
Complex Systems 10 (1996) 239–255

Synchronization of One-way Connected Processors∗

Salvatore La Torre†

Margherita Napoli
Mimmo Parente

Dipartimento di Informatica ed Applicazioni,
Università degli Studi di Salerno,

84081 Baronissi, Italy

Abstract. A network of identical processors that work synchronously
at discrete steps is given. At each step every processor sends messages
only to a given subset of its neighboring processors and receives only
from the remaining neighbors. The computation starts with one dis-
tinguished processor in a particular starting state and all other pro-
cessors in a quiescent state. The problem is the following: to set all
the processors in a given state for the first time and at the very same
instant.

This problem is known as the firing squad synchronization problem
and was introduced in [9]. In this paper solutions are presented that
synchronize processors communicating on one-way links arranged in a
ring or in a square with rows and columns that are rings. In particular,
we provide optimal algorithms to synchronize both of the networks.

In addition, compositions of solutions are shown and solutions
which synchronize at a time f(n) are given for f(n) equal to n2, n log n,
and 2n.

1. Introduction

We are given a network of identical processors that work synchronously at
discrete steps. At each step every processor sends messages only to a given
subset of its neighbors and receives messages only from the remaining neigh-
bors. The computation starts with one distinguished processor in a particular
starting state and all other processors in a quiescent state. The problem is
to set, for the first time and at the very same instant, all the processors in a
particular state.

This problem is known as the firing squad synchronization problem (FSSP)
as the processors can be viewed as soldiers that have to fire simultaneously.

∗A preliminary version of this paper was presented to FCT’97.
†Electronic mail addresses: {sallat,mn,parente}@dia.unisa.it.

c© 1996 Complex Systems Publications, Inc.

240 S. La Torre, M. Napoli, and M. Parente

The problem was introduced in [9]. In that version each processor in a line of
processors could transmit its current state, at each step, to its two adjacent
processors. Since then many solutions to the problem and to its variations
have been given (e.g., [2, 3, 10, 11]). In [8] it is shown that a solution to the
FSSP requires at least 2n − 1 time, where n is the number of processors in
the line. In [12] the first minimal time solution is given and in [5] a minimal
time solution is given with the least number of states being six (let us observe
that in [1] it was shown that five states are always necessary).

The FSSP was originally introduced to synchronize a line of n processors
connected to each other through two-way links. In [7] a constrained version
of the problem is investigated: each processor can transmit just one bit of
information to the neighboring processors (if any) to the left and to the right.
A minimal time solution is provided. Further, nonminimal time solutions to
this constrained problem have been proposed [4].

In this paper we consider a different constraint. We focus on the synchro-
nization of processors that communicate on one-way links and are arranged
in a ring or in a square with rows and columns that are rings. We present
for the first time solutions that synchronize in minimal time such a ring and
such a square of processors. In particular, we provide an algorithm to syn-
chronize the ring of n processors in time 2n and an algorithm to synchronize
the square of n×n processors in time 3n−1 and we prove that both of these
algorithms are optimal in time. As a matter of fact, the optimality of the
algorithm for the ring contradicts a result of [2] claiming to synchronize the
ring in time 2n− 1. In section 3.1 we prove that a synchronization of such a
ring requires at least time 2n.

We also show different ways to combine solutions to obtain a new solution.
In particular, if we have two solutions in time t1(n) and t2(n), we provide
solutions in time t1(n) + t2(n) + d, for a given integer d, and t1(n)t2(n).
Finally, given a condition P (n) and two solutions in time t1(n) and t2(n), a
solution is provided with time t1(n), if P (n) holds, and t2(n) otherwise.

In [6] the problem of the composition of different cellular automata (CA)
was posed. However, there the composition was reduced to space-time con-
structibility of CA in the following sense: a pair of functions (g(n), f (n)) is
space-time constructible if there exists a CA that synchronizes g(n) cells at
time f (n), for all n. In this paper we consider g(n) = n and give algorithms
for synchronizing at the times f (n) of the following types: n log n, n2, and 2n.

The rest of this paper is organized as follows. In section 2 we give the
definitions and recall some known results. In section 3 we give the minimal
time solutions for the ring and for the square of one-way connected processors
and prove that they are optimal in time. The composition of two solutions, as
a method of obtaining new solutions, is treated in section 4 while in section 5
the solutions in time n2, n log n, and 2n are given. Section 6 contains some
conclusions.

