Complex Systems 10 (1996) 207 217

Computation of Predecessor States for Composite
Elementary Cellular Automata

Burton Voorhees
Faculty of Science, Athabasca University,
Box 10,000, Athabasca, AB
CANADA TOG 2RO

Abstract. We consider 3-site binary valued one-dimensional cellular
automata rules which are the composition of two 2-site rules. For
such rules an algorithmic procedure that is simpler than backward
reconstruction is given allowing the computation of all predecessors
of any given state. Results obtained are compared to results in [1] on
the enumeration of preimages of finite strings. A question relating to
Garden-of-Eden states is clarified, and an example is given to illustrate
a theorem from [2] to the effect that for nonsurjective rules there exist
periodic sequences having an uncountable number of predecessors.

1. Introduction

One of the more interesting questions to ask about cellular automata (CA)
rules is: What are the predecessor states of any given configuration? That
is, to determine the solution of

X(n)=p (1.1)

where X is the global operator defined by the rule, and p and 3 are elements
of the configuration space.

For linear rules, a method for finding closed form solutions to equa-
tion (1.1) has been discovered [3,4,5]. Unfortunately, this method does not
extend to the case of nonlinear rules, and to date no general procedure is
known for the computation of predecessors under nonlinear rules, other than
the lengthy method of backward reconstruction from the rule table. This
method, in turn, is applicable only to finite strings, or to periodic configura-
tions.

Progress has been made when the question is changed to that of com-
puting the preimages of finite strings. In [1] it is shown that the number of
preimages of any given string can be computed by the solution of a set of
recurrence relations, and the elementary (i.e., 3-site) rules are classified into
six classes based on the particular nature of the recurrence relations involved.
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In [5,6] a method is given for the direct determination of all preimages of any
given finite string, and an alternate derivation of the results in [1] is given.

This paper returns to consideration of the predecessor problem. Meth-
ods for the computation of predecessors are given for all 2-site rules, and it
is shown how these apply to the computation of predecessors for all 3-site
nonlinear rules which are composed of two 2-site rules. It turns out that
these composite rules fall into three of six categories from [1], and the defin-
ing characteristics of these classes appear as a natural consequence of the
predecessor formulas.

It is also easy to compute the Garden-of-Eden for these composite rules,
and a distinction appears between Garden-of-Eden states which are intrinsic
to a rule, and those which appear only as a result of periodic boundary
conditions. It is shown that these latter configurations do have predecessors
if they are viewed as infinite periodic states rather than as finite “cylindrical”
states. An example is also given of a periodic configuration which has a
continuum of predecessors.

In what follows two different state spaces are considered. The first corre-
sponds to what is called cylindrical CA in [7]. Tt consists of all length n binary
strings with periodic boundary conditions, and is denoted E,,. The second
state space, denoted E, consists of all right half-infinite binary strings. The
subset of ET consisting of all binary strings with period a divisor of n is
isomorphic to FE,, but is treated differently in terms of the computation of
predecessor states. In particular, certain Garden-of-Eden states in E,, will
have predecessors of period 2n in E*. Underlining a string indicates the pe-
riodic state defined by that string. In particular, 0 and 1 denote respectively
the states consisting of all 0s and all 1s.

2. 2-site rules

There are 16 2-site rules. These will be labeled by a four digit binary number
according to their rule table. Thus, the rule with global operator X is defined
by its neighborhood components x; from the table

00 01 10 11

o X1 T2 X3

and this rule is labeled by the binary number (zoxiz2x3). There are eight
linear rules and eight nonlinear rules. These are shown in Table 1.

The linear rules 1+ I and 1 + o are toggle rules; that is, they satisfy the
condition that (1 + X)% = X2. This is not true for the rule 1 + D, which
satisfies (1 + D)?> = 1 + D% The linear rules in the left column are additive
and those in the right column are not.

Predecessors for the additive linear rules are easily obtained. For the rule
0 every state is a predecessor of 0, and no other states have predecessors.
Every state is its own predecessor under the identity rule I, while the prede-
cessors of a state 3 under the left shift o depend on whether the state space
is E,, or ET. On E,, the predecessor of 3 is just 07! () where ™! is the right
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Table 1: 2-site CA rules.
Linear 2-Site Rules

0 = (0000) 1= (1111)
I = (0011) identity 1+ I = (1100)
o = (0101) left shift 1+ 0 = (1010)

D = (0110) binary difference | 1 + D = (1001)
Nonlinear 2-Site Rules

Z; = (0100) Y; =1+ Z, = (1011)
Z, = (0010) Yy =14 Zy = (1101)
Z5 = (0001) Vs =14 Zs = (1110)
Yo = (0111) Zy =1+ Y, = (1000)

Table 2: GE*(X) for nonlinear 2-site rules.

Zy | 2y Z3 Yo Y Yy Y3 Zg
GE*(X) | {11} [ {11} | {101} | {010} | {00} | {00} | {010} | {101}

shift. On E* the predecessor of 3 is given by ¢10 4+ 071(3) where ¢ takes on
both 0 and 1 values, and 0~ *(3) is defined on E* by

0 1=1

[Uﬁl(ﬁ)]i = {[)’1-_1 otherwise. @1

Predecessors for a state 8 under the binary difference rule D are given by
3]
p=-cl+ Bo ' () (2.2)

where again ¢ takes on both 0 and 1 values, and B is an “integration” operator

defined on E* by

(2

[B(B)]; = >_ mod(2). (2.3)

j=1

Predecessors under D on E, are computed by embedding F, into E7.
Finally, predecessors for the linear rules in the right column are computed
from the identity (1+X)(p) = f < X(p) = 1+ where addition is sitewise
mod(2).

All of the linear rules have an empty Garden-of-Eden. The Garden-of-
Eden for the nonlinear rules is defined in terms of a minimal seed set GE*(X)
of finite strings such that if s; ... s, € GE*(X) then any configuration which
contains s;...S, as a substring is a Garden-of-Eden configuration for the
rule X. It is easy to verify that the sets GE*(X) for the nonlinear rules of
Table 1 are given by the sets listed in Table 2.

If a state 3 contains a string from GE*(X) then it has no predecessors
under rule X. If this is not the case, then all predecessors can be explicitly
constructed. Using notation from [1], let a; be the number of Os in the ith
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0-block of 8 and let b; be the number of 1s in the 7th 1-block of 3, counting
from left to right (in [1] the counts are from right to left). Let s;(0) and s;(1)
label the respective site values of the left-most endpoint of the ith 0-block
and the 7th 1-block. The construction of predecessors for the nonlinear 2-site
rules is carried out as follows.

Zy: If B contains any 11 pair it will have no predecessors. Assuming
that 3 contains only isolated 1s, replace the ith 0-block of 071(3) by a block
consisting of r; consecutive 1s followed by a; — r; consecutive 0s, 0 < r; <
a; — 1. Thus there are a; possible replacements for the ith 0-block, if the
state space is E,. If it is E*, however, and 3 starts with a 0-block, there will
be a; 4+ 1 possible substitutions for this initial 0-block. Thus the number of
predecessors of a configuration (3 is given by

0 [ contains a 11 block

N(Zv;f € En) = {H?:((i) a; [ contains only isolated 1s. (2.42)
0 [ contains a 11 block

N(Z;Be ET) = 1 a, 3 starts with 1 (2.4Db)

(a1 +1) H:-L:(g) a; [ starts with 0

where n(0) is the number of 0-blocks contained in 3. If the state space is B+
and [ has only isolated 1s then either [ contains an infinite number of 1s, or
there is an M < oo such that 5; = 0 for all ¢ > M. In the latter case there
will always be an infinite number of predecessors. In the former, the product
in equation (2.4b) will be infinite unless 3 contains only a finite number of
0-blocks for which 1 < a; < co.

Zy:  The construction of predecessors for this rule is the same as for Z;
except that replacements are made for 0-blocks in 3 rather than o~1(f), and
the substitution is a block of r; consecutive Os followed by a; — r; consecutive
1s with 1 < 7; < @;. The same distinction between E, and ET also holds.
Thus, the number of predecessors is again given by equation (2.4).

Zs: For this case, and for the rule Yy, it is necessary to distinguish
between the state spaces E, and ET.

On E,, a configuration 8 will have predecessors if and only if it contains no
isolated 0Os. If this is so, replace the ith 1-block in 3 by a 1-block of length b;+1
which starts at the same initial site s;(1). Replace the ith 0-block by a block
of the form Ory ...r,,_30, starting at site s;(0) + 1, with the block ry ...7,,_3
containing only isolated 1s. The number of blocks 0ry ... 7,,_30 which satisfy
this condition is given by the a;—1 Fibonacci number F(a;—1), defined by the
recurrence relation F(0) =0, F(1) = F(2) =1, F(n) = F(n—1)+ F(n—2).
Thus the number of predecessors of a configuration g € F,, is given by

n(0)

N(Zs;B € E,) = H F(a; —1). (2.5)

Note that if 3 contains an isolated 0 then the right side of equation (2.5)
has F'(0) as a factor, hence 8 has no predecessors.
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On E™* a configuration can start with an isolated 0, but can have no
others. Two cases must be distinguished. If g starts with a 1-block the
construction of predecessors is exactly the same as for configurations in F,,,
and the number of predecessors is again given by equation (2.5). If 3 starts
with a 0-block the procedure is the same except that the initial 0-block is
replaced by ry...74,-10 where again 7, ...7r,,—; contains only isolated 1s.
Thus, in this case, the number of predecessors is given by

n(0)
N(Zs;p € E*, 3 starts with a 0-block) = F(a; + 1) [[ F(a; —1).  (2.6)

=2

In both cases, the products of equation (2.5) or (2.6) will be infinite unless
Bi =1 for all ¢ > M, for some M < oo; or, there are only a finite number of
0-blocks with lengths such that 4 < a; < oco.

Yo: On E,, B will have predecessors if and only if it contains no isolated
1s. If this is so, predecessors are constructed by replacing the ith 0-block with
a 0-block of length a; + 1 starting at the same site s;(0); and by replacing the
ith 1-block by a block 1r; ... 7,31 of length b; — 1 starting at site s;(1) + 1,
with 71 ... 7p,_3 containing only isolated Os. If (1) is the number of 1-blocks
in 3, the number of predecessors is given by

N(Yo; B € E,) = ﬁ) F(b;—1). (2.7)

On E7T, 3 can start with an isolated 1, but can have no others. If 3
starts with a 0-block the procedure is exactly the same as on FE, and the
number of predecessors is given by equation (2.7). If 8 starts with a 1-block
the procedure is the same, except that the initial 1-block is replaced by a
block 7y ...7,-11 with r;...r,,_; containing only isolated Os. In this case
the number of predecessors is given by

n(1)
N(Yy; 3 € E*, (3 starts with a 1-block) = F(by + 1) [[ F(b; —1). (2.8)
i=2
As with Z3, the products of equations (2.7) and (2.8) will diverge for
states in £t unless either 3; = 0 for all ¢ > M; or, there are only finitely
many 1-blocks of length 4 < b; < 0.

3. Composite 3-site rules

Excluding 0 and 1, there are 60 3-site rules that are composed as the product
of two 2-site rules, 12 of these are linear. Also, if a rule X is composite, then
1 + X is composite as well. The composite 3-site rules together with their
composite form are listed in Table 3. The 3-site rules are listed in terms of
their standard numeration, followed by their composite form.

The forms given in Table 3, together with the methods for computing
predecessors for 2-site rules, allows immediate computation of predecessors
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Table 3: Composite forms of 3-site rules.

A. Linear rules

5=0+0I 5l=(1+1)0o 60 =1D 85=(1+0)0
90 = D? 102 = Do 153 =(1+ D)o 165=(1+ D)D
170 = o2 195=(1+1)D 204 = Io 240 = I?
B. Nonlinear rules: I
12=17; 243=(141)7, 24 = 7D 231= (14 Z3)D
34 =07, 21=(140)2 46 = D7, 209=(1+ D)7,
48 = 17, 207 = (1+I) 66 = Z,D 189 = (1+Z1)
C. Nonlinear rules: II
1=1+Y)Yo 254=YyY, 127 = (1 + Z3) 73 128 = Z37;5
2=7Y, 253 = (14 Z1)Yo 8 =7175 247 = (14 Z1)Z3
16 = Z,Y, 239 = (14 Z,)Yy 64 = Zy74 191 = (1 + Z5) %5
18 = DY, 237 = (14 D)Y, 72 =DZ, 183=(1+D)Z;
36 = Z3D 219= (14 Z3)D 126 =Y,D 129=(1+Y,)D
136 = 023 119=(1+0)Zs 192=1Z; 63=(14+1)Z;
200 = Y75 55=(14Y)Z3 236 = Z3Ys 19 = (1+ Z3)Ys
238 = oY, 17=01+0)Y, 252=1Y, =(1+1)Y,

for all the composite 3-site rules. The kind of analysis involved will be illus-
trated with the examples of rules 18 and 126.

Rule 18:  For this rule equation (1.1) becomes DYy(p) = 3. Making use
of equation (2.2) this reduces to

Yo(u) = c1 + Bo~(8). (3.1)

If the term on the right in this equation contains an isolated 1 (other than
a possible initial isolated 1 if the state space is E1) then [ is a Garden-of-
Eden state. By inspection, this can occur if and only if the term Bo~'(3)
contains both an isolated 1 (for the case ¢ = 0) and an isolated 0 (for the
case ¢ = 1). This immediatly eliminates states 3 containing blocks 111 since

for ;1 =0, B = fix1 = fiy2 = 1, B(B) will have

...0101... [B(B)i1=0
B("'Om“'):{...1010... {Bgﬂgi_lzl.

(Even if 3 starts with 111 ..., 071(3) will start with 0111....) Hence, if 3 is
not to be a Garden-of-Eden state it can contain only single and double 1s.
Assume this to be so and consider segments of § having the form
01107y ...7,110 where r, = 0 and ry...7,_; contains only isolated 1s. Let
k(r) be the number of these isolated 1s and suppose that the block
01107y ...7,110 starts at site ¢« — 1. Taking m; = [B(8)]j4iy2, and m} =
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1 4+ m; mod(2):

..0100m; ...myp—200100... m;—y; — 0, k(r) even

) ...0100my ... m,_211011... m;_y =0, k(r) odd
Bl 0110rs o100 ) =0 4011l ,11011... my_y = 1, k(r) even
..1011m] ... m/,_500100... m;_ 1 — 1, k(r) odd

with my ... m,_; and m} ... m/,_, containing no isolated 0Os or 1s. Inspection

of these forms shows that Bo='(3) will have both an isolated 0 and an
isolated 1 if and only if k() is odd.

There is one final consideration. If the state space is E, and g contains
an odd number of 1s then Bo~!(3) will have period 2n rather than period
n [8], and so will not be contained in E,. Thus, on E*, GE*(18) is given
by the set containing 111, and all segments of the form 0110r;...r, ;0110
where 71 ...7r,_; contains an odd number of isolated 1s. If the state space is
E.,., GE*(18) also contains all segments having an odd number of 1s, whether
or not they satisfy the other conditions. It is the F, case that is presented
in [9], where the membership conditions for GE*(18) are derived only after
much (unpublished) computation.

Suppose that 3 is not a Garden-of-Eden configuration. There are three
cases to be considered.

1. Bo~!(3) contains no isolated 0s or 1s.
2. Bo~1(j3) contains isolated 0s but no isolated 1s.

3. Bo'(f) contains isolated 1s but no isolated Os.

Note that cases 2 and 3 will occur if and only if 3 contains a 11 block.

In case 1, Bo~'(f) contains no isolated Os or 1s, hence 1 + Bo~'(3)
will also be free of isolated Os and 1s. Predecessors of 3 are obtained by
application of the construction procedure given for predecessors of Y to
the right-hand side of equation (3.1), both for the ¢ = 0 and the ¢ = 1
cases. The total number of predecessors is therefore given by making use of
equations (2.7) and (2.8), noting that for ¢ = 0 on E™*, the term Bo™1(j)
will always start with a 0-block while for ¢ = 1, 1+ Bo~!(3) will always start
with a 1-block. Thus, the number of predecessors is given by

n(0) n(1)

i=1 i=1
n(0) n(1)

Flay+1) [[ Fla; = 1)+ [[ F(b:i —1) peE*. (3.2a)
=2 i=1

In case 2, ¢ = 1 yields a configuration with isolated 1s, for which equa-
tion (3.1) has no solution. Likewise, in case 3, ¢ = 0 yields a configuration
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with isolated 1s. Thus the total number of predecessors in these cases are
given respectively by

n(1)
[[ F(b;=1) peE,o E (3.2b)
i=1

and

n(0)

=1

n(0)
Flay+1) [] F(a; —1) peE™. (3.2¢)

1=2

Rule 126: The equation to be solved for this rule is YD () = 3, which
reduces to D(p) = v where v is any solution of Yy(y) = 4. Thus, by equa-
tion (2.2), the general solution is given by u = c¢1+ Bo~'(vy) and the number
of solutions is twice the number of solutions of Y5(y) = 3, as given in equa-
tions (2.7) and (2.8).

4. Comparison with Jen’s enumeration of preimages

In [1] Jen has derived a set of recurrence relations to count preimages of finite
strings, and finds that the elementary CA can be grouped into six classes on
the basis of the particular natures of these recurrence relations. The six
classes and the composite rules belonging to each class are listed in Table 4.

The labels in Table 3 were chosen to match Jen’s classes, indicating that
all composite elementary rules belong to her A, B, and C classes. Further,
class A consists of surjective rules, or in the case of composite rules, linear
rules. Comparison of Tables 3 and 4 show several correspondences.

