The second point of Corollary 3.1 is also in [2, page 146].

Theorem 3.2. Let 7(z) be an irreducible polynomial of degree 2d, such that
7(z) = 7(x). Then 7(x)|z*" + x + 1 if and only if n = d mod 2d.
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Proof. Since the degree of 7(z) is 2d, 7(z)|2% + z + 1, so any root « of 7(z)
satisfies 2 + z + 1, that is,
2d
a” +a+1=0.

If n = d mod 2d then n = 2dk + d. So,

92dk+d

A ta+l = a +a+1
= o ta+1=0.

Hence 7(z)]2?" + = + 1.
If 7(z)|22" + 4 1 then 02" + o +1 = 0. Also o' + a+ 1 = 0. Hence

o' = o' which implies n = d mod 2d. =

Definition 3.1.

1. Eyq is the product of all irreducible polynomials 7(z) of degree 2d, such
that 7(z) = 7% (2).

2. Cbyy is the number of all irreducible polynomials 7(z) of degree 2d, with
7(z) = 77 ().

Thus we can obtain the factorization of 22" + = + 1 as in Lemma 3.6.

Lemma 3.6. 2 4r+1= H Esy.
n=dmod2d

In fact, we can state the result in a more convenient form.

Theorem 3.3. 2 +r+1= H FEsg.
d|n,2d fn

The proof of Theorem 3.3 follows from Result 3.1.

Result 3.1. For some d > 0, n = d mod 2d if and only if d|n and 2d fn.

Proof. d|n and 2d fn implies n = kd with k£ odd. Then, n = (k —1)d+d =
%Zd + d. Hence, n = d mod 2d.
If n =dmod 2d then n = 2d + d = (2¢+ 1)d. So d|n and 2dfn. =

Having obtained this we can now determine when a trinomial of the form

22" + x + 1 will divide another trinomial of the same form.

Theorem 3.4. 2" + z + 1|z*" + = + 1 if and only if
1. Dy(m) = Dy(n) and

2. m|n

where Dy(m) is the greatest integer of the form 27 that divides m.
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Proof. Note that the conditions 1 and 2 are satisfied if and only if for each d
such that djm and 2d fm, it follows that d|n and 2d fn. Hence by Theorem 3.3
it follows that conditions 1 and 2 are satisfied if and only if 22" +z + 1]22" +
r+1. =

Next we count the number of irreducible poynomials 7(z) of degree 2n
that satisfy 7(z) = 7+ (z).

Theorem 3.5. Let n = 2*m with m odd and m > 1 and k > 0. Then,

— _ZH 2-1-k

e‘m

where p(n) is the Mobius function.

Proof. Using Theorem 3.3 we have

2" = ) 2dCyy
d|n,2d fn
:>2n—1: Z ngd
d|n,2d fn

Now the ds which satisfy d|n and 2d fn are of the form d = 2Fe where
elm. Therefore,

22km717k = Z eCQ(le).

elm

Using Mobius inversion we get,

mCoakm) = Z/L(€)22k(%)717’€

e\m
= CQ(ka) = Z,u 22k(
e|m
= Cy, = Zu B
e|m

This completes the characterization of the irreducible polynomials over
GF(2) which are fixed under the map z — 1 + x. The computation of the
depths of irreducible polynomials is in general difficult (e.g., [10]). In the
Appendix we present a complete factorization of the first ten trinomials of
the form 2 4+ z + 1. From what has been discussed so far, it follows that
this in effect lists all irreducible polynomials 7(z) of degree leba than or equal
to twenty such that 7(z) = 77 (x). The numbers in the first column give the
depth of the corresponding polynomial. So for any m, if any one of these
numbers divide m + 1, then ot-automata on an m x m grid are irreversible.
There does not seem to be any simple formula for the depth function even for
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this special class of irreducible polynomials. However, it is interesting to note
from the results in the Appendix that if either 2% — 1 or 2% 41 (4 < i < 10)
divides m + 1, then irreversibility occurs.

