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Abstract. This paper considers the amount of information processed
in boolean automata networks with random interconnections. The
complezxity of computations is defined as the number of logical switch-
ings during the run. The distribution of automata types in the network
gives rise to a distribution of computational complexity with various
initial conditions. We calculate this complexity distribution and find
the limits of complexity in the individual algorithms.

1. Introduction

The theory of computational complexity deals with the quantitative aspects
of the numerical solution of different classes of problems. It was initially
formulated in regard to sequential algorithms [1, 2]. Later, rapid progress
in the technology of integrated circuits spurred the theory of complexity of
parallel computations in boolean networks (e.g., [3] and the review lectures
by Rabin and Cook in [4]).

Most of the present literature on this subject analyzes feedforward net-
work architectures as in [5-7], where calculation is performed by sequential
layers of logical elements. The absence of feedback loops guarantees getting
a result in a number of steps not exceeding the number of layers. Thus, the
computational complexity of these networks is proportional to the number
of boolean elements they contain. The major drawback of a feedforward ar-
chitecture is that each element may change state only once during a run. On
the contrary, each element may switch its state an arbitrary number of times
in recurrent networks with feedback loops. It is natural to associate the com-
putational complexity in recurrent networks with the total number of logical
switchings in the network in the course of a computation. The purpose of
this paper is to examine how this quantity depends on the component basis
of the network, or the set of boolean automata from which the network is
assembled.

This work complements previous studies of the convergence of compu-
tations in recurrent boolean networks [8-11]. In particular, the criterion
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for convergence of network dynamics defined through the statistical proper-
ties of its component basis is presented in [11]. The mean complexity was
also found. Here this result is extended, calculating the whole distribution
function for the computational complexity for problems with various initial
conditions. Our approach is formulated within the scope of Karp’s program
for studying the statistical properties of algorithms [4].

This paper is organized as follows. Section 2 formulates our model and
fixes notation. Section 3 presents a hierarchical classification of network en-
sembles, which induces a chain of approximal descriptions of dynamical fea-
tures of recurrent networks. This justifies the stochastic dynamics of logical
switchings in networks, which facilitates the use of the theory of branching
processes. In Section 4 the well-known results from the latter theory immedi-
ately give the desired distribution of computational complexity in a network
ensemble. In Section 5 we derive constraints for the distribution of compu-
tational complexity in the individual networks from our network ensemble.
Section 6 summarizes and concludes the paper.

2. Model description

The problem of computational complexity implies a formal definition of the
computational equipment, that is, the computer. The computer is a tunable
device for calculating the functions:

&= Q.

mapping the set of the problems € to the set of the solutions 3. The cal-
culation proceeds according to the algorithm ¢ constituting a phase portrait
in the phase space of the computer consistent with the desired mapping:

$:0=0Q  lim¢" =

The process of tuning the phase portrait of a computer is called programmaing.
The computational properties of any computer are determined by the ensem-
ble of algorithms {¢}, which can be programmed on it. Constraints imposed
by the programming induce a measure p(¢) in the set of algorithms, which
determines the statistical properties of computations performed by such a
computer. This ensemble approach corresponds to the concept of probabilis-
tic algorithms developed in [12].

In the present paper, each algorithm constitutes a network of N boolean
(two-state) automata with parallel updating that implement the mapping:

I1:>¢1(I17I]1177x]11<)7 1§Z~J§N7

or in vector notation: x = ¢(x), with x,¢ € {£1}". The programming
represented by this model constructs network configurations containing N
boolean automata from the infinite set of basic boolean automata, that is re-
ferred to as the component basis. Fach automaton updates its state according
to some boolean function ¢ of its own state and the states of its K binary
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inputs at the current time step. Constraints, imposed by the component
basis of the computer will be represented by the probability p(¢), associated
with each possible boolean function. These are the only restrictions posed
by the programs in the present paper. This means that all algorithms may
be constructed by a probabilistic procedure in which the automata at all
network sites are chosen independently:

N
w(@) =[] u(4:), (1)
i=1
and all permutations of interconnections between them are equiprobable:
p(¢i(x)) = p(¢i(mx)),  (maj = @aj, 7 € {Sn|mi = i}). (2)

3. The hierarchical classification of computers

In accordance with the previous section, each computer is associated with a
network ensemble {¢} characterized by a probabilistic measure pu(¢). This
section develops a procedure for step by step extraction of useful information
about the statistical properties of computations. This approach makes use
of a hierarchical classification of computers similar to that used for classifi-
cation of cellular automata [13], but utilizing temporal rather than spatial
correlators.
Let the class of nth order, defined by the probabilistic function P(xy . . . Xy),

represent all the computers with the same set of probabilities,

P(xg...X,) = Z /L(d))&xhqé(x”) . 5xn,¢(xn71)’
{0}

to find a n-vector sequence Xy ... X, in the phase portrait of related network
ensembles. Since Y, P(Xo...X,) = P(X¢...X,_1) this classification con-
stitutes a hierarchy of more and more comprehensive ensemble descriptions.
The last level  specifies the whole measure p(¢) where 2 = 2%V is the phase
volume of the network.