1. All linear rules are found in class A.

2. All composite rules in class B are a product of a linear and a nonlinear
factor, with the nonlinear factor being either Z; or Z,, or 1 plus one of
these rules.

3. All composite rules in class C have a factor of either Z3 or Yy, or 1 plus
one of these rules. The formulas computed for numbers of predecessors
for the 2-site rules can be seen to bear out the defining characteristics
of Jen’s classes. There are some differences, however, in the specific
number of predecessors computed versus the number of preimages. This
is a result of the fact that in counting preimages only finite sequences
without periodic boundary conditions are considered. If this difference
is taken into consideration then analysis of the 2-site rules Z;, Z,, Zs,
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Table 4: Composite rules in recurrence classes from [1].

other recurrence relations which do
not easily reduce to any of the
above.

Class | Defining Characteristic Composite Rules in Class
A Constant number of preimages. 15, 51, 60, 85, 90, 102, 153, 165,
170, 195, 204, 240

B Number of preimages is a product | 12, 24, 34, 46, 48, 66, 68, 116, 139,
of integers representing lengths of | 187, 189, 207, 209, 221, 231, 243
blocks of consecutive units (0s and
1s, or combinations thereof).

C Number of preimages is a prod- | 1, 2, 3, 8, 16, 17, 18, 19, 36, 55,
uct of integers in Fibonacci-like | 63, 64, 72, 119, 126, 127, 128, 129,
sequences. 136, 183, 191, 192, 200, 219, 236,

237, 238, 239, 247, 252, 253, 254

D Number of preimages satisfies tele- | no composite rules
scoping recurrence relation.

E Number of preimages is given by | no composite rules
terms in sequences whose values
vary periodically.

F Number of preimages is given by | no composite rules

and Yj yields the following formulas for the number of preimages of a
string s = §1 ... 5,:

N(Zy;8) = N(Za; 5)

0 s contains a 11 block
—d(ar+ D)(an+ DY e, s starts with 0 (4.1)
2(ay + 1)(an, + DY a; s starts with 1
n(0)—1
N(Z3;8) = F(ar +1)(a, + 1) H F(a (4.2)
1) 1
N(Yy;s) = F(by +1)(b, + 1) H F(b;—1) (4.3)

where a; and a,, (or b; and b,,) are the respective lengths of the initial

and final blocks of s.
then a; =2, a, =0, by =0, and b, = 3.

5. Discussion

For example, if s is the string 0011100110111

In the computation of GE*(18) it was noted that states in E, which con-

tained an odd number of 1s had no predecessors in E,.

If these states are

considered as period n configurations in £, on the other hand, and they do
not contain any other substring contained in GE*(18), they will have period
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2n predecessors in £, This is a result of the period doubling property of
the operator B, discussed in [8]. In fact, these period 2n predecessors will
be composed of a length n string v concatenated with its binary compliment
string 1 4+ . This highlights a distinction between configurations which are
always Garden-of-Eden for a given rule, and those which are only condition-
ally so as a result of periodic boundary conditions. Only the former can be
seen as intrinsically characteristic of a rule.

For 2-site rules it is only the binary difference operator D for which com-
putation of predecessors may result in period doubling, hence only those rules
in Table 3 which involve D as a factor will have these conditional Garden-
of-Eden states.

Another point of interest relates to a theorem of Hedlund [2], which states
that if a CA rule is not surjective then there will be periodic configurations
having an uncountable number of predecessors under this rule. Considera-
tion of the procedures given for computing predecessors of the 2-site rules
indicates how this comes about, and allows the construction of a simple ex-
ample.

Consider the configuration 100 € E™, and the 2-site rule Z,. According
to the procedure for the construction of predecessors, each 00 block is to be
replaced by either 00, or 01. Let o € ET be defined by taking

4 { 0 the ith block is replaced by 00
‘11 the ith block is replaced by O1.

Then, since for each i the choice is independent of choices made for all
other values of 7, any element of E+ can be so constructed; or equivalently,
each element of E*+ indexes an unique predecessor of 100.

In [2] it is also proved that surjective rules map eventually periodic con-
figurations to eventually periodic sequences, and nonperiodic configurations
to nonperiodic configurations. Since ET maps naturally to [0,1], CA rules
defined on E* also define maps of the interval, and considered as such, surjec-
tive rules will map rationals to rationals and irrationals to irrationals. Non-
surjective rules, on the other hand, will have uncountable sets of irrationals
with the same rational image. This explains the fact that nonsurjective rules
acting on E* reduce entropy, while surjective rules do not.
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