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Algebraic Properties of the Block Transformation on
Cellular Automata
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Abstract. By grouping 2r sites together into one, a cellular automa-
ton (CA) with radius » can be transformed into one with a two-site
neighborhood, which can be thought of as a binary algebra. It is
shown that if this block algebra is in one of four large classes of alge-
bras (commutative, associative with identity, inverse property loop, or
anticommutative with identity) then the underlying rule only depends
on its leftmost and rightmost inputs, and the block algebra is simply
the direct product of 2r copies of the underlying algebra. Therefore,
although this algebraic approach to CA has been useful to some ex-
tent, complex rules on several-site neighborhoods cannot be expected
to be equivalent to binary algebras with these simplifying properties.

1. Introduction
A cellular automaton (CA) is a dynamical system on sequences,
CL; = f(ai—h-"aai:"'aai-l-r)

where each a; is a symbol in a finite alphabet A, and r is the radius of the
rule. We can also consider half-integer r, for which

!
a; = f(ai—rs Qe g1y o v vy Aim1/25 Aig1/25 + + oy Ajpr—1, ai+r)

on a staggered space-time. For instance, if 7 = 1/2 each site has just two
predecessors,

a; = f(ai_1/2, Gigr2),
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Figure 2: By blocking together k = 2r sites, we can transform any
CA into one with 7/ = 1/2. Here r =2 and k = 4.

as shown in Figure 1. We can then think of the CA rule as a binary operation
or algebra,

a=bec.

This can be a fruitful point of view from which to study CAs. Depend-
ing on the algebraic properties of e, we can make statements about how
much parallel or serial computation is needed to predict the CA [4, 5], its
reversibility or surjectivity [1, 3], or its periodic behavior [7].

In fact, any CA is equivalent to one with r = 1/2 through the following
block transformation. Treat blocks of k sites as single sites of another CA
rule, with a larger alphabet A* and a smaller radius r' = r/k (if k divides
2r). Then if k = 2r we get ©' = 1/2, as shown in Figure 2. We call this
blocked rule, seen as a binary operation, the block algebra of the original CA.

We would like to know, then, to what extent block transformations can
simplify the analysis of CAs. Can nonlinear CA rules on several-site neigh-
borhoods be equivalent to binary algebras with nice algebraic properties,
such as those shown in [4, 5] to allow efficient prediction of the CA?

We will show that, under many circumstances, they cannot. More pre-
cisely, if the block algebra of a CA is in one of four large classes of algebras
(which include groups, monoids, common types of nonassociative algebras,
and commutative algebras in general) then the original, unblocked rule must
consist of a similar algebra on its leftmost and rightmost inputs, and in fact
all other inputs are irrelevant. Thus, the block algebra is simply the direct
product of k copies of the original rule; conversely, a CA without this sim-
ple structure cannot have a block algebra with any of these simple algebraic
properties.
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Preliminary versions of these results appeared in [6], where Theorem 1
was proved for a much smaller class of algebras called “special medial.”

2. Preliminaries

A binary operation or algebra (A, e) is a function f : A x A — A, written
f(a,b) = a b or simply ab. Its order is the number of elements in A.

A left (right) identity is an element e such that eea =a (e e =a). An
identity is an element which is both a left and a right identity.

A quasigroup is a binary operation in which the left and right division
properties hold: for any a and b, there exist (possibly different) ¢ and d such
that a e c = b and d @ a = b. Equivalently, the multiplication table is a Latin
square, where every symbol occurs exactly once in each row and each column,
so that multiplication on the left or right by any element is a permutation
(one-to-one and onto function) of all the elements. A loop is a quasigroup
with an identity.

A CA is left (right) permutive if it is a one-to-one function on its leftmost
(rightmost) input when all other elements are fixed. An r = 1/2 CA is left
and right permutive if and only if it is a quasigroup.

A group is a quasigroup which is associative, namely ae (bec) = (aeb)ec.
Then it follows that an identity exists, and every element a has an inverse
a~! such that aea™! 'ea = e. For instance, Z,, addition on the integers
mod p, is the cyclic group of order p.

=a

A semagroup is an associative algebra which is not necessarily a quasi-
group, that is, multiplication is not necessarily one-to-one and onto. For
instance, a @ b = max(a, b) is a semigroup. A monoid is a semigroup with an
identity.

A subalgebra is a subset B C A which is closed under e; that is, if by, by €
B, then b,eby; € B also. Similarly we can speak of subgroups, subquasigroups,
subloops, and so on. If S is a subset of A, then (S) is the subalgebra generated
from the elements of S by all possible products; equivalently, (S) is the
smallest subalgebra containing S. For instance, if S = {z}, then (S) =
{z,zz,z(zx), (zx)x,...}.