The coefficient of 2! for this class of irreducible polynomials show certain
interesting regularities. In fact some of these can also be proved.

Proposition 3.2. For any irreducible polynomial T(z) over GF(2), with
7(x) = 77 (x), the following holds where deg(T) = 2n and ¢; is the coefficient
of z* in 7(x).

1. ¢gp—1 = n mod 2

2. Copog =1+ (Z) (mod 2)
3. Cony = (g) +(n—1) (mod2)

Proof. Since 7(z) = 77 (x), the roots of 7(z) can be written as a;, a; + 1(0 <
i <n — 1) accounting for 2n roots. Then the following holds.

1. cong = 0 i + (1 + o) = nmod 2.

2. Since deg(7) = 2n, 7(z)|z*" + z + 1. So for any root « of 7(z), a*" +
a4+ 1 = 0 which implies 0" = a + 1
Then it follows that 2", 1+a (0 <
roots of T( ). Let a; = o for 0 < ¢
1+ X4 a;. Now,

C2n72 = Z ﬂlﬁ]

1<i<j<2n

i <n—1) are all the distinct
< nfl. Then Y74 a? =

where the ;s are the 2n distinct roots of 7(z). Therefore,

Cop—2 = Z ooy Z (o + 1) (e +1)

0<i<j<n—1 0<i<j<n—1

+ > > aillta)

0<i<n—1 0<j<n—1

n—1
n
= <2> mod 2+ Y (a; + of)

=0

= 1+ (g) (mod 2).

3. The coeflicient ¢y,,_3 can be written as

Comz= Y. BBl

1<i<j<k<2n

where the f3;s are the 2n distinct roots of 7(x). Then the result follows
using a similar, though a bit more tedious, argument as in 2. m
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Note that irreversibility can also occur in another way, that is, if 7(z)
and 77 () both divide 7,41 (), with 7(z) # 7% (). But this means that the
depths of both 7(z) and 77 (x) divide m + 1. It is also difficult to determine
this.

Now we provide sufficient conditions for reversibility. A very easy condi-
tion is the following.

Proposition 3.3. If m+1 = 2* for some k, then ot-automata on an m x m
grid are reversible.

Proof. In this case Tp41(z) = 2™ (see [1,10]) and 7}, () = (1 + =)™
Therefore the two are relatively prime. m

Lemma 3.7. If the following conditions hold then the o™ -automata on an
m X m grid are reversible.

1. m+ 1 is a prime with ¢(m + 1) = 2sord,;41(2).
2. m+1=3mod 4.

Proof. Condition 1 implies that 7,,,1(z) = 7%(z) with 7 irreducible (see [5])
and condition 2 implies that the degree of 7 is odd. Therefore 7; and as a
result, m,,41(z), cannot have roots o and § with a4+ 8 =1 (by Lemma 3.3).
Hence the result follows by Lemma 3.1. =

The first ten primes that satisfy the conditions of Lemma 3.7, and the
corresponding m-polynomials, are given in Table 1.

Thus we see that reversibility of ot-automata on a square m x m grid
show an extremely rich behavior. It would indeed be very interesting to
obtain a full characterization of reversibility in terms of number theoretic
properties of m.

Table 1: The first ten primes that satisfy Lemma 3.7.

m+ 1| Ty (2)

3 1+ 22

7 1+4az* +2°

11 1+ 224+ 24 + 2% + 21°

19 1+$2+1‘8+Z10+I12+1‘16+118

23 14 2%+ 25 + 28 + 216 4 220 4 222

47 1+I8+£L‘12+1‘14+I16+1332+1340+I44+174U

59 1422 +2* + 2% 4+ 23 + 2% 4+ 28 + 250 4 252 + 256 4 58

67 1+E2+IE32+£E34+Z48+1’50+I56+Z58+I‘60+I64+166

71 1+$4+IE6+Z32+£L‘36+IE38+Z48+I52+1’54+Z56+Z64+I68+I70

79 1+$8+1,12 +£E14+$32 +£L‘40+SL’44+Z46 +I48+1’64+I72 +$76 +IE78
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Appendix