Synchronization of One-way Connected Processors 241

2. Preliminaries

Let A be an array of identical connected finite state processors that are all in
a quiescent state, called the latent state. At time t = 1 some processors are
awakened by an external input and thus enter a particular state, called the
general state, while all the others remain in the latent state. The problem is
to program the processors in such a way that they simultaneously enter for
the first time a firing state. In this definition many parameters may be fixed:
the dimension of the array (one-dimensional, two-dimensional, etc.), the type
of communication among the processors (one-way or two-way), and the choice
of the processors which are awakened at the initial time. Here we consider
a ring-shaped network (circular array) and a square-shaped network (two-
dimensional circular array) of one-way connected processors, see Figure 1.

All the processors are indistinguishable, but for descriptive reasons, we
will number them. Thus when a processor is awakened, entering the general
state, we say that it is the processor number 0 (or (0, 0) in the two-dimen-
sional case) and all the others are consecutively numbered from left to right
and from up to down. The numbers denoting the processors are all taken
modulo the length of the array (or the length of the rows in the case of the
square). We now give the definitions of the two models.

Ring of one-way connected processors

A ring of n one-way connected processors (one-way ring) can be formally
seen as a one-way circular CA (one-way CA) consisting of n identical finite-
state processors (also called cells) connected through one-way channels. The
one-way ring is denoted by the triple (Q, δ, n) where Q is a finite set of states
and δ : Q × Q → Q is the transition function. In a one-way ring the ith
cell is connected to the (i − 1) and (i + 1) cells, for all i = 0, . . . , n − 1.
Each cell exchanges bits with its adjacent cells: it receives bits from the left
and sends bits to the right. Then the cell modifies its state depending on
its current state and the state of the adjacent cell on the left. We consider
the time-unrolling of the one-way CA A = (Q, δ, n), that is, we discuss a

! ! ! !. . . . (a)

!

!

! ! !!

!

(b)

!

!

!

!

!

"

"

"

" "

" "

" "

"" "

. . . .

. . . .

.....
.....

.....

Figure 1: A one-way ring of n processors (a) and a one-way square of
n × n processors (b).

242 S. La Torre, M. Napoli, and M. Parente

space-time two-dimensional array. A pair (k, t) of this array, with 0 ≤ k ≤
n − 1 and t ≥ 1, denotes the cell k at time t. The state of the cell k at
time t is denoted by state(k, t), thus we have that state(k, t) = δ(state(k −
1, t − 1), state(k, t − 1)), for 0 ≤ k ≤ n − 1, t > 1. A configuration of
A is an n-tuple of states of Q. A configuration at time t is the n-tuple
(state(0, t), . . . , state(n − 1, t)). A solution to the FSSP on a one-way ring
in time t(n), with starting configuration C1, is a pair S = (Q, δ). The set
of states Q contains three particular states: G (general), L (latent), and F
(firing). The transition function is such that δ(L,L) = L and, for every n,
the configurations Ct at time t of the one-way CA (S, n), for 1 ≤ t ≤ t(n),
have the following conditions.

1. C1 contains only the states G and L.

2. Ct does not contain the state F , for 1 ≤ t < t(n).

3. Ct(n) is the n-tuple (F, . . . , F).

The usual starting configuration for a solution to the FSSP on a one-way
ring is C1 = (G,L, . . . , L), and we assume it as the starting configuration by
default, if not specified otherwise.

Square of one-way connected processors

A square of one-way connected processors (one-way square) can be formally
seen as a two-dimensional one-way circular CA (two-dimensional one-way
CA) which consists of n × n identical cells (finite-state processors) and is
denoted by a triple (Q, δ, n) where Q is a finite set of states and δ : Q×Q×
Q → Q is the transition function.

The rows and the columns of the array are one-way rings of n cells, thus
each cell (i, j) modifies its state depending on its current state and on the
states of the cells (i − 1, j) and (i, j − 1).

