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Theoretical Analysis of Genetic Algorithms with
Infinite Population Size

Stefan Voget*
Institut fiir Mathematik, Universitat Hildesheim,
Marienburger Platz 22,
D-31141 Hildesheim, Germany

Abstract. A genetic algorithm (GA) is a stochastic search and op-
timization algorithm that works by iterative application of several
evolutionary operators. An approximation model is presented for the
algorithm with the population size set to infinity. Results are given for
the repeated, isolated application of the operators selection, crossover,
and mutation. The speed of convergence to a limit distribution is
examined. These examinations extend results of previous published
results of GAs with an infinite population size.

1. Introduction

A genetic algorithm (GA) is a stochastic optimization algorithm that em-
ulates processes of natural evolution in an abstract manner. The aim is
to propagate a set of possible solutions such that an optimal or at least a
very good solution can grow in a dynamic process. Drawing ideas from the
natural prototypes of evolutionary operators (such as selection, mutation,
crossover, etc.) the GA explores a search space from many different points
simultaneously.

The algorithm starts with a set of N (N € N) configurations in a search
space called population. A member of a population is called an individual.
Taking such a population as the first generation, the algorithm produces new
generations iteratively in the following way.

e First, randomly choose two parent individuals from a population of
size N. This selection step realizes the exploitation of good solutions.
Individuals with high fitness are preferred for selection.

e Evolutionary production operators are applied to generate new solu-
tions inside the search space. Crossover and mutation realize an explo-
ration through the search space.
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e The first two steps are repeated until a new population of size N is

filled.

A lot of successful applications of the GA are available [5, 6, 15]. But the
algorithm is influenced by several parameters such as selection pressure, prob-
ability of crossover and mutation, and population size. The choice of these
parameters makes the implementation difficult. The necessity of a mathe-
matical description is obvious.

A lot of mathematical models suppose an infinite population size [16, 22].
They constitute an approximation of the exact model and allow for the precise
study of isolated operators. These operators are defined by an iterative
process. We present explicit formulas for the iterative processes of repeated
selection, mutation, and crossover.

The description of the selection operator is known in the literature [1]. In
section 3 we give some further results about speed of convergence. Often the
mutation operator is used as a background operator and is not considered
any further, we present a complete description of the mutation operator in
section 4. The main production operator within a GA is crossover, this oper-
ator is discussed in section 5. A complete description for a kind of crossover
arising in quantitative population genetics is given in [11], we transfer this
model into the model of GAs. With this assignment we are able to give a
comparison between different kinds of crossover. By the theoretical model a
new kind of crossover, the so-called halfcross, is distinguished. In halfcross
exactly one half of the coordinates are taken from each of the parents. This
corresponds to the expected number of coordinates that uniform crossover
takes from each parent.

2. Basic algorithm formulation

Let K € N and Zj; (k= 1,...,K) be finite sets. With the definition of a
search space = = HkK:1 Zp and an optimization function f : = — RY the
optimization task is given by

arg max f(@).

K denotes the dimension of the search space. A population is defined by
x = (z;),.= with the properties

€2

z; €[0,1], Y z=1

i€

Members of the population are called individuals. The coordinate with the
index i denotes the relative proportion of the individual 7 in the population
z. With y € R® we will use the norm || y ||:= Yjez |vi| on R=.

A GA is given by iterative application of the following steps.

Step 1: Selection. Given a population z(n) with n € N, members of the
population are selected independently. In the evolution process individuals
with higher fitness values are preferred, and individuals with low fitness get
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a lesser chance for selection. After the selection step, the distribution of a
randomly chosen individual I°(n) is given by

7(0) * ()
res 0) * a5n)

VieZ: P(I°(n)=i| X(n) =z(n)) = (1)

Usually this kind of selection is called proportional selection. Examples of
this and other kinds of selection can be found in [1, 2, 7, 8, 12, 13, 14].