The above hierarchy induces a chain of approximal descriptions of the
statistical properties of phase trajectories in a given ensemble. Namely, each
nth-order class may be associated with a n-step Markov process. This gen-
erates phase trajectories at random, subject to the conditional probabilities:

P(xg...%,)

P(xg...Xp_1 = Xp) T P(xo... %) (3)
taking into account n previous states of the trajectory. So defined, a n-step
Markov process generates trajectories with the same temporal correlations,
up to order n, as the original phase trajectories in the ensemble, {¢}.

For our needs, one may confine the consideration to a two-step Markov
process, since this approximation grasps the existence of the fixed points
(representing solutions for the problems), describing the relaxation dynamics
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of the network. For simplicity we will limit ourselves to uniform ensembles,
where the Markov dynamics is uniform over the phase space. This means that
the dynamics depend only on the relative position of the points: P(xx;) =
P(|X0 — Xl‘)a P(XOX1X2) = P(|X1 — Xo‘, |X2 — Xl‘a |X2 — X()D, etc.l Here the
distance between the two phase points (in the Hamming sense) is the number
of automata changing their states when the system steps from one point to
the other. Thus, the dynamics of uniform networks is formulated in terms
of the number of automata that switch states, and is suited ideally for our
needs.

The one- and two-step Markov dynamics provide respectively the spec-
trum of vector lengths W,,, in the phase portraits of our ensemble, and the
conditional probability P,,; that the vector of length I follows the vector of
length m. For a formal derivation of these quantities see [11, 16]. Here we
limit ourselves to intuitive arguments and retain the approximate Markov
dynamics.

Since we are interested in the number of automata switchings, one should
specify the tendency of the automata from the basic set to change their states.
The first order approximation utilizes the probability ¢ that an automaton
will change its state for arbitrary values of its inputs. Thus, the probability
that m automata in an ensemble in an arbitrary initial state will change
states at the next step:

W= () 0

represents the spectrum of vector lengths in the phase portraits of the en-
semble. The generating function

W(s) = S Wins™ = (1—q+sq)™

gives one the average vector length:

m=> Wym= W'(1) = Nq.

To calculate P,,;, one needs the probabilities, {g,}, 0 < & < K, that an
automaton will change its state if k of its inputs have been changed (assuming
qo = 0). For K < N, the probability that an automaton will change state,
when there were m switchings in the network, is:

P = é ( Ik( ) (m/N)* g

Thus, if the parameter of expansion is small enough, Km/N < 1, the proba-
bility of an automaton switching is proportional to the number of switchings
in the network at the previous step:

Pm ~ @ Km/N.

'In uniform ensembles, both states of the automata play a similar role. The Kauffman
N K-model [15] represents an example of an uniform ensemble. (See [16] for more details.)
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The probability P,,; in this limit is given by the Poisson distribution:
Py~ exp(—rm)(km)' /1!,  (Km/N < 1) (5)
with kK = Kq;. The corresponding generating function,

B(s) = zl; Pyus' = explms(s — 1)] = [f(s)]™,

indicates the statistical independence of automata switchings in the network.

The condition K'm/N < 1 may hold only in diluted networks with K <«
N. On the other hand, networks large enough to display converging dynamics
must be diluted. Indeed, relaxation to equilibrium implies that the mean
number of switchings at the next step km must be less than the number of
switchings m at the previous step. The convergence criterion £ < 1 limits
the number of automata inputs for computing networks: K < 1/q;. Since ¢
does not depend on N, limy_,., K/N = 0.

4. Distribution of computational complexity in network
ensemble

Assuming that the typical number of switchings m during a run is small
enough, Km/N < 1, one may use equation (5) to examine the relaxation
dynamics in the network. This approximation facilitates the use of elegant
mathematical tools from the theory of branching processes. Indeed, one
may treat the relaxation dynamics of equation (5) as a branching process
for logical switchings in a network. The probabilities for the number of
offspring f. of an individual switching is given by the Taylor expansion of
the generating function f(s) = 3, frs*.

This interpretation immediately gives one the distribution of the total
number of automata switchings during a run for one initial switching. Ac-
cording to the general theory [17], the corresponding generating function
F(s) obeys the functional equation:

F(s) = sf(F(s)).

