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Abstract. Despite using different formalizations and investigating
very different kinds of systems, the same unimodal dependence be-
tween disorder and complexity has been found in several indepen-
dently conducted studies. Maximally interesting behavior of complex
systems was observed at “the edge of chaos,” the onset of instability
between the ordered and the chaotic regime. The particular shape
of the complexity-disorder plot has led researchers to suggest that
complex systems can have inherent nontrivial information processing
capabilities in the vicinity of a phase transition. However, it has sub-
sequently been pointed out that the observed kind of dependence is a
consequence of the definition of disorder used in the studies and that
a different definition would make the structure suggesting a phase
transition vanish.

In this paper, the dependence between disorder and complexity
for two-dimensional Ising spin systems is investigated. Measures not
sharing the flaw pointed out above are used, and the hypothesis of
maximally interesting behavior in the vicinity of a phase transition
is confirmed for simple, spatially homogeneous systems with random
noise. Moreover, evidence is presented that more complex systems
in which frustration is present can show interesting behavior over a
broad range of noise levels.

1. Introduction

Phase transitions are a phenomenon intensively studied in statistical me-
chanics. Large systems often show a sudden change in their behavior as a
parameter (which is often called temperature) is gradually varied. While
below the critical temperature the system shows a very simple kind of orga-
nization and regular structures, above this temperature seemingly random
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Figure 1: The dependence of complexity on disorder found in [4, 5, 11,
12]. The sharp peak at an intermediate disorder value was interpreted
as evidence of a critical phase transition.

behavior can be observed. This fact can usually be attributed to two com-
peting influences: symmetry-imposing laws intrinsic to the structure on one
hand, and the disordering effect of thermal fluctuations on the other hand. As
the amount of thermal fluctuations exceeds a certain threshold, the ordering
powers have a negligible effect on the behavior of the system.

The notion of phase transitions has gained importance in complex systems
theory as results reported in [4, 5, 11, 12, 22] sparked the idea that maximally
interesting behavior of complex systems can be expected to emerge in the
vicinity of phase transitions. By investigating the information processing
capabilities of various kinds of systems, signs of globally coherent behavior
and self-organization were found in a region for which Langton coined the
term edge of chaos: the boundary between the ordered and chaotic regimes
in the behavior of a system. These observations had considerable impact on
the new field of artificial life.

Although Langton [11, 12] investigated the behavior of cellular automata
(CA) while Crutchfield and Young’s [4, 5] interest was on iterated function
systems and widely differing complexity measures were employed, both stud-
ies arrived at the same, strikingly simple dependence sketched in Figure 1.
The seemingly obvious conclusion was that neither very ordered systems with
static structures that do not support information transmission, nor chaotic
systems in which information cannot be persistently stored are capable of
complex information processing tasks, and that only systems on the sharp
borderline between the two extremes are computationally interesting.

However, in a closer investigation of disorder measures in [13], it is pointed
out that the linear left boundary of both plots is purely due to the particular
choice of a disorder measure, and that choosing a different measure would
lead to the loss of the structure in those plots.

In this paper, the question of what results can be obtained when a physical
system for which the existence of a second-order phase transition is well es-
tablished is investigated. In particular, the behavior of information-theoretic
measures applied to Ising spin systems at various temperatures is explored.
The benefits of this approach are twofold: first, general insights into the
behavior of information-theoretic measures in the vicinity of phase transi-
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tions are gained. It is shown that the complexity of a two-dimensional Ising
ferromagnet indeed shows the expected unimodal dependence on disorder,
with an accentuated peak near the critical temperature. Second, and maybe
more important, the same methodology is employed to arrive at a better
understanding of spin glasses for which the transition from the solid to the
gaseous state is not abrupt but a gradual process. Evidence is presented
that such nonhomogeneous systems can behave in a nontrivial manner over
a wide range of temperatures.