Step 2: Crossover. After the independent selection of two individuals,
crossover is applied. A crossover schema is defined by a random variable U
with values in {0, 1}¥. By @ we denote the bitwise complement of u and by ®
and @ we denote the componentwise binary multiplication and summation.
The kth coordinate of the crossover schema U assigns the parent from which
the kth coordinate is inherited. The distribution of a randomly produced
individual I¢(n) is defined by

P(I%(n) =i | I%(n) = j, I%(n) = k) := P((jOU) @ (k@ T) =i).

Provided that a coordinate of U takes the value 1, that coordinate of the
offspring 7 is taken from the first selected individual I°'(n) = j. If a coordi-
nate of U takes the value 0, that coordinate is taken from the other parent
vector I%2(n) = k. In this model, two parent vectors only produce one off-
spring. Often two offsprings are produced, but the second offspring depends
stochastically on the first. This leads to another, more complicated model.

Example 1.

1. One-point crossover. This kind of crossover divides a parent string
into two substrings. The substrings of two parents are combined into
one new individual, the offspring. In a mathematical description U is
uniformly distributed on the set

Q:={(0,...,0,1),(0,...,0,1,1),(0,...,0,1,1,1),...,(1,1,..., 1)},

that is, the right substring is taken from I°!(n) and the left substring
is taken from I%2(n).

2. Two-point crossover. One block of I51(n) is inherited and the remain-
der of the coordinates are taken from I°2(n), that is, U is uniformly
distributed on the set

.....
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3. Generalized-uniform crossover. Each coordinate is taken independently
with probability 0 < a < 1 from I°*(n). With u € {0,1}* and |u| :=
ZkK:l uy, the counting measure of U is given by

P(U =u) =a" « (1 —a)* M.

For a := 0.5 generalized uniform crossover reduces to the well known
ordinary uniform crossover.

4. Halfcross. This new kind of crossover has not been mentioned in the
literature before. Theoretical aspects (presented in section 5) and good
experimental results in a lot of applications leads to the design of
halfcross. For K even we take U uniformly distributed on the set

K
Q.= {u € (0.1} ¢ Jul = 5}
and for K odd take U uniformly distributed on the set
K—-1 K+1
Q::{ue{O,I}K:M: V|u|=T+}.

This kind of crossover takes half of the coordinates from each parent
string for the production of an offspring.

Further examples of crossover operators are given in [3, 4, 10, 17, 18, 19].

Given a population x(n), it is not possible to produce all elements of
= with crossover. Crossover only mixes up the coordinates of individuals,
it is not possible to produce coordinate values not present in individuals of
x(n). Therefore, the necessity of another production operator, mutation, is
obvious.

Step 3: Mutation. The coordinates of an individual j are altered in-
dependently with a small probability 0 < u < 1. By 1, we denote the kth
coordinate of the individual 7. If mutation occurs in the kth coordinate, the
value of the coordinate is changed to one of the |Z;| — 1 remaining values.
Each of the values is taken with equal probability. The distribution of a
randomly mutated individual I*(n) is given by

K i {in#ir}
P 0) =i 11900 =) = TT = o« ()
k1 |~:k| — 1
where we denote the indicator function of a set A by 1;4;. If 4 is not equal
to jr, mutation has to occur in the kth coordinate and has to produce the
value 7. Otherwise the coordinate must not be changed.

Step 4: Production of the next generation. The next generation is pro-
duced by reiteration of the first three steps. N individuals are produced
with selection, crossover, and mutation to fill a new population of size N.
Because the iteration occurs independently the new population is given by a
polynomial distributed random vector

pu(n,i) = P(IM(n) =i | X(n) = 2(n)).
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The distribution of the next population is

ProXx (1) x(m)=a(n) = M(N, (par(n.1)),e2)- (2)

This step leads to an unwieldy mathematical description of the GA. This
step is unique of the four because it needs a vector representation. The other
steps are described by functions in which individuals appear, therefore au-
thors often neglect this step. Production of the next generation corresponds
to an approximation model with an infinite population size. The interrela-
tions of the approximation model with the model of finite population size
was first proved in [16]. The simplification leads to a mathematical model
that is suitable to handle. In the remainder of this paper we consider the
approximation model with infinite population size.