Here we present complete factorizations of the first ten trinomials of the form
Ti(x) = 2* + z + 1. Note that such trinomials are square free. The value in
the first column is the depth of the corresponding irreducible factor 7(x) in
the second column.

i=1Ti(z) =z +z+1
i:Z,Ti(z):z4+z+1

i:3,Ti(z):za+z+1
Depth | 7(z)
5 1+z+z2
63 1422+ 23 + 25 + 26

i:4,Ti(z):zw+z+l
Depth | 7(z)
255 1423+ 25 4+ 28 + 28
257 14+z+2° + 2%+ 2° + 25 4+ 28

i=5 Ti(x) =22 +2+1
Depth | 7(z)
5 142+ 22
205 14+z+22+2° 4 2%+ 22 + 210
1023 1422 +a2% 42+ 285+ 2% 4+ 210
1025 14+z+2°+ 25+ 285+ 29 4+ 210

i=6, T;y(z) = 2% + = + 1, 212 = 4096
Depth | 7(z)
17 142+t
1365 1422+ 2% 4+ 2%+ 2% + 2% 4+ 212
4095 | 1+ 22 +2° + 29 + 212
4095 | 1+ 2%+ 2% + 2% + 212
4097 1+az+az?+2°5+ 28 + 22 + 212
4097 14+z+22+ 2%+ 2° + 29 + 212

i=7 Ti(z) =22+ z +1, 21 = 16384
Depth | 7(z)
5 142+ 22
5461 1+z4+z5+z7+zg+zm+zn+z13+z14
5461 1+12+z4+15—|—z7+110+z11+113+zl4
16383 1+z6+z7+19+z11+z13+z14
16383 | 1+ 2+ 2%+ a7 + 2 + 2 + 2! + 2% 4 o'
16383 1422 +23 + 24 + 28 + 27 4+ 28 + 210 4 211 4 213 4 214
16385 1+z+z5+z7+zg+zm+zll+113+IM
16385 1+z+13+16+z7+z10+111+z13+zl4
16385 | 1+z+a?+a° +a* +2° + 27 + 2% + o't + 23 21t
16385 1+z+z2+14+16+z7+z8+z9+z11+113+IM
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i =8, Ti(z) = 22°° + = + 1, 216 = 65536

Depth | 7(z)

13107 1+ a3+ 28 + 27 + 210 4 gl 4 213 4 gl 4 516

21845 1+w4+z5+z6+z7+z8+m11+112+r13+z14+zw

21845 1+zz+z3+z4+z7+z8+zn+112+zl3+zl4+z16

21845 1+z3+z4+z7+zll+z12+113+z14+116

65535 1+z2-}—z5+z7+zm+z“+zl3+z14+z16

65535 | 1422+ 23+ 05 + 26 + 27 + 29 + 210 4 11 4 12 4 213 4 214 | 16

65535 1+z2+z3+z4+15+z7+z9+zll+zl3+z“+zls

65537 1+z+z4+zs+z7+z8+zw+zn+zl3+zl4+zm

65537 | 1+z+ab+a” +2° + 2!t + 213 + 2! 4 216

65537 1+oc+a2+28 +27 + 28+ 22 4 2t 4 213 4 14 4 216

65537 1+z+z4+z7+zg+zw+zu+112+z13+114+116

65537 | 1+z+a?+a® +a? +2° + 28 + 27 + 2% + o' + 2t + 212 4 013 2 4 216
65537 1+z+a3+25 +27 + 28 +2°2 4 21l 4 213 4 14 4 216

65537 1+z+13+z4+a:5+16+z7+zs+19+zw+zn+a:12+113+zl4+116
65537 1+z+22+25+28 +27 421 4212 4 213 4 214 4 216