As in the case of a one-way ring, we consider the three-dimensional array
representing the time-unrolling of the one-way square. A triple (i, j, t) of
this array, with 0 ≤ i, j ≤ n − 1, and t ≥ 1, denotes cell (i, j) at time t.
The state of cell (i, j) at time t is denoted by state(i, j, t) and we have that
state(i, j, t) = δ(state(i− 1, j, t− 1), state(i, j − 1, t− 1), state(i, j, t− 1)), for
0 ≤ i, j ≤ n − 1, and t > 1. A configuration of A is an n × n-tuple of states
from Q. A configuration at time t and a solution (Q, δ) to the FSSP on a
one-way square are defined in a way analogous to the one-way ring.

As for the one-dimensional case, the usual starting configuration for a
solution to the FSSP on a one-way square is that having the general in the
cell (0, 0) and all the other cells are latent; we assume this as the starting
configuration by default, if not specified otherwise.

Note that the time taken by a solution is sometimes expressed in terms
of the number of steps, (e.g., [2, 3]), and sometimes with the number of
configurations of the solution, (e.g., [4, 7]). Obviously, given a solution A, if
t(n) is the number of its steps then t(n)+1 is the number of its configurations.
In this paper the time is expressed by the number of configurations.

Synchronization of One-way Connected Processors 243

2.1 Previous results

The FSSP was introduced in [9] as the problem of synchronizing a line of
n identical processors, where each processor can exchange information only
with its adjacent processors. To date, some variants of this problem have
been introduced. In this section we briefly recall the FSSP on one-, two-,
and three-dimensional arrays of two-way connected processors. The FSSP
on a one-dimensional array is usually referred to as the FSSP on a line.

Let the processors be arranged in a k-dimensional array, we assume that
the distance between two processors, respectively at positions (i1, . . . , ik) and
(j1, . . . , jk), is given by

∑k
l=1 |il − jl|. In the variants of the FSSP considered

in this section, every processor can exchange information only with the pro-
cessors at distance 1. Note that these topologies are not circular, and this
implies that the processors are not identically connected since the processors
on the border have a missing link. This makes a clear difference with respect
to the case of one-way rings and one-way squares. The definitions of config-
uration and solution for each of these variations of the FSSP are analogous
to the case of the one-way ring and one-way square, thus we omit them.

Let us recall a well-known result of the FSSP on a line of n processors.

Theorem 1. Given a line of n two-way connected processors, there is a
solution to the FSSP in time 2n−1 and every other solution has time greater
than or equal to 2n − 1. Moreover, if the leftmost and rightmost processors
of the line are in the general state in the starting configuration, then there
is a solution to the FSSP in time n.

In [11] the following results are shown, optimal in time, for the FSSP on
two-dimensional n × n arrays and three-dimensional n × n × n arrays.

Theorem 2. There is a solution to the FSSP on a two-dimensional array of
n× n two-way connected processors in time 2n− 1 and every other solution
has time greater than or equal to 2n − 1.

Theorem 3. There is a solution to the FSSP on a three-dimensional array
of n × n × n two-way connected processors in time 3n − 2 and every other
solution has time greater than or equal to 3n− 2.

In [3] the FSSP is dealt with on connected nonempty subsets of a two-
dimensional array of processors and minimal time solutions are given for
some classes of such subsets.

In [2] the problem of synchronizing the one-way ring is considered: in
Corollary 2 an algorithm for a minimal time solution to synchronize a n-cell
ring in time 2n− 1 is given. We contradict this result in Lemma 1 by giving
a lower bound of time 2n for the synchronization of one-way rings.

3. Minimal time solutions

In this section we first give the lower bounds on the time of the solutions
to the FSSP on one-way rings and one-way squares and then present the
algorithms for the synchronization in minimal time.

244 S. La Torre, M. Napoli, and M. Parente

3.1 Lower bounds on the time of the solutions

In Lemma 1 we show that time 2n is necessary to synchronize a one-way ring
of n processors. In Lemma 2 we show that the minimal time is 3n − 1 for a
one-way square of n × n processors.

Lemma 1. The time of every solution to the FSSP on a one-way ring of n
processors is greater than or equal to 2n.