Two elements commute if a b = be a. An algebra is commutative if all
elements commute. Commutative groups are also called abelian.

A map h between two algebras (A, e) and (B, o) is a homomorphism if
h(a @ b) = h(a) o h(b). A homomorphism which is one-to-one and onto is
an isomorphism, and A and B are isomorphic (A = B) if one exists. An
isomorphism from a group onto itself is an automorphism.

The direct product Ax B of two algebras is the set of pairs (a,b) witha € A
and b € B, with multiplication defined componentwise: (ay,b;) ® (ag, b)) =
((11 ® g, bl L] bz)

k times

For any algebra G, G*¥ = G x G x --- x G is the algebra of k-tuples whose

components are in G.
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In our notation, we refer to blocked states in bold as k-tuples of unblocked
states, for example, s = (s1, $2,...,5k).

3. The theorem

We start with a series of lemmas involving identities of the block algebra.
Throughout, we assume that we have blocked together k = 2r sites of the
underlying CA, whose rule is f, to produce an r = 1/2 blocked CA, whose
rule is the block algebra G.

Lemma 1. If G has a left identity e = (ey, €a, ..., ¢e), then f(eg,...,a) =a
regardless of the values of the other sites. Similarly, if e is a right identity,
then f(a,...,e1) = a.

Proof. Note that the neighborhood of the underlying rule has 2r +1 =k +1
sites in it, so that the leftmost and rightmost predecessors of (a e b); are

a; and b;; in other words, (a e b); = f(a;,...,a,bi,...,b;). Soif eis a
left identity, f(ex,as,as,...,ar) = (e ® a);, = ay, regardless of the values of
ai,as, ..., a5 1. Similarly, if e is a right identity, f(a1,as,...,ar,€1) = a3
regardless of ay, ..., a;. B

Lemma 2. If G has a left identity e = (eq, €q,...,€;), then (eg, e, ..., e)
is also a left identity. Similarly, if e is a right identity, then (e1, ey, ..., e1) is
also.

Proof. This follows immediately from Lemma 1, since (in the left case)
f(ek',"'vekrvala---aai) =a;, =

Corollary. If G has both a left and a right identity, they are identical and
e= (e e, ... €e) consists of k sites with the same state e.

Proof. We have shown that (e,..., e) is a left (right) identity where e = ¢,
(e = e1). But if left and right identities exist, e, = e;, @ eg = ep and they
are identical and unique. m

So we have already shown that f(a,...,b) depends only on a and b if one
of them is e. We will go on from here to show that this is true even if neither
is, if G satisfies certain conditions.

Lemma 3 is rather well known, but is included for completeness.

Lemma 3. The underlying CA is left (right) permutive if and only if the
blocked CA is, that is, if G is a quasigroup.

Proof. We do the proof for left permutivity. Suppose the blocked CA is not
left permutive, so that aeb = a’ e b = ¢ for some a, a’, and b. Let 7 be
the rightmost site at which a; # a,. Then ¢; = f(a;,..., a5, b1,...,b) =
flal, ... ,a,bi,...,b;) and f is not left permutive.
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Conversely, suppose f is not left permutive, so that f(as,as,...,a, b)) =
f(a},az,...,ag,by). Then taking a = (ai, as, ..., a;) and a’ = (a}, az, ..., a),
aeb=a eb and G is not left permutive. m

Corollary. If G has a left (right) identity and is left (right) permutive (in
particular, if G is a loop) then e = (e,e, ... €e) is the unique left (right)
identity.

Proof. If G is left permutive, it can only have one left identity, which by
Lemma 2 is of the form (e,...,e). ®

Next, we show that the existence of an identity implies the existence of k
isomorphic commuting subalgebras, exactly what would be seen if G = G*
for some G. Call the support of a blocked state a the set of ¢ such that a; # e,
then we have Lemma 4.

Lemma 4. Suppose G has a left (right) identity e = (e,...,e). Then for
any subset s of {1,2,... k}, let G, be the set of blocked states whose support
is contained in s. Then G is closed under o, and so is a subalgebra of G.

Proof. If a; = b; = e, then (a®b); = f(e,ait1,...,ax,b1,...,bi_1,€) = e.
Thus the support of a @ b is contained in the union of the supports of a and
b, and if a,b € G, then aeb € G, also. m

These G, are isomorphic to each other if we just shift s. If z < k —j
for all © € s, define s + j as the set {j < x < k|xz — j € s}. Then we have
Lemma 5.

Lemma 5. G, and G,y are isomorphic.