65537 1+z+zz+z4+z5+z7+zm+zu+z13+zl4+z16

=9, Ti(z) = 2512 + = + 1, 218 = 262144
Depth | 7(z)
5| 1+x+x2

63 | 14+a2 423 4+2°+a°

7085 | 14 az4+a2+a3 +at4 25 +a7 + a8 4+ 210 4 11 f 13 f gld 4 216 4 217 4 18
12483 | 1+ 22 +a® + 2% + 27 + 2% 4+ 210 4 ol 4213 4 ol 4 916 4 217 4 518
13797 | 1422 + 2% + 2% + 210 4 22 4+ 216 4 217 4 218
20165 | 14z + 2% + 25+ 28 + 27 4 211 4 212 4 213 4 14 4 216 4 217 4 18
20165 | 14+ + 2 + a5 + 29 + 212 4 216 4 217 4 218
29127 | 1+ 22 + 2% + !0 + 216 + 217 4 218
37449 | 1423 + 27 + a8 4+ 29 + 210 4 211 4 212 4 213 4 Z14 4 516 | 417 | 18
37449 | 14 2% 4 2% 4+ 28 + 216 4 217 4 18
52429 | 1+z+2%+2° + 2% + 2% + !0 + 27 + 218
52429 | 14z 4+ a2 4+2° +27 + 28 + 2% + 2! 4213 4 214 4 216 4 217 4 218
87381 | 14 a8 4+ 2% 4 210 4 216 4 217 4 518
87381 | 14+ a4z +2° +2° +2'2 + 25 4217 4 218
87381 | 1422 + 2t + a7 4+ 211 4 212 4 213 J g4 4 216 4 17 4 418
262143 1+z3+z4+16+z7+z8+zg+zll+z13+zl4+z16+zl7+118
262143 | 1422 42 + 27 + 20 4+ 21 4 213 4 214 4 216 4 217 4 218
262143 | 14+ a2+ a5 + 28 + 27 + a8 + 22 + 210 4 11 212 4 218 4 g14 4 216 4 217 | 418
262143 | 14+ a3 + a5 4+ 27 + 210 4 gl 4 18 4 14 4 216 4 217 4 518
262143 | 14+ a5 + 26 + 27 + 29 + 210 4 211 4 212 4 213 L 414 4 416 4 417 4 418
262143 | 1+a° + 20+ a'? + 2 4+ 27 4 o8
262145 1+z+14+16+z7+zs+zm+zn+zls+z“+zl6+zl7+zls
262145 | 14z +a2+a°+28 +27 +a° + ' 423 + 2 4216 4417 4 218
262145 | 1+az+a2® +2° + 2 +2'7 4+ o8
262145 1+z+a:2+z4+zg+zm+zls+zl7+zls
262145 1+z+1:3+z4+zs+zs+zw+112+zls+ml7+zw
262145 | 1+z+a” +2° +2° +a® +2” +2'2 +2'0 + 27 4 218
262145 1+z+a:3+z4+z5+z6+zg+zw+zl6+z17+z18
262145 1+z+12+a:4+7:5+zs+110+7312+116+a:17+7:18
262145 1+z+zz+z3+z4+z6+zlo+z12+z16+z17+z18

.
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= T) = +z+ = 7
10, T;
) 1( )
21024
z +1, 22
s
1048
576

Depth | 7(z)
: x

13987 .

2557; 1+12+z4

61681 e ol

o 1+ 42 4+ 5+acb'+

o s 26 4 21 z® 4 6

6990 1+ i g 3

9 511 z + 2 z° + 26 s e

o e + 2 + a8 216 + 220
: 1 s + z'6 +z° + 27
29715 1+12+ 3+z4+ 6+117+ +2l2 4 + 220
209715 1+12+i3+z5+z7+z7+ $820 216 4 £17

s e 5+z4+$ + g1t z8 4 + 220
v 1 ot 5 ) + z12 + 10
: 5 e x8+z9+zﬁ+ 9 + 18 +ogltt

on; ot 4+1;11+ + 210 % + 21? + 2l 4 +2l2 4 gl
i 1+IS+IB+I5+ 1‘12+11§ 216 4+ 1.; 16 4 1$17<|>120z 34 gl
i e 26 + 27 8 4+ 210 +zl4x +z20’37+z20 + 217
e e + 23 + 25 + 2% + 21° + 12 _|_+1117 4 20 + 220
i 1+zz+15+zs+z9+zlo+zll+I7+12[)

