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Abstract. The evolution of a one-dimensional pile is studied, empty
at first, it receives a grain in its first stack at each iteration. The
final position of grains is singular: grains are sorted according to their
parity. They are sorted on trapezoidal areas alternating on both sides
of a diagonal line of slope v/2. This is explained and proved by means
of a local study. Each generated pile, encoded in height differences,
is the concatenation of four patterns: 22, 1313, 0202, and 11. The
relative length of the first two patterns and the last two patterns
converges to V2. Asymptotic expansions are made and it is proved
that all the lengths of the pile are increasing proportionally to the
square root of the number of iterations.

1. Introduction

We consider an infinite sequence of stacks. Each stack can hold any finite
number of grains, this number is called the height of the stack.

The sand pile model (SPM) and chip firing games (CFG) are based on
local interactions. Both models conserve the total number of grains. In SPM,
a grain goes to a neighbor stack if the height difference between stacks is more
than a given threshold; whereas in CFG a stack gives a chip to each of its
neighbors if its number of chips is above a certain value [3, 4]. In the one-
dimensional case, both models are one-dimensional cellular automata (CA)
and they are equivalent via some simple encoding.

Both SPM and CFG, like Petri nets [11], are used to model in paral-
lel computing the flows of information in systems. SPM is used to model
gradian-driven dynamic load balancing. Grains model data or tasks, and
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stacks, a processor network [12]. The aim is to find a simple, fast, and rela-
tively inexpensive local rearrangement which ensures that all processors have
almost the same amount of work.

SPM is important for granular flows in physics. It admits invariants,
entropy-like functions and verifies the so-called “self-organized criticality,”
and is related to the “1/f phenomenon” [2, 9, 10, 13].

The sequential one-dimensional SPM and the related CFG are studied
in [6, 7, 8]. They have proved the uniqueness of the final pile whatever the
order of the iterations as well as described the dynamics in various sequential
cases.

The problem studied in this paper is the parallel evolution of a one-
dimensional SPM, empty at first, which receives a grain onto its first stack
at each iteration. It can also be seen as sand dripping in a thin but long
hourglass.

In section 2, we define the SPM and CFG models and recall that they are
equivalent in dimension one. We also define the dripping process studied.

In section 3, we prove that the generated piles, in height differences, are
made of four patterns: 22, 1313, 0202, and 11. The frontiers between patterns
act like signals. The silhouette of each pile is made of two parts of different
slopes: 2 then 1.

In section 4, grains are marked depending on their parity. Even and odd
grains are arranged in a very special way: they are located in trapezoidal
areas alternating on both sides of a diagonal line of slope v/2. We explain
this by looking locally at the interactions between moving grains and signals.

In section 5, we give asymptotic approximations of the different parame-
ters. We do this by making a continuous approximation of the pile and use a
differential resolution as in [1]. We prove that the length of the part of slope
1 is /2 times the length of the part of slope 2 and that the lengths of all
the piles are increasing proportionally to the square root of the number of
iterations.

2. Definitions

The one-dimensional sand pile is an infinite sequence of stacks. Each stack
can hold any finite number of grains. We use notation from [8], the difference
is that our model is parallel.

A pile is encoded by the sequence of the number of grains, or height, of
the stacks. It is then denoted with square brackets: v = [[vovy ... v ]]. We
call slope the difference of height, v;—v; 1, between two consecutive stacks.
If more stacks are considered, the slope is the average slope.

If a stack is higher by at least two grains than the next stack, then one
grain “tumbles down.” This is depicted by the movement of the grains a to
f in Figure 1.

The starting pile is empty. At each iteration, a grain falls onto stack
number 1. Grains ¢ to £ in Figure 1 are the newly arrived grains. The
number of grains is finite. Except for the grain added to the pile at each
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Figure 1: Iterations 14 to 17.

iteration, the number of grains is constant. The number of grains is then
equal to the iteration number.

Since grains are only moved to smaller stacks, a direct induction proves
that only decreasing sequences are generated from the initial pile. A pile
is now an element of NV decreasing to zero. This ensures that the height
difference between any two consecutive stacks is always positive.

Definition 1. Let [(n) be the following threshold function: ¥Yn € Z, [(n) =1
if 0 < n, otherwise 0. Let v be a pile. The dynamics of SPM with dripping
is driven by the following transition function F':

F(I/)O = I/O—D(Z/O—l/l —2) +1,
0<i, Flv) =vi—0(vi—viq1—2) + lvimy — v — 2).

The negative terms correspond to the possibility of giving a grain to the
next stack, while the positive term corresponds to the possibility of getting a
grain from the previous stack. All the stacks are updated at the same time,
making this a parallel process.