Section 2 reviews measures of disorder and complexity and points out
links to coding theory and dimension measures which make the definitions
used in this paper seem the most natural candidates for an analysis of infor-
mation processing capabilities of complex systems. In Section 3, Ising spin
systems and an algorithm for their dynamical simulation on a massively par-
allel computer are described and the results from the information-theoretic
analysis of Monte Carlo simulations are summarized. Section 4 concludes
with a suggestion of how to interpret the results and some open problems.

2. Measures of disorder and complexity

The usual procedure for defining measures of disorder and complexity of
processes or structures of any kind is to choose some type of model for the
process or structure being investigated, compute the disorder and complexity
of the model according to some model-specific definition, and then identify
these with the disorder and complexity of the original process or structure.
This procedure makes the definition of such measures inherently subjective,
as different types of models are more or less well suited for representing the
process or structure at hand. For example, the output of a pseudo random
number generator is not disordered at all if the deterministic law according
to which the sequence of pseudo random numbers is generated is known
and used as a model for the process. However, using stochastic processes
as a model, the output of a good generator will be classified as completely
random.

The two classes of models most commonly used are stationary, ergodic
stochastic processes and universal computers, leading to definitions of in-
formation-theoretic and automata-theoretic measures, respectively. The fol-
lowing is restricted to information-theoretic measures. However, it is well
known that the information-theoretic disorder measure as defined below and
the automata-theoretically defined Kolmogorov complexity are almost al-
ways equivalent. Furthermore, an informal argument can be given showing
that their complexity counterparts, mutual information as defined below and
Bennett’s logical depth, are at least qualitatively similar. While the computa-
tion of automata-theoretic measures requires the cumbersome construction
of automata which approximate the statistical properties of the object or
structure being investigated, information-theoretic measures can be approx-
imated without much effort. For a more extensive discussion of definitions
of disorder and complexity measures see [8, 14].
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A formal basis for the information-theoretic disorder measure is the en-
tropy of a probability distribution, first defined in [18] as

1
)= S s
where S is a discrete random variable with distribution pg and the summation
extends over the whole range of possible values for S. Given a stationary,
ergodic time series (x;)_so<i<oo Of symbols from a finite alphabet I, let the
random variable S,, range over the space '™ of words of length n occurring
in the series and define the disorder of (z;) as

H(S
H:hmﬂ.

n—00 n

(1)

As the size of the space I'" of all words of length n increases exponentially
with n, this definition captures the same scale invariance properties as the
information dimension

D =lim ﬂ
B3 fog(1/0)
defined via box counting in continuous spaces. Instead of changing the scale
by decreasing the box size (¢ — 0), in the definition of disorder according
to equation (1) we let n — oo to achieve the effect of a change of scales by
increasing the sequence length. Given stationarity and ergodicity the result
is the same: both definitions compute the characteristic constant of a system
under a change of scales.

Another justification for equation (1) stems from coding theory. As Ham-
ming shows in [9], the disorder of a time series as defined above can be inter-
preted as its maximal compressibility by a general coding algorithm. In this
way, disorder can be regarded as the average amount of information carried
by each symbol of the series, or alternatively as a measure of randomness
inherent in the series.

As a complexity measure, the mutual information

C= lim (H(Sw)+ H(S,) = H(Snin)) 2)
is widely used. It measures the amount of information a word of length m
in the sequence contains about its continuation of length n for m,n — oco.
Therefore, “shallow” sequences where consecutive symbols are uncorrelated
have low complexity while sequences with inherent long-range correlations
have high values of C.
The complexity of equation (2) can also be written as

C = T (H(S,) - nH) 3)
so that for large enough n we have

H(S,)~ C + nH. (4)



Information-theoretic Analysis of Phase Transitions 147
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Figure 2: Typical relationship between the entropies H(S,) and the
word length n. The slope of the limiting straight line is equal to
the disorder H of the time sequence; the y-intercept is equal to the
complexity C (plotted according to similar figures in [13, 19]).

Plotting the values of H(S,) over n typically leads to a diagram as shown in
Figure 2. Equation (4) shows that H is the value of the slope of the limiting
straight line that fits H(S,) as n — oo and C is the value of the y-intercept
of this straight line. As n is the logarithm of the size of the space in which
the entropies are computed, Figure 2 effectively illustrates the concept of
scale invariance in the definition of H.