: 1 T +z7 + 2! 212

952 e 427 + z9 z16 + 13
3 5|1 +z&z+18 z+1+zl7z+14

e o + z? + 10 211 4 + 220 T+
10 - N + 13 216
148575 1+Z4+zs+zs+z 2 4 417 21 13+1;14+ T2l 4 2
visrs 1+z2+z + 29 z8 + 210 4 220 '3 4 14 217 4 220 220
i e 26 + z10 + 12 + 217 )

: o |1 - +Ig+18+ 9 + 27 + 17 + x20
j ot et 5+112 +I 4 210 + 220 + 220

e e 25 + 26 z16 4+ 1+116+

i ! T3 +z7 217 217

s o + B + a8 + 20 + z20
i 1 et + 28 +2°
1048575 1+15+15 ++112+ T517+110+ 21l 4 213

B ; :

1048075 1+z e 8 + 210 + 217 +z11+11+114

i - 4 6 + 2 + z20 13 + 16
E i i + 27 7+ + 14 4!

i et 1+117 + 8 216 4 2! + 16 z'7 4 220
1048575 1+z3+x40+z11+ 220 g +zl€ 7 4 220 + 217 ﬁ 20
1848575 1+12+z3+z7++92313+214 413 gl x
1 i 1+13+z4+z7+18+111 + z16 !t 4 216
oher L4 24+ b z8 + 29 + 213 4217 4 g 4217
1048577 1+ + a2 4 ?3: + b +z7+zll ++ ol —’I—GEZU + 220

| . : : PR
e 1+Z+z2+z4+z5+z7 + 28+ To + 14 + 17 4 2
b 1+z+z2+z3118+19+111+ru + ! ++zl7+ ﬁOO
o 1 5 5 + 12 z12 4 2! 213 T

7 tot +azt + z° + 217 z13 + 4
i 1+I+z;+z7i$?+117+zln+z17+120+:1;14+1¢16 417 4 20
i 1+z+z - zO+I11+120 + 220 +(1;17+I2
e 1+I+z§+mzizz+zﬁ++zls+ 14 220

1
e e 25 4 25 z6 + 28 210 4+ 5 + 16
: 2k e + 28 + 16 z + 2!

it Tt (+15 ,+19 z°+ 17+1;ls 7 4 22
. 1 - + 2 4+ 210 z'7 + &2 + a7 220
: o +z+12+112+ 1".'1-1’3_,_ 1+1;17 20 + 220
1048577 1+$+z3+z4+£ 6 4 217 z 2+1;17+:E?0
148577 1+Z+z2+z4+ 5+z7+'ga:20 + 220
b Lhe 43 % + 27 z% + 210
: 7 e + z* + z8 +

w s +z4 +zb‘ z© + 11 11
1 : ‘o T + 27 T + 12
- ! z+az+71+ + 212 +al
: m i i z8 + 2 z7 + 2 % + ¥ + z13 13 4 14

s tet 2+z6+ BJr:clo 4 z10 z¥ + 219 + g4 Tl 4 716
R 1+ JERH z + 216 + il 4!t +2t7 +a!

; - - + !0 + 217 + ! + + 220 17
e s z3+z4+z7+1;8 + z12 +z1 +z20z 2 4 p13 $12+11€ + 20
e 1+z+z4+z5+z7+z9+zlﬂ+ z117+z20 4ol 1+z14+
e 1+z+z2+z4+Z6+z7+1;11 +113+z13 z16 4 217 16 4 217

E ro 7+z5+ + 8 z= + 14+zl4 + 20 + z20
1:+g:2+zl+z8 z7+zs+19+11€ +z17+115+ 17
zb+zs+z9+ 10+111+ + 13 + 220 z17 + 220
+ a9 10 4 g1t o' + o
+1;lu it + 12 I13+ +Zl7
S e 214 + 20
+ z20 a0+ o
hA + 220
217
+ 220