The latter may be resolved with the help of the Lagrange theorem [18],
which gives the expansion of any function of F(s). In particular, for f(s) =
exp[k(s — 1)] and m initial switchings, one obtains:

F(s) = ; s'E, (1),
F.(I) = ?%exp(fﬁ,l)

mexp[(1 — k+Ink)I]

K™\ 23 '

Q

(I>m). (6)
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Averaging equation (6) over the initial conditions results in the following
distribution of computational complexity I of problems solvable by a given
computer:

F(I) = E_WmFm(I)%%exp[(l—m—l—lnn)l], (I > N). (7)

One may easily check that the average computational complexity coincides
with that found in [11]:

_ -, m
I szIF(I) ; W,,mF'(1) TR
with v = 1 — k being the relaxational decrement of the network.
Equation (7) allows one to estimate the maximal complexity in a typical
algorithm for a given computer. To this end, consider the probability that
the complexity of all 2 problems in a given algorithm ¢ does not exceed Iy:
(Xrer, F(I)® ~ exp (—Q Y5, F(I)) . This quantity rapidly increases from
zero to unity in the vicinity of Lyax, defined by: ;5 F(I) = Q7! From
equation (7) one finds:

NlIn2 ~N2ln2

2

E

(8)

(v < 1). 9)

Lnax & ~
1—k+1Ink ¥

One may use the theory of branching processes to examine the distribu-
tion of relaxation times as well [19]. The result for the mean convergence
time reads:

T~q7'in(ym),  (ym>1). (10)

This allows one to estimate the limits imposed by our main approximation,
| =4

equation (5). Indeed, from equations (8) and (10) it follows that a typical
number of switchings in a single step during the relaxation process is

m=1/T ~m/In(vm),  (ym> 1),
thus confirming our initial assumption Km/N < 1 for large enough N:

In(ygN) > ¢K. (11)

5. Distribution of computational complexity within algorithms

In section 4 we examined the distribution of computational complexity over
the whole ensemble of algorithms implemented by a given computer. In
other words, the computational complexity distribution in a typical algo-
rithm. However, due to the exponentially large variety of algorithms in a
network ensemble, it may contain a number of nontypical (characterized by
exponentially small probability) algorithms as well. The question of inter-
est in this section is what distribution functions can be found within single
algorithms from a given network ensemble?
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The correct treatment of this problem requires a measure of the variety
of algorithms in a given network ensemble. This is the notion of entropy.
Let the entropy H,, be the logarithmic measure of variety in a given n-order
class, defined in section 3. This means that computers from this class may
implement ~ exp(H,,) algorithms. H, may be expressed through the mean
entropy of the phase vectors h, in the network ensembles from this class,
H,, = Qh,,, where:

he=—= Y P(x...x,)In (M> . (12)

X0..-Xn

According to information theory, this quantity measures the constraints im-
posed on the phase vector by the statistical properties of trajectories. Recall
that there is a single trajectory starting from each phase point in the phase
portrait, while there is a whole “tree” of trajectories which precede it. Thus,
the entropy of a phase vector (equation (12)) in a portrait differs from that
in a trajectory:

ha=— Y P(xp...%,)In (M)

Xg...Xn P(XO . anl)

defined in [20].

Let F(I) be the distribution of computational complexity in a particular
algorithm, while F/(I) denotes that in a network ensemble. In such an algo-
rithm, QF(I) problems have complexity I. Thus, the probability of such an
algorithm is:

P{F(D)} = [ F(D)™¥D = exp[Q > F(I) In F(I)].

Approximations similar to that used to obtain I, in equation (9) lead one to
the following limit on the possible distributions of computational complexity
in network ensembles that belong to a certain n-order class with the entropy
H,:

=Y F(I)InF(I) < hy,. (13)
1
Substituting the asymptotics from equation (7) into equation (13) one

can see that in a network ensemble there exist algorithms with a power law
decrease of the complexity spectrum:

F(I) o< I79, (a>2),

while a typical algorithm such as equation (7) has an exponentially decreasing
spectrum. In general, the asymptotics in equation (7) lead to the following
limitation for the mean complexity of the algorithms:

S IF(I) < 2hn /7, (v < 1).
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Using equation (8) and estimating h,, & h; ~ m according to [11] the latter
result may be rewritten as:

S IF(I) <T/x. (14)

Thus in a network ensemble with mean computational complexity I, there
exist algorithms with mean computational complexity ~ v~ ! times greater
than 1.

6. Conclusions

The aim of this paper is to analyze the number of logical switchings during the
computations in recurrent boolean networks with random interconnections.
The natural measure of complexity of such computations generalizes the
usual notion of complexity as the number of boolean elements in feedforward
networks.

We have proposed a hierarchy of approximations, providing a more and
more accurate treatment of the statistical properties of parallel computations.
The present description of the relaxation dynamics corresponds to a second
order approximation and is limited to a special class of uniform ensembles
where both automata states are equiprobable.

The distribution of the computational complexity (equation (7)), as well
as the limits on the mean complexity of individual algorithms (equation (14))
were found in the limit of extreme dilution of network interconnections (K =
o(log N)).

The present approach sheds some light on the information content of the
dynamics of complex systems. It also facilitates the use of the methods of
statistical dynamics for problems in computational complexity. We believe
this is a novel and productive approach to computational complexity.
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