Another interpretation which has been suggested for equation (4) draws
from the distinction of the contents of computer memory into programs and
data: The total information H(S,) inherent in a sequence of n symbols
is composed of a part nH which equals the amount of information carried
by n symbols (data) and a part C which is interpreted as the amount of
information inherent in the code itself (program), and thus a measure for the
difficulty of decoding the given sequence.

Neither [4, 5] nor [11, 12] use the disorder or complexity measures defined
above. In [11, 12], scale invariance properties are not considered at all; the
single-symbol entropy H(S;) is used as a disorder measure and the mutual
information H(S;) + H(S}) — H(Si1,S;) where S; and S; denote spatially
(and not temporally) related time series is used as a complexity measure.
In [4, 5], H(S16)/16 is used as an approximation to the disorder measure
defined above and probabilistic finite automata which reproduce statistical
properties of the time series at hand are constructed for the definition of a
complexity measure. For both disorder measures, all periodical time series
are situated on the limiting straight line through the origin in Figure 1. As
first pointed out in [13], using the disorder measure given by equation (1)
instead, all periodical series have zero disorder, and the complexity-disorder
relationship takes the form shown in Figure 3. In this figure, there is no
indication of a phase transition.
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Figure 3: Change in the complexity-disorder relationship when using
different measures. When using the disorder measure given by equa-
tion (1) instead of Hy or Hy/16, the complexity-disorder relationship
changes from the one depicted by the broken curve to the one de-
picted by the solid curve. The structure indicating a phase transition

vanishes.

Analysis of Ising spin systems

A number of points make Ising spin systems an interesting candidate for the
analysis of the complexity-disorder relationship of complex systems.

e [sing spin systems are naturally discrete; therefore, no discretization

effects influence the simulation results.

For the Ising ferromagnet, the existence of a second-order phase transi-
tion is a well-known fact. The behavior of the disorder and complexity
measures in the vicinity of this transition can be studied and compared
with their behavior when applied to spin glasses, the nature of which
is not as well understood.

Due to their regular structure, a relatively efficient implementation
on massively parallel computers is possible. Unlike for more irregular
systems such as random boolean networks or fully connected neural
networks, experience can be gained from experiments over a wide tem-
perature range and for a large number of systems.

It can be expected that related systems such as Hopfield networks or
simulated annealing strategies show qualitatively similar behavior, and
that studying Ising spin systems furthers the understanding of their
various relatives.

In this section, the Ising spin formalism is first outlined in general, then
methods for the dynamical simulation of Ising spin systems are described,
and afterwards results from the information-theoretic analysis of Ising ferro-
magnets and Ising spin glasses are presented.

3.1 Ising spin systems

Ising spin systems are large spatially distributed systems comprised of very
simple, identical elements which can show very complex overall behavior due
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to an abundance of competing feedback links. They consist of a large number
of binary variables S; € {£1} that are called spins. These form a regular
n-dimensional grid and interact according to the energy function

1

where the summation extends over all pairs of spins. The interaction coeffi-
cients .J;; are symmetric in the sense that .J;; = .J;; and are usually monoton-
ically decreasing in absolute value as the distance between spins increases.
Vanishing interaction coefficients for spins more than one grid site apart are
often assumed. The link between spins ¢ and j is called ferromagnetic if
J;j > 0 and it is called antiferromagnetic if .J;; < 0. The statistical prop-
erties of Ising spin systems are described by the Gibbs distribution which
states that the probability of configuration 7 is
p(n) = %6"3 B

where Z is the partition function, # = 1/T is the inverse temperature, and
E, is the energy of configuration n given by equation (5). It is easy to see
that for low temperatures spins with a ferromagnetic connection tend to have
the same value while spins with an antiferromagnetic connection tend to have
opposite values.