Proof. Assume by contradiction that there exists a solution S = (Q, δ) within
time t̄(n) < 2n on a one-way ring and let A = (Q, δ, n) and B = (Q, δ, 2n) be
two one-way rings. Since for all t < n, stateA(n − 1, t) = L and stateB(2n −
1, t) = L, then t̄(n) ≥ n and stateA(i, t) = stateB(i, t) for all 0 ≤ i ≤ n − 1
and 1 ≤ t ≤ n. The following, simple, observation for both A and B is
crucial for the rest of the proof. The state of the cell n − 1 at time n + t,
for 0 ≤ t ≤ t̄(n) − n, depends on the states at time n of the following cells:
n − 1 and n − 2, when t = 1; n − 1, n − 2, and n − 3, when t = 2; and in
general on the states of the cells n − 1, . . . , n − t − 1 for 2 < t ≤ t̄(n) − n.
As a consequence, at time t̄(n) the cell n− 1 of both A and B will enter the
state F . Anyway, the cell 2n−1 of B at time t̄(n) is still in the state L, thus
we have a contradiction.

Lemma 2. The time of every solution to the FSSP on a one-way square of
n × n processors is greater than or equal to 3n − 1.

Proof. Assume by contradiction that there exists a solution S = (Q, δ) in time
t̄(n) < 3n−1 on a one-way square and let A = (Q, δ, n) and B = (Q, δ, 2n) be
two one-way squares. Since for all t < n and 0 ≤ i ≤ n−1, stateA(i, n−1, t) =
stateA(n− 1, i, t) = L and stateB(i, 2n− 1, t) = stateB(2n− 1, i, t) = L, then
stateA(i, j, t) = stateB(i, j, t) for all 0 ≤ i, j ≤ n − 1, and 1 ≤ t ≤ n.
Furthermore, for both A and B the state of cell (i, j) at time n is L for all
cells (i, j) such that i + j > n − 1. The state of the cell (n − 1, n − 1) at
time n + t, for 0 ≤ t ≤ t̄(n) − n, depends on the states at time n of the cells
(n − 1 − u, n − 1 − v), for u + v ≤ t. As a consequence, at time t̄(n) the
cell (n − 1, n − 1) of both A and B will enter the state F . Anyway, since
the cell (2n − 1, 2n − 1) of B at time t̄(n) is still in the state L, we have a
contradiction.

3.2 Synchronization in minimal time

In this section we present the minimal time algorithms for the synchroniza-
tion of a one-way ring and a one-way square.

Lemma 3. There is a solution to the FSSP on a one-way ring of n processors
in time 2n.

Synchronization of One-way Connected Processors 245

Proof. Using standard techniques, a computation of a two-way CA A of n
processors in time t(n) can be executed by a one-way CA B in time 2t(n),
provided that the initial configuration of A can be reached in one step from
the initial configuration of B. We informally use an induction on the number
of steps. Let the state of the cell i+1 of B after the first step be equal to the
state of the cell i of A at the starting configuration and assume that the cell
i+ j of B at time 2j has the state that cell i of A has at time j. (To be more
precise, since the cell i + j of B has to simulate the cell i of A, then when
i = 0 or when i = n − 1 the state of the cell i + j of B encodes a state of A
and the information that the simulated cell is the leftmost or the rightmost
in the line.) Now the cell i of A at the jth step needs the states of cells i− 1
and i + 1 at time j. Cell (i − 1) + j of B at step 2j passes its own state
p to the cell (i + j) and this in turn forwards p along with its state to the
right neighboring cell, the cell (i + 1) + j, that at step 2j + 1 can simulate
cell i of A at step j + 1. So the cell i + (j + 1) at time 2(j + 1) contains
the state of the cell i of A at time j + 1. The overall simulation thus takes a
multiplicative delay factor of two.

Let us consider now the solution S of Theorem 1 on a two-way connected
line starting with the leftmost and rightmost cells in the general state. This
solution takes time n and a solution S′ to the FSSP on a one-way ring in
time 2n can be obtained with the above simulation. More precisely, in the
first step S′ lets the second cell enter a general state, so that the state of the
cell i + 1 after the first step of S′ is equal to the state of the cell i in the
starting configuration of S.

Lemma 4. There is a solution to the FSSP on a one-way square of n × n
processors in time 3n − 1.

Proof. We first give a solution that is easier to describe which takes time 3n
and then show how to save one time unit.