Proof. 1t is sufficient to show this for 5 = 1; then the rest follows by induction.
If k ¢ s, then 0 : G, — Go1 where o((ay,...,ar_1,€)) = (e,a1,...,a5_1) is
an isomorphism between G, and Gy, since the CA map is symmetric with
respect to the shift on sequences. m

So, for instance, if the underlying CA has n states, G will have k iso-
morphic subalgebras Gy, of order n; a family for each j, 1 < j < k, each
containing k — j isomorphic subalgebras Gy; ;41 of order n?; and so on.

Moreover, with a two-sided identity the Gy commute with each other if

their s are disjoint.

Lemma 6. If G has a two-sided identity e, then G, commutes with G if s
and s' are disjoint.

Proof. Suppose a € G, and b € G, where s and s’ are disjoint. Then for
each i, either a; = e or b; = e, so (a e b); is either f(e,...,b;) = b; or
f(ai,...,e) = a;, which in either case is the same as (b e a);. So a and b
commute. W

In particular, G has k commuting, isomorphic subalgebras G; (i.e., Gf;y)
whose only nonidentity component is at the ¢th site. If we define a binary
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operation a - b = f(a,e,...,e,b), then (aeb); =a;-b; if a,b € G;. This is
just one step away from G = G; X Gy X -+ X G}, = G¥; we now show several
cases in which this follows.

Definition 1. Let G be an algebra and H C G a subalgebra. Then define
the following three sets related to H:

ZMH) = {y|w(ab) = (wa)b and aw = wa for all a,b € H,w € (y)}
ZP(H) = {y| (ab)w = a(bw) and aw = wa for all a,b € H,w € (y)}
ZMH) = {y|a(wb) = (aw)b and aw = wa for all a,b € H,w € (y)}.

In other words, Z*(H) is the set of elements y such that they, and all their
powers w, commute with the elements of H and associate from the left with
pairs of elements in H. Z#(H) is similarly defined with association from the
right, and Z#(H) with association with w in the middle.

As shorthand for what we wish to prove, we provide Definition 2.

Definition 2. An algebra G is cellular if, whenever it can be written as the
block algebra obtained from a CA rule f by blocking k sites together, then
f depends only on its leftmost and rightmost inputs, and so G = G* where
the operation of G is defined as a - b= f(a,...,b).

Then we have Theorem 1.

Theorem 1. An algebra G with a two-sided identity for which Z*(H) =
Z*(H) for all subalgebras H C G is cellular.

Proof. Let a = (a,e,...,e), b= (by,e,...,e), and y = (€,y2,...,y:). Then
the reader can easily check that

yve(aeb)=(aeb)ey=ae(bey)=ae(yeb)
= (flar,e,...,e,b1), Y2, .., Yi).

That is, y commutes with a and b and their product, and associates with
them from the right. However,

(y.a).b:(a.Y).b:(f(alayZa'"7yk7b1)7y27"'7yk)'

So if y also associates with a and b from the left or the middle, f(ay,vs,. ..,
Yk, b1) = f(ar,e,...,e,by) = ay-by for arbitrary ys, ..., yx; that is, f depends
only on its leftmost and rightmost inputs and G is cellular.

But any elements generated by a and b are in G, that is, all their com-
ponents are e except for the first; and any element w generated by y is
in Gz g, that is, its first component is e. So y is in Z*((a, b)), and if
ZP(H) = Z*H) for any subalgebra H (in which case both are equal to
Z"(H)) then y also associates with a and b from the left and middle and
the theorem is proved. =

This applies to several large classes of algebras with identity, as we now
show.
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Corollary 1. Monoids are cellular.

Proof. If an algebra is associative, then Z°(H) = Z*(H) = Z(H) where
Z(H), the centralizer of H, is the submonoid consisting of all elements that
commute with the elements of H. m

Monoids include groups, of course. A large class of loops containing
groups as a subclass is also cellular.

Definition 3. [8] A loop has the left (right) inverse property if for every
a there is an element a* (resp. a”) such that a*(ab) = b (resp. (ba)a” = b)
for all b. An inverse property loop is one with both the left and right inverse
properties; then it follows that ¢ = a” = a~! where aa™" lg = e and

(ab)™' =b"'a™"

=a

Corollary 2. Inverse property loops are cellular.

Proof. Suppose y € ZP(H). Then y~' is in Z*(H) also, since (y~') = (y);
and for any a,b € H their inverses a=',b~! are in H also. So (b~'a™')y~"' =
b~1(aly™!), and taking the inverse of both sides gives y(ab) = (ya)b. Thus
y also associates with a and b from the left, and Z?(H) = Z*(H). =

This includes several large classes of loops, including groups, Moufang
loops such as the octonions, totally symmetric loops, and diassociative loops
(see [8] for definitions of these).