3. Repeated selection

In this section we consider the selection step without crossover and mutation.
For the model of infinite population size and repeated application of selection
the iteration of equation (1) is solved by

fr(@) x (1)
Yijez [m() *x;(1)
As this solution is already known [1, 8], we consider the solution more pre-

cisely. Infinite reiteration of the selection step often leads to convergence into
a population consisting only of individuals with maximal fitness.

P(I%(n) =] X(1) = x(1)) = (3)

Theorem 1. Denote the set of individuals which occur in the population
x(1) with Z,1) := {i | 2;(1) > 0} and let ZI} be the set of individuals with
maximal fitness in the population x(1), that is,

Z2) = {1 € Ea | F()) = max f(5)}.

JE€EEL (1)
The limit of I°(n) with n — oo is given by
Iz(l) ’L e Emz}x
Pi(o0) i= lim P(IS(n) =i | X(1) = 2(1) ) = { iezmpy =D "
nee 0 otherwise.

Define the value of maximal fitness fupay = f(i™™) with ™™ € 2 The

speed of convergence can be measured by the proportion of maximal fitness
to second best fitness:

A= min{fL?X li ¢ Z50), @i(l) > 0} .
i
There exists a constant C' > 0, such that

| Prsmyx1)=z) — P(o0) || < C* A"
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Proof. See the appendix. ®

A is an important constant for scaling the fitness function. If A is too big,
the GA converges into a population with NV copies of one individual within a
few steps. If A is too small, individuals with high fitness may not be selected
and the effect of evolution does not happen. Therefore it is necessary to
scale the fitness function such that the selection operator coorperates with
the production operators. In the theory of selection, how to choose a suitable
A is an open problem.

In most cases, the size of a finite population used in an application is
essentially less than the size of the search space. Therefore there is a high
probability that the individuals of the initial population are all different.
Under this assumption the distance of the nth population from the limit
distribution can be calculated exactly.

Corollary 1. Let z(1) be the uniform distribution on N elements of Z, that
is,
. . . L Jke{l,.,N}: i=j
= . = . ) _ N ) )
Fj1, ey €EZ: Vi€ Z: zy(1) = { O otherwise.

The distance of the nth population from its limit distribution is given by

Psn — — P(oo :2_2*:?ax*$‘- 4
I Prs yixy=e) = P(00) | =] o ) (4)

Proof. Consider the inequality

n n 1
mes o <L (5)
iz F7G)  TERRI* Pl + gz 17G) 2]

With this inequality the distance can be calculated directly:

I Prsnyxay==) — P(o0) ||

= > |Psmixm=o@l+ Y

igEmax ze:m—m

(1) z(1)

ks 1

max

ZjeEz(l) fr (7) Egﬁ}ﬂ

1 n
= Z | Prs )1 x (1) =a( 1)( i)| + lemix‘ *N Emax - n(;
\(’)Izeuz(af)‘ w :I(l)‘ ez, (4)
=14+ > |Prsmxw=en) @ = D 1Prs@m)xa)=e) (@)

igEmax jEEmax

=z(1) Tx(1)
‘T
max

Sz 10T

Some results for the distance of a population from its limit distribution
with different scalings are shown in Figure 1. The model with infinite popu-
lation size seems to be a very good approximation for a real algorithm with
a population size of 1000. The plots show that the scaling decisively changes
the speed of convergence.

= 2 2% |Z5]
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Figure 1: Distance of nth population from its limit distribution. The
calculated values of equation (4) are compared with simulations. In
the plots, populations of 1000 individuals are used. In the left plots,
fitness values are randomly chosen such that A = 1.01. In the right
plots, the fitness values are transformed such that A = 2, that is, the
scaling has changed. The points of the simulation runs are means of
10 repetitions.

4. Repeated mutation

Mutation is often used as a background operator (e.g., [9]). Mutation is of
essential importance because a GA without mutation may converge into a
local maximum which is nonglobal. Without mutation the result of an opti-
mization run with a GA depends heavily on the initial generation. Because
of the necessity of its use, we consider the mutation operator theoretically.
In this section we discuss repeated mutation without selection pressure, that
is, individuals are selected uniformly distributed on =:

Vie Z: P(I°(n) =1 | X(n) = z(n)) = z;(n).
Theorem 2 gives the solution of the mutation process.
Theorem 2. Let x(1) be a population and n € N:
P(I¥(n) =i | X(1) = 2(1))

:Za;j(n*lf[l{lJr (1{ik_jk}—|51k|> * (1—u*|:kE|k|1)n} (6)

jEE |Ek|

Proof. See the appendix. =

Coordinates are altered independently and all values are received with
equal probability. Therefore the distribution of I™(n) converges into an
uniform distribution on =.

Corollary 2. Let x(1) be a population and n € N:

lim P(I™(n) =i | X(1) = (1)) !
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The convergence is monotone in the sense

1 1
I Pransyx )=y — El I <N Prasgoyxay=et) — B I

Proof. First we prove the assertion that mutation does not change an uni-
formly distributed population on Z. Let 2; = -, for all i € =:

P(IM(n) =i | X(1) = (1)
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With these preliminaries we are now able to prove the corollary. From The-
orem 2 and the inequality

|2k
|Zk| — 1

1—px <1

the limit is obvious. The monotone convergence follows from

)Y

i€E

P(IMn+1)=i| X(1) =z(1)) -

i€E | jeB k=1

_ s Iz =] 1
_Z Z%(n)*H |Ek‘_1+1{ik:jk} 17”*|Ek|_1 7ﬁ
1

P R B e

i€ | JEE k=1

1 S 1 |2kl
jEE =l lieg k=1 LI=k k

1
JEE =

The speed of convergence increases with increasing p and decreasing |=y|.
The higher the speed of convergence the more disorderly the coordinates get
mixed. In a GA with a high rate of mixing no genetic material survives
over several populations and the algorithm tends to a pure random search.
Figure 2 shows a simulation result. As for the case of selection, the theo-
retical result seems to be a good approximation for a real algorithm with a
population size of 1000.
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Figure 2: Distance of population from the limit distribution with
K =9 and Z = {0,1}*. As z(1), a population with one point dis-
tribution on the individual 0i is taken. The points of the simulation
runs are means of 10 repetitions. (a) With the help of equation (5),
the calculated distance in dependence of n and p. (b) Comparison of
the calculated distance with simulations for p = 0.01.

5. Repeated crossover

The crossover operator is the most important production operator. In the
literature about GAs there is no solution for repeated crossover without se-
lection pressure and without mutation that can be found up to now. For
all that, the solution can be given, by applying a result found in biology.
In [11] a crossover process that arises in quantitative population genetics is
considered and solved. The solution is not given in closed mathematical form
and as it would waste too much space to include the complete solution here,
we present a convergence result which is important for the comparison of
different kinds of crossover operators.

Theorem 3. Let U be a random variable with values in {0,1}¥ and
PU,#£U)>0 (7)

for all k,l € {1,...,K} and k # |. For n — oo the limit distribution of a
randomly chosen individual after crossover is calculated by

Pi(oc) = lim P(I%(n) = i | X(1) = (1))

K
= [[PEEQ) =0 | X(1) = 2(1)).
k=1
The speed of convergence can be computed by
I Progyx)=s) — P(o0) ||=C* (A(Py, K))"
with the abbreviation

APy, K) =max{P(U, =U)) | k,l € {1,... K}, k#1}.
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Proof. The proof is given in [20]. =

With the assumption P(U,, # U,;) > 0 it is possible with a positive proba-
bility that two coordinates are taken from different parents. All coordinates
can be separated from the others. Without the assumption, coordinates
which cannot be separated may be combined into equivalent classes. The
speed of convergence is influenced by the value of A(Py, K), that is, the max-
imal interdependence between two coordinates. In some problems it may be
useful to reach a maximal speed of mixing. Define

Ak = min \(Py, K), (8)
Py

where Py runs over all possible kinds of crossover. Corollary 3 gives a maxi-
mal speed of convergence (maximal Ax) dependent on the dimension K.