Consider a square of n×n two-way connected processors. For our purpose
it is convenient if we look at the square organized in n concentric frames,
where the (i + 1) inner frame is constituted by the four lines (i, i) . . . (i, n −
i − 1), (i, n − i − 1) . . . (n − i − 1, n − i − 1), (i, i) . . . (n − i − 1, i), and
(n− i−1, i) . . . (n− i−1, n− i−1), see Figure 2. Suppose now that the cells
(0, 0), (0, n−1), (n−1, 0), and (n−1, n−1) are all in the same general state,
then the following statement holds: a solution to the FSSP on a square of
n × n two-way connected processors can be executed in time n. In fact, the
four lines of the first frame can all synchronize in time n using Theorem 1;
during such synchronizations, after the first two steps, the four cells (1, 1),
(1, n− 2), (n− 2, 1), and (n− 2, n− 2) all enter a general state and thus the
four lines of the second frame can synchronize in time n − 2. Iterating this
argument, the ith frame synchronizes in time n − 2(i − 1), 1 ≤ i ≤ (n/2).
As this synchronization starts at time 2(i − 1) + 1, then the overall time to
synchronize the processors is still n. Let us call this solution S.

246 S. La Torre, M. Napoli, and M. Parente

frame (i+1)

i0
0

i

n-i+1

n-1

n-i+1 n-1

Figure 2: The frames in a square of n × n processors.

Using standard techniques (as in the previous proof), any computation of
a two-dimensional two-way CA A in time t(n) can be executed by a two-di-
mensional one-way CA B in time 3t(n) in the following way. We informally
use an induction on the number of steps. Assume that the cell (i+1, k+1) in
the third configuration of B contains the state that the cell (i, k) has in the
first configuration of A and that cell (i+j, k+j) of B at time 3j has the state
that cell (i, k) of A has at time j. Actually, when the cell (i, k) is a border
cell, that is, when either i ∈ {0, n− 1} or k ∈ {0, n − 1}, this information is
also stored in the state of the cell (i + j, k + j) of B. Now the cell (i, k) of
A at the jth step computes the new state from its own state and the states
of cells (i − 1, k), (i, k − 1), (i + 1, k), and (i, k + 1) at time j. Within three
steps the cell (i + (j + 1), k + (j + 1)) of B can collect the states that at
time 3j are in the cells (i + j, k + j), ((i − 1) + j, k + j), (i + j, (k − 1) + j),
((i+1)+j, k +j), and (i+j, (k +1)+j). These three steps can be described
as follows.

1. At step 3j, cell (i + j, k + j) of B stores the two states p, q of cells
((i − 1) + j, k + j) and (i + j, (k − 1) + j).

2. At step 3j + 1 the states p, q are passed to cells ((i + 1) + j, k + j)
and (i + j, (k + 1) + j) (note that in the previous step the state of cell
(i + j, k + j) at time 3j has been passed to these cells).

3. At step 3j + 2, cell ((i + 1) + j, (k + 1) + j) simulates cell (i, k) of A at
step j.

So the state of the cell (i + (j + 1), k + (j + 1)) of B at time 3j + 3 contains
the state that the cell (i, k) of B has at time j + 1. The overall simulation
thus takes a multiplicative delay factor of three.

Synchronization of One-way Connected Processors 247

Consider now a solution S′ which in the first two steps reaches a configu-
ration such that the states of all the cells (0, 0), (0, 1), (1, 0), and (1, 1) contain
the general state (recall that the states of the cells (0, 0), (0, n−1), (n−1, 0),
and (n − 1, n − 1) in the starting configuration of the solution S are all in
the general state). Then S′ simulates the solution S within time 3n.

Now let us briefly explain how S′ can be modified to save one step, thus
reaching time 3n − 1. The first 3n − 3 steps (and thus the first 3n − 2
configurations) remain unmodified. Now let A = (S, n) and A′ = (S′, n), for
a given n, and let us observe what follows.

1. Each cell of A in the configuration j participates for the synchronization
of the frame which it belongs to; actually each cell participates either
only for a row line or only for a column line of the frame except for the
four corner cells of the frame which participate for both of the lines.
The same holds also for A′ in the configurations 3j (due to the mapping
between the cells of the configuration j of A and those of configuration
3j of A′).

2. At time 3j + 2 in A′, 1 ≤ j < n, a cell (i +(j + 1), k + (j +1)) is aware
of the states at time 3j of the following cells.