Definition 4. An algebra is anticommutative if no two distinct elements
commute, unless there is an identity and one of them is equal to it.

Corollary 3. Anticommutative algebras with identity are cellular.

Proof. If a subalgebra H contains two nonidentity elements, then Z?(H) =
ZM(H) = {e} since e associates with everything and is the only element that
commutes with both of them. If H has only one nonidentity element ¢ (in
which case c? is c or ¢) then Z?(H) = Z*(H) = {e,c} since these are the
only two elements that commute with ¢, and they associate with any pair
a,b € {e,c}. Of course, if H has no nonidentity elements then Z# and Z*
are the entire algebra G. =

Theorem 1 fails if either of its conditions is relaxed. For instance, consider
the two-state, nearest-neighbor CA rule f(a;—1, a;, @i41) = @;—1+a;+a;11 mod
2, called rule 150 in [9]. Its block algebra G is

e [00 01 10 11
0000 01 11 10
01|11 10 00 01
1010 11 01 00
11{01 00 10 11
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Distinct elements never commute, so Z)(H) = Z?(H) for any subalgebra H
by the argument of Corollary 3 ({00} and {11} are the only proper subalge-
bras). But there is no identity, and G is clearly not cellular since f depends
on its middle input.

Conversely, we can construct noncellular block algebras that have identi-
ties, but for which Z*(H) # Z°(H) for some H. A nonpermutive example is
elementary rule 218 [9], whose rule table is

111 110 101 100 011 010 001 000
1 1 0 1 1 0 1 0

which can also be written
f(aiflaaiaaiﬁLl) = {

Its block algebra G is

e [00 01 10 11
0000 01 10 11
0101 00 11 11
10|10 11 00 01
111 10 11 11

(ai_1 + aiy1) mod 2 if a; =0
max(@;—1, ait1) if a; = 1.

with the identity e = 00. If H = {00,01}, then Z*(H) = {00,01,10} while
Z*(H) = {00,01}, and again G is not cellular since f depends on a;.

This example works in a simple way. For each choice of the middle inputs
of a CA, we can define an algebra on the leftmost and rightmost inputs; by
Lemma 1, all these algebras must have identity e if the block algebra has
an identity e = (e,...,e), but G is only cellular if all these algebras are
the same. In this case, the value of a; selects between two different algebras
(@i—1 + aiy1) mod 2 and max(a, b).

To get a permutive example in which G is a quasigroup, we need four
states. This is because there is only one loop of order 3 with a given identity,
namely

01 2
1 2 0 =7
2 01

while for order 4 there are four:

012 3 060123 0123 0123
1032222 1032 12320 130222
2301 " 231023012031 ™%
3210 3201 3012 3210

Then we can construct an r = 1, four-state CA where we use a; to choose
which of these four we apply to a;_; and a;4;. Again, we will get a G with
identity e = 00 for which Z*(H) # Z?(H) for some subalgebra H.

Even in the absence of an identity, at least one large class of algebras is
cellular.
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Theorem 2. Commutative algebras are cellular.

Proof. Let a = (a1,as,...,a;) and b = (by,e,...,e). Then (aeb), =
flay,az,...,ag,b;) and (b ea); = f(by,e,...,e,a1). If a and b commute,
these are equal and for arbitrary as,...,a, we have f(ai,aq, ..., a5, b)) =
bl-a1=a1~b1. |

This makes a pleasant pair with Corollary 3 of Theorem 1, that completely
noncommutative algebras with identity are also cellular.

4. Conclusion

By blocking sites together to produce a two-site neighborhood, a CA rule can
be thought of as a binary algebra. The properties of this block algebra can be
related to the dynamical properties of the CAs in various ways [1, 3, 4, 5, 7].

However, we have shown that if this algebra is associative with identity, an
inverse property loop, anticommutative with identity, or commutative, then
the original CA rule depends only on its leftmost and rightmost inputs, and
the block algebra is simply the direct product of 2r copies of the underlying
one. Therefore, CAs that depend in a nontrivial way on several sites in their
neighborhood cannot be expected to have nice algebraic properties under the
block transformation.

This includes most of the types of r = 1/2 CAs shown in [4, 5] to be
efficiently predictable, except for quasigroups separably isotopic to abelian
groups (such as G for rule 150 above).

The four classes of algebra we have shown to be cellular are incomparable
to each other. For instance, there are anti-commutative loops of order 5 that
lack both the left and right inverse properties; commutative loops of order 6
without the inverse property; monoids that are not loops; and so on. It is
tempting to think that a single, larger class containing all of these, obeying
a weaker identity, can be shown to be cellular. We also conjecture that loops
with the weak inverse property [8], in which (ab)c = 1 if and only if a(bc) = 1,
are cellular.
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