Corollary 3. Let |z| be the biggest integer not bigger than z € R. The
value of Ak defined in equation (8) is given by

_ K-
. | K1) B g K odd
7oy L%J +1 % K even.

Proof. The proof is given in [11]. =

Example 2. The speed of convergence for different kinds of crossover are
given in Table 1.

In generalized-uniform crossover the speed of convergence is independent
of the dimension. With a = 0.5 the ordinary uniform crossover reaches the
minimal value A(Py, K) = 0.5 in this kind of crossover. The theoretical
significance of halfcross is given in the result that this kind of crossover
has maximal speed of convergence. This can be interpreted to mean that

halfcross mixes the coordinates best.

Table 1: Speed of convergence for different kinds of crossover.

Kind of crossover APy, K)
one-point 1- %
two-point 1— %

generalized-uniform | 1 — 2a + 2a?

uniform

N |=

halfcross Ak
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Halfcross is not the only kind of crossover that fulfills
APy, K) = Ak. (9)

Theorem 4 characterizes all kinds of crossover fulfilling equation (9). We
formulate and prove the result for even dimensions K. For odd dimensions
the transfer is obvious.

Theorem 4. Let K (even) and u € {0,1}%. With a crossover schema U
consider the following three conditions.

LA(Py, K) = Ak
2Vk, le{l,....K}, k#1: P(Uy =U) = Ax.

3p (014 5) =0,

The following relations appear

Proof. The proof is given in the appendix. =

Condition 1, which says that a kind of crossover takes the maximal speed
of convergence, is equivalent to condition 2, which says that the interdepen-
dences between all coordinates are equal and take the value Ag. In uniform
crossover the probabilities P(U, = U;) are all equal, but A(Py, K) takes the
nonmaximal value 0.5. For example, halfcross fulfills the condition. The
third one is a necessary but not sufficient condition. A kind of crossover with
maximal speed of convergence only consists of crossover schemas which take
half of the coordinates from each of the parents. An example against the
implication 3 # 2 is given in Example 3.

Example 3. Let U be one point distributed on

{0,...,0,1,...,1}
S— N——

K/2 K/2

This distribution fulfills condition 3 but not 1.

Figure 3 shows a comparison of different kinds of crossover. In finite pop-
ulations perturbations of the realization of I¢ arise. Therefore the distance
does not converge to zero. Because of the random perturbations not all el-
ements of the search space are produced for one population simultaneously,
other individuals are more often present than the probability of their pro-
duction is. Nevertheless the figure shows the different speeds of convergence
which influence the first 15 generations.
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Figure 3: Distance of nth population from its limit distribution. Sim-
ulation runs with different kinds of crossover are compared. As search
space E, the set of bitstrings of length 8 is used, that is, |Z| = 256. An
initial population of size 1000 is filled with 500 copies of the individual
00000000 and with 500 copies of the individual 11111111. Therefore
the limit distribution is the uniform distribution on Z. The graphed

values are means of 10 repetitions.

6. Summary and future research

The results presented in this paper help to gain insight into the GA. We ex-
plain some dependences of the operators from several parameters. Although

we consider the operators separately, the need for a simultaneous tuning of
all parameters is obvious. The three parameters:

max

Agel = min {f(z)

for selection,
At = | 1 —pk ———
‘ ‘:k‘ — ].

for mutation, and

i @ = (1) > o}

)‘cross = maX{P(Uk = Ul) | kal S {17 ""K}a k 76 l}

for crossover are of significant importance for the algorithm. The choice
of these three parameters strongly influences the GA. The difficulty in the
choice of the parameters lies in the different attributes of the three opera-
tors. A influences the dominance of some individuals. This dominance may
be destroyed by mutation influenced by Apy. On the other hand mutation
produces new individuals without any regard to their fitness. The operators

should constitute a tension of exploration and exploitation. These relations
may differ for different applications of the GA. The kind of disorderly mixing
by crossover is of different importance for different applications, too. In some
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applications the kind of crossover which should be used may depend on the
choice of population size or other parameters [21]. Therefore the examina-
tions in this paper may only constitute a foundation for the understanding of
the GA. In the future, research may result in more structural considerations
for the interconnection of the parameters.

Appendix

In this appendix we present the remaining proofs.
Proof (Theorem 1). First we calculate the limit:

lim P(I5(n) =i | X(1) = 2(1) ) = lim —J )" *7:i(1)

o n=oe 3 (f(4))m * (1)
(1)
= 'nh—>nolo > Ci6)) iy (1)
JEE (f(i)™ J
xi(l)

Yjes (limn_,Oo ({‘(T):) s« 1;(1)
931(1) ’L e —max
5 —z(1
EjeE;“a’; 3(1) @
0

otherwise.

In the same manner we calculate the speed of convergence:

D1 PP (n) =i X(1) = (1) ) = Pi(o0) |

- I en)
=2 Yies(fO))m xxi(1) X emmax 24(1)

i€z (1)
@) )
* 2| S0 e

()" * (1) o w(1)
Yjemmas (Fa)" * 25(1) + Ejgmmas (F(7))" * 25(1)  Ljezmas 25(1)

z(1)

= 2

icEmax

(1
+ > zi(1)

=75 | Tjemmas (50725 (1) + Sigmmes (55 2 (1)

f0) .
-y 2 :;ﬁ’g(fmax) z;(1) (1)

*
€5 | Tiemmys 75(1) + Xjgames( f,fml) (1) | Ljezms 75(1)

z(1) “z(1)

x;(1
> .

_l’_
iy | A * ez (1) + Ligmngs (55)"25(1)

- D jesmes z;(1)
<A |25 =———|.m
ZJEa;p(a;; z;(1)
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Proof (Theorem 2). The proof follows with induction. For n = 1 equation (6)
holds. Let the assertion be valid for n € N:

P(IMn+1) =2 | X(1) = (1))
=Y P(IMn+1)==z|I"(n)=1i)« P(I"(n) =i | X(1) = z(1))

€2
= ZIJ H Z [ = + L RE— (1 Ho* :|Hli )}
jEE =1 iy ‘ ‘ ‘~k| 1

= (1 1)+ (o)
* ir=it — =7 | * — Uk =
|Z| {in=yr} 1=k © ENE
3 1 1 = n
=2 (1) {1{jk—2k} [(1—u)*<: + <1_:_> « <1—u* :| il ) >
i€ k=1 | =] =] =] -1
+u*(L_L*(1_M* Y ))}
1 1 = n
+1{jk#zk} {(1 - ,u) * ( = =% (1 — bk :| | ) >
= =y 2] - 1
n -
+ — —
=k =1 (:k|
—_ n 1 1 Ek| n
w2t (- e (e 2L) )
=kl = TNk 1= 2] — 1
LS 1 1 E T
:fo(l)H{T—Jrlm—z,c} Kl—u—:—> * (1—u* :' ¢l ) }
je= k=1 (=R =] =] —1

— n+1
1 =k
itz |~ IZk] #(L—px BT

"k k
1 ER.
+ 1t} 7@ L —px ENE
1 1 =\
O =" A U =TE VA

Proof (Theorem 4). For fixed u the sum Y5, P(Uy = U; | U = u) counts
the number of possibilities for choosing two coordinates of u with the same
value:
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BB g )
()

S K*(K—Z).

- 4

From this consideration we get the inequalities:

K=« (K-1)
2 kAl
= Y Y PU=U|U=u)xP(U=u)
we{0,1}6 k£l

>min{ Y P(Uy=U; |U=u)|ue{0,1}*
k#l

_ K*(K—2)
, .

1. = 2. Let condition 1 be true. In this case, the inequalities given above
are equalities. The sum Y, consists of K % (K — 1)/2 terms and
the maximum of P(Uy = Uj) is given by A. From this consideration
condition 2 follows.

1. = 3. Let condition 1 be true. In this case, the inequalities given above are
equalities. Especially with a constant Y, P(Uy = U; | U = u) = ¢
follows for all u € {0,1}%. This is only possible if the minimum is
received for all U with positive probability. Condition 3 follows.

2. = 1. Follows from the definition of A\. m
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