Definition 2. A pile can be encoded by the list of the height differences
between stacks: for any pile v ¢ (v) = ({ (vo—11) (11 —12) (voa—v3) ... ). With
this encoding, the transition function becomes:

Vi, 0<i, @(I)Z =x; + D(l’i,l—2) —2D($i—2) + D($i+1—2).

We call the difference of height between one stack and the next chip.
Definition 2 is equivalent to a stack having more than two chips and firing one
to both neighbors. This is the chip firing game (CFG). In a one-dimensional
lattice, SPM and CFG are equivalent with this encoding.

Figure 2 illustrates the first 50 steps of this dynamic. The lengths and
heights, as well as the slopes, exhibit some regularity. After some iterations,
there are two straps of triangles drawn on the surface as depicted in Figure 3
for iteration 100 to 150.
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Figure 4: Representation with height differences.

3. Triangles and signals

Piles are encoded in height differences in Figure 4 (steps 1 to 120). Triangles
appear with patterns 22, 1313, 0202, and 11. Those patterns are stable. It
should be noted that for the second and third patterns, digits are alternating,
like in a chessboard and the frontier between them is either 12 or 30.

Let & be the empty word. The Kleene operator is denoted *; that is, (13)*
is € or 13 or 1313 or 131313.... We use the theory of languages in the next
proposition in order to get a synthetic expression.

Proposition 1. The pile, encoded in height differences, is a word of the
following language:

2 (2]3) (13)" (¢]12) (02)* (e]0) 1°.

Proof. We prove this by induction. It is true for the first 120 iterations, as
can be seen in Figure 4. Interaction, as expressed in Definitions 1 and 2,
only depends on the two closest neighbors. It is enough to look locally at the
interactions of the frontiers in Figure 4.

Suppose that the nth pile is the concatenation of four parts with the pat-
terns 22, 1313, 0202, and 11 respectively. We call frontier the limit between
two patterns and border the limits of the pile. We denote L (left), M (mid-
dle), and R (right) the positions of the frontiers between respectively; first
and second, second and third, third and fourth patterns. They are repre-
sented in Figure 4 where L and R behave like signals moving on both sides
of M. Geometric definitions are given in Figure 5.
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+e2 c1,62 € {-1,0,1}

Figure 5: Geometric definitions of G, D, L, and M.

First we investigate each signal alone, from left to right: L is going left
(right) if it is equal to 2|1 (2|3) (lines 107 to 117); M is not moving (lines 96
to 102) and R is going left (right) if it is equal to 0|1 (2|1) (lines 94 to 104).
While the proposition is true, only the following encounters are possible, from
left to right: on the left border, L bounces (lines 59 to 65); when L meets
M, it bounces and M is moved one step to the right (lines 81 to 87); when
R meets M, it bounces and M is moved one step to the left (lines 50 to 57).

The order of the signals is kept and the only possible encounter with more
than two frontiers is L-M-R. The meeting can be exactly synchronous (lines
40 to 44) or not (lines 62 to 67 and 103 to 109). In all cases the order is kept
and no other case arises. ®

The dynamics are very simple except when signal L or R reaches one of
its limits; the rest are only linear displacements. When L reaches the left
border, it only bounces back. When R reaches the right border, it bounces
back and the total length is increased by one. When R comes back to the
center, the total length has been increased by one.

In height differences, piles are the concatenation of four parts of patterns
22,13, 02, and 11 respectively. The two first parts have a slope of 2 while the
two last parts have a slope of 1. This explains the shape of piles (in heights)
as depicted in Figure 5.

4. Labeling grains

Grains are labeled according to the iteration during which they enter the
pile. In Figure 6, at iteration 5000, all odd grains are spotted in black. Their
localization is singular.

The odd grains, like the even ones, are located on trapezoidal areas de-
limited by the axis, lines of slope 1 and 2, and a diagonal line. These areas
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Figure 6: Position of the odd grains (in black).

are alternating like in a chessboard. The diagonal separation seems to be a
straight line.

There is also some kind of relation between the intersections of the line
of slope 1 and 2 with the axis and the edges in the middle as depicted in
Figure 6. We do not have any explanation nor proof for this phenomenon yet.
Nevertheless, if the diagonal separation is a line, because of such coincidences,
its slope would be: a/b = (b+ 2a)/(a + b) which leads to b/a = v/2. We
prove in section 5 that indeed it is a straight line with slope /2.

Theorem 1. Odd and even grains are always sorted in trapezoid areas de-
limited by a diagonal, lines of slope 1 and 2, and the axes.

With Figures 7 through 11, we prove that the grains are always on either
side of the frontier, depending on their parity. In all these figures, grains are
either black or white depending on their parity. Grains for which parity is
unknown are drawn with a little circle. The grains which do not move any
more are represented by their silhouette.

Let us first consider that signal L is away from the left border. Even
and odd grains come alternately and go down the pile one after the other as
depicted in Figure 7. Grains behave like a wave of marbles on stairs.

From this, a direct induction proves that the pattern 22 corresponds to
an even-odd wave of grains. Let us consider that signal L is going right. As
depicted in Figure 8, the wave is just going down with scarce grains running
in front of it.
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Going right, the signal L encounters the middle border M as depicted
in Figure 9. The first grain crosses the border and because of the height
difference 1, the second gets locked. The third passes over the second and
restrains the fourth from passing, and so on.

The phenomena of one grain getting locked and the next passing over it,
one layer up, is the way the signal L goes right as depicted in Figure 10.
When L reaches the left border, it ends building a layer and goes back to the
middle on the new layer as depicted in Figure 10. In comparison to Figure 7,
we know now that the grains that are running in front of the wave are all
of the same parity. The first grain of the wave is of the same parity as the
first grain of the previous wave, which is also the parity of the running scarce
grains, so that the phenomena starts again and loops.

We now consider signal R. When R is away from the middle M, it has
no action whatsoever since the selection of grains is made before. Signal R
only orders the grains on layers in the right part. When L or R meets M
it only moves it and that does not change the dynamic of Figure 9. But,
when all three signals L, M, and R meet, things are different as depicted
in Figure 11. This time, the fate of odd and even grains are switched. The
changes in the destination of odd and even grains in Figure 6 are directly
linked to the synchronous encounter of L and R detailed in section 3.

In Figure 6, the separation lines represent the silhouettes of piles at some
iterations and the diagonal separation is the trace of the middle border M.

Since there are as many even grains as odd grains, the two symmetric
areas in Figure 6 have the same surface, that is, they correspond to the same
number of grains.

5. Asymptotic behavior

All the results in this section can also be found in [5]. The proof of [5] is too
long to fit here, we give a shorter one that we feel is more like an a posteriori
verification.

Theorem 2. The diagonal separation is a line of slope v/2.

The value of G increases (decreases) by one for each round trip of L (R).
The value of D decreases (increases) by one (two) for each loop of L (R).
The round trip delay for a signal is twice the length of the part it evolves in,
up to a constant. Since every quantity can go to infinity, when G and D are
very big, the equations can be extended to continuity as in [1]:

At dt
G = ——
2.G 2.D’
dt dt
dD = —— 42—

2.G 2.D
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These equations can be solved with the hypothesis D = /2 G which
comes from the observations of section 4. It leads to:

11
G.dG == ——=| dt.
(2 2ﬁ>

With this hypothesis, the possible solutions are:

2-1
G = \/_—t—i—c,

V2
D=v2G= (\/5—1)15+2c.

Where ¢t is the time (or number of fallen grains or number of iterations) and
¢ is a constant.

From Figure 5, the number of fallen grains n is also the total area, that
is, of the two triangles and of the rectangle. We get the following approxi-
mations:

D2
na~ —4+GD+G~(24+V2)G,
2

sz, (1)

n
DrV2G~ | —.
V241

It should be noted that both triangles of Figure 5 have almost the same
area, G?. This is coherent with the surface observations of section 4. The
rectangle is equally parted by the diagonal, and even and odd grains are
equally parted on both sides of the diagonal.

6. Conclusion

A more random distribution of odd and even grains might have been ex-
pected, on the contrary grains are sorted. This is important, because if even
and odd grains, or tasks, are very different, in a one-dimensional proces-
sor array sequentially fed using a SPM load balancing technique, disparities
arise. When taken modulo 3, 5, or more, there is no such segregated location
as before, grains are more uniformly spread.

The way grains spread as a wave and are fixed in the silhouette is very
interesting. It gives a physical meaning to the signals. When L goes right it
spreads grains. When it goes left, it makes a one over two selection. Signal
L is going right and left while the grains are always running to the right.

The signal R is acting similarly. When it goes right it is spreading the
grains on a new layer, opening it. When it goes left it fixes them. When
grains and signals are going in opposite directions, since they have speed one,
signals only meet every other grain.
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These signals, from a physical point of view, are very interesting because
they correspond to waves on a pile of sand that can be seen when you dig at
the bottom.

We have proved that the pile is expanding in the square root of the number
of fallen grains (or iterations). This is absolutely normal when one considers
that the grains (linear) are filling a surface (quadratic). The relative length
of the two parts is V2.

To compare with the work in [1], on the one hand, they found a quadratic
relaxation time for the CFG starting with the pile ... 00200 ... and final
pile... 0011 ...110 .... But when considered as stacks of grains, they cor-
respond to ... nnn00 ... and ... nn(n—1)(n—2) ... 210 ... respectively.
This is a very different case because of the influence of the left border which
is high and feeds grains to the right part. On the other hand, they also
observed geometric patterns and signal propagations.
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