(a) ((i− 1) + (j + 1), (k − 1) + (j + 1)), (i +(j +1), (k − 2) + (j + 1)),
(i + (j + 1), (k − 1) + (j + 1)), and (i + (j + 1), k + (j + 1)).

(b) ((i− 1) + (j + 1), (k − 1) + (j + 1)), ((i− 2) + (j + 1), k +(j + 1)),
((i − 1) + (j + 1), k + (j + 1)), and (i + (j + 1), k + (j + 1)).

Thus at step 3n − 2, the cell (i + n, k + n) can correctly simulate either
cell (i, k − 1) or cell (i − 1, k) of S at step n − 1, hence entering the firing
state. In particular, the cell (i + n, k + n) simulates the former if (i, k − 1)
participates in the synchronization for a row line, or simulates the latter, if
(i − 1, k) participates in the simulation for a column line (note that at least
one of these conditions must hold). Then, there is a solution to the FSSP on
a one-way square of n×n processors in time 3n− 1. We stress that one step
can be saved only at the configuration 3n − 1 and not at some earlier time,
because in the last step all cells must enter the same state (the firing state)
and the information about the frames can be lost.

Now we can give the main results of this section.

Theorem 4. Given a one-way ring of n processors, there is a solution to the
FSSP in time 2n and every other solution has time greater than or equal to
2n.

Theorem 5. Given a one-way square of n×n processors, there is a solution
to the FSSP in time 3n − 1 and every other solution has time greater than
or equal to 3n − 1.

248 S. La Torre, M. Napoli, and M. Parente

4. Composition of solutions

In general it may be useful to design solutions that synchronize the processors
in times which are not minimal. Anyway, the design of such solutions may not
be obvious and tools allowing various combinations of two or more solutions
may be useful.

In this section we show how to compose more solutions to obtain a new
solution. In particular, if we have two solutions in time t1(n) and t2(n),
in Lemma 5 and in Lemma 6 we show how to obtain solutions in time
t1(n) + t2(n) + d, for a given constant d, and in time t1(n)t2(n), respec-
tively. We conclude the section with Lemma 7 in which, given a condition
P (n), a solution is provided having time t1(n), if P (n) holds, and time t2(n),
otherwise.

In the following, we use the product of automata as a method for com-
bining one-way CA, in fact, given two one-way CA A1 and A2, the product
automaton A1 × A2, defined in a standard way, behaves simultaneously as
A1 and A2. Furthermore, if Si is a solution to the FSSP then Gi, Li, and
Fi denote the general, latent, and firing states of Si, respectively, and Qi, δi

denote the set of states and the transition function, respectively.

Lemma 5. If Si, i = 1, 2, are two solutions to the FSSP on a one-way ring
of n processors (resp. one-way square of n×n processors) in time ti(n), then
there is a solution to the FSSP on a one-way ring of n processors (resp.
one-way square of n × n processors) in time t1(n) + t2(n) + d for all d ≥
−min{t1(n), t2(n)}.

Proof. The proof is very similar in the one-dimensional and two-dimensional
cases. We now consider only the one-dimensional case. Let d ≥ 0. It is easy
to give a solution S to the FSSP on a one-way ring such that S behaves as
S1 from time 1 up to time t1(n), then at time t1(n) + 1 it switches to S2.
Thus S is a solution in time t1(n) + t2(n). Furthermore, given a solution to
the FSSP S′ = (Q′, δ′) in time t(n) and with firing state F ′

0, a solution in
time t(n) + d can be obtained from S′ by adding the states F ′

1, . . . , F
′
d and

the transition rules δ′(F ′
i , F

′
i) = F ′

i+1 for i = 0, . . . , d − 1. Obviously, F ′
d is

the firing state of the resulting solution.
Now, let us consider 0 > d ≥ −min{t1(n), t2(n)}. As |d| ≤ t1(n), it is

possible to modify the solution S1 to mark in time |d| exactly |d| cells with |d|
different states (actually a marker is a component of the state of a processor).
Clearly, if n < |d| then a cell is marked twice or more. Thus, the solution S
in time t1(n)+ t2(n)− |d| behaves as S1 up to time t1(n)−1, then it switches
to the |d|th configuration of (S2, n) and behaves as S2.