Two important special cases which have been intensively studied in sta-
tistical mechanics as models for solids with magnetic properties are the Ising
ferromagnet and spin glasses. While the two-dimensional Ising ferromag-
net [10] for which all interaction coefficients between nearest neighbors are
identically positive and longer-range interaction coefficients vanish is well un-
derstood and mathematically tractable [17], spin glasses are less amenable
to mathematical analysis and are the subject of continuing research. For the
state of the art in spin glass theory, see [6]. This reference also outlines the
close relationship of spin glasses to neural network models and to simulated
annealing strategies.

3.2 Computer experiments

Computer simulations are a useful tool for investigating the behavior of sys-
tems which are difficult or impossible to deal with using formal methods of
mathematics. Monte Carlo methods have proven to be useful in a number of
cases.

For a Monte Carlo simulation of Ising spin systems, a dynamical rule
for updating configurations that captures the two competing influences of
ordering spin interactions and disordering thermal fluctuations and that pro-
duces configurations with the probabilities of the Gibbs distribution has to
be given. A rule known to lead to thermodynamic equilibrium is the Glauber
rule

1

pn—1) = 1T exp(BAE) (6)
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which prescribes the probability of a state change from configuration 7 to
configuration 7’ as a function of the energy change AE going along with the
state change and the inverse temperature 3.

This rule does not say anything about which spin flips to chose as can-
didates in a dynamical simulation. For exploring a large part of the con-
figuration space, it would be most efficient to make big steps by updating
as many spins as possible simultaneously. However, to be able to compute
the energy difference AFE associated with a configuration change, two neigh-
boring spins must not flip at the same time step. Therefore, we follow the
suggestion in [20] and employ probabilistic CA and a checker board updating
pattern, changing the states of the spins on the even grid and on the odd
grid alternately.

The experiments described below were carried out on two-dimensional
grids of size 128 x 128 with periodical boundary conditions on a Connection
Machine CM-2. Each spin interacted with its four nearest neighbors. After
skipping the transient phase, 10,000 consecutive configurations were com-
puted for each value of the temperature. Approximations to disorder and
complexity were computed using the fast converging expressions

H = lim (H(S,s1) — H(S,) (7)
and
c=- f: 0 ((H(Sup) = H(S,)) = (H(S,) = H(Su1))) (8)

Approximation errors in the computation of disorder have proven to be neg-
ligible. As for the complexity, it is of course not possible to extend the
summation in equation (8) to infinity. Because all summands are positive,
all that can be computed are lower bounds for the complexity. However,
except for the immediate vicinity of the phase transition of the ferromagnet
and the corresponding transition interval of the spin glass, the error resulting
from summing up only the first few items is very small.

3.2.1 The Ising ferromagnet

The Ising ferromagnet is characterized by uniform interaction coefficients
Jij = J > 0 for neighboring spins and no direct interaction between spins
more than one grid site apart. Two typical configurations of the system at
different temperatures are shown in Figure 4. Its thermodynamic behavior
is well understood, and the simulation results agree well with the theoretical
predictions (see Figure 5).

Figure 6 shows that disorder increases monotonically with the tempera-
ture of the ferromagnet as expected, and that it resembles, not surprisingly,
the curve of thermodynamic entropy when plotted over the temperature. The
complexity as defined in equation (2) indeed has an accentuated peak near
the critical temperature. Its height is underestimated due to the fact that
the sum in equation (8) is only approximated.
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Figure 4: Typical configurations of a two-dimensional Ising ferromag-
net near the critical temperature (left) and above the critical temper-
ature (right). Spin variables of value 1 are shown in black, those with
value —1 are depicted in white.
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Figure 5: The dependence of some thermodynamic variables on tem-
perature for the Ising ferromagnet (dots) and an Ising spin glass
(crosses). The exact solution for the ferromagnet according to [17]
is shown as a solid line. The variables shown are (from left to right)
per spin magnetization m, per spin energy e, and per spin heat ca-
pacity c.
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Figure 6: Dependence of disorder and complexity on temperature. (a)
Disorder H over temperature 7'/J for the ferromagnet (lower curve)
and a spin glass. (b) Complexity C over temperature for the ferro-
magnet (right peak) and a spin glass. The dots mark the measured
values, the lines their arithmetic means.
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3.2.2 Ising spin glasses

For the Ising spin glasses investigated here, the interaction coefficients .J;;
between nearest neighbors are randomly distributed, taking values £J with
equal probability. Systems of this kind show frustration and a rugged energy
landscape due to the presence of both positive and negative feedback links.
Generally, their behavior is much less well understood than that of the con-
siderably simpler ferromagnet, and even the existence of a phase transition
in the strict sense of statistical mechanics is an open question (e.g., [6]).

Figure 5 shows the dependence of some thermodynamic variables of the
simulated systems on temperature. For high temperatures, thermal fluctua-
tions dominate the dynamical behavior and for T — oo the ferromagnet and
the spin glasses behave identically. However, for low temperatures the situ-
ation is quite different. While the energy landscape of the ferromagnet has
only two very deep valleys, the rugged energy landscape of the spin glasses
is comprised of a large number of valleys of widely varying sizes separated
by energy barriers of widely varying heights. Therefore, even at low temper-
atures more than one energy valley is accessible to the system.

The comparably flat curve depicting the heat capacity does not seem to
suggest the existence of an abrupt phase transition for Ising spin glasses.
However, Figure 6 reveals a gradual phase transition accompanied by com-
plexity values which even exceed those of the abrupt transition in the ferro-
magnet. High complexity values can be found at very low temperatures, but
are most common in the temperature range of maximal heat capacity. The
curves of both average disorder and average complexity for the spin glasses
qualitatively resemble those for the ferromagnet. However, the average de-
viation of the measured values is substantially higher for the spin glasses.
This is due to the fact that more than one valley of the energy landscape
is accessible to the system already at comparatively low temperatures, and
that the local structure of the energy landscape greatly influences the dy-
namics of the system and thereby the complexity of its trajectory. Given a
sufficiently complex energy landscape, interesting behavior can occur over a
wide temperature range.

4. Conclusions

The aim of this paper was to explore the relationship between complexity and
disorder in large systems in the light of the hypothesis that complex systems
can spontaneously develop the ability for nontrivial information processing in
the vicinity of phase transitions. For this purpose, disorder and complexity
measures were employed which are based on scale invariance properties of
the investigated systems to study the behavior of dynamically simulated
Ising spin systems. For the Ising ferromagnet, a system which exhibits a
second-order phase transition, the hypothesis proved to be correct, although
the structure of the complexity-disorder plot (Figure 7(a)) is qualitatively
different, from earlier results (e.g., [4, 11]) where the structure suggesting a
phase transition is due to a peculiarity of the disorder measures employed.
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Figure 7: Dependence of complexity C' on disorder H for (a) the
ferromagnet and (b) a spin glass.

The conclusion from this seems to be that a sharp phase transition in
the sense of statistical physics is no necessary precondition for interesting
behavior in spatially nonhomogeneous systems with frustration, and that a
gradual transition from ordered to disordered behavior may as well go along
with complex behavior as an abrupt one. This coincides with the observation
in [16] that “phase transitions which are not ‘truly’ critical are still interesting
and maybe even more relevant for reality.” If the frequency spectrum of the
energy landscape is sufficiently broad, fluctuations of widely varying intensity
will lead to interesting phenomena.

For the future, it will be interesting to examine the behavior of systems
which are intermediate in complexity between the totally ordered ferromag-
net and the structurally totally random spin glasses. Not only the tempera-
ture which controls the amount of random fluctuations but also the distribu-
tion of ferromagnetic and antiferromagnetic links can be subject to explicit
manipulation, and the results reported here (as well as the classifications of
CA by S. Wolfram [21] and C. Langton [11, 12], a recent study of random
boolean networks by J. F. Lynch [15], and D. Amit’s [1] work on the Hopfield
model) hint at the existence of more interesting systems at the edge between
order and chaos.
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