Lemma 6. If Si, i = 1, 2, are two solutions to the FSSP on a one-way ring
of n processors (resp. one-way square of n×n processors) in time ti(n), then
there is a solution to the FSSP on a one-way ring (resp. one-way square of
n × n processors) in time t1(n)t2(n).

Synchronization of One-way Connected Processors 249

Proof. There are no substantial differences if we consider one-dimensional or
two-dimensional one-way CA. Thus, we informally describe how to obtain the
solution in time t1(n)t2(n) in both cases. We define a solution S consisting of
a phase of length t1(n), which is iterated t2(n) times. The set of states of S is
Q1×Q2, the general, latent, and firing states are the pairs (G1, G2), (L1, L2),
and (F1, F2), respectively. In each iteration S modifies the first component
of its state according to the transition function of S1, until this component
becomes F1. At the end of this phase S executes a transition modifying
the second component of the state according to the transition function of
S2. Moreover in this same step, S replaces F1 with either G1 or L1 in the
first component (depending on whether the cell is the first or not). Now the
iterative phase starts again until the firing state (F1, F2) is entered by the
cells. Thus the solution S1 is iterated exactly t2(n) times.

A construction of automata slightly different from the product of au-
tomata can be used to design a solution that synchronizes by selecting among
different solutions. The selection is made according to a given condition, for
example, the parity of the number of processors or the fastest (or slowest)
solution in the set. The following notion of selecting CA is our formalization
of the condition to be tested. Let Q be a finite set, δ : Q×Q → Q and let O1

and O2 be disjoint subsets of Q. We say that (Q, δ, O1, O2) is a selecting CA
in time t(n) if for all n the configurations Ct of (Q, δ, n) are such that: C1

is the usual starting configuration for a solution to the FSSP and Ct ∈ On
1 ,

for all t ≥ t(n) or Ct ∈ On
2 , for all t ≥ t(n). A selecting CA for the two-di-

mensional case is analogous. Lemma 7 shows how to design a one-way CA
that selects a solution between two given solutions, according to a condition
on the number of cells. Clearly, by iterating this construction, a selection
among more than two solutions can be realized.

Lemma 7. Let Si be a solution to the FSSP on a one-way ring of n proces-
sors (resp. one-way square of n × n processors) in time ti(n) for i = 1, 2, let
K = (Q, δ, O1, O2) be a selecting CA in time t(n) ≤ ti(n), and let Ct be the
configurations of K. Then there is a solution to the FSSP on a one-way ring
of n processors (resp. one-way square of n × n processors) in time s(n) such
that if Ct(n) ∈ On

1 then s(n) = t1(n), otherwise s(n) = t2(n).

Proof. For simplicity we consider only the one-dimensional case, the two-
dimensional case is similar.

Let GK and LK be the general and latent states of K. Assume without
loss of generality that the transition rules δi are such that δi(Fi, Fi) = Fi,
i = 1, 2. The solution S can be defined as S = ((Q1 × Q2 × Q) ∪ {F}, δ)
where δ is the transition function:

δ((q1, q2, qK), (q′1, q
′
2, q

′
K)) = F if (∃i : δi(qi, q

′
i) = Fi) and δK(qK , q′K) ∈ Oi

and

δ((q1, q2, qK), (q′1, q
′
2, q

′
K)) = (δ1(q1, q

′
1), δ2(q2, q

′
2), δK(qK , q′K)), otherwise.

250 S. La Torre, M. Napoli, and M. Parente

Trivially, it is a solution to the FSSP with (G1, G2, GK), (L1, L2, LK), and
F as the general, latent, and firing states, respectively. Thus, the synchro-
nization is obtained in time ti(n) if at this time the selecting CA K is in a
configuration with all the states belonging to the set Oi.

We show two examples as applications of Lemma 7. In the first example
we are faced with the problem of obtaining a solution synchronizing at the
maximum or minimum time between two solutions. We first define a selecting
CA performing the test t1(n) ≤ t2(n), then we show that this selecting CA
can be used to obtain a solution synchronizing at the maximum or minimum
time between two solutions in time t1(n) and t2(n). In the second example
a particular behavior is selected depending on the result of a comparison
between the number of processors n and a constant h.

Example 1. Let Ri and i = 1, 2 be two solutions to the FSSP on a one-way
ring in time ti(n). We define a selecting CA for the condition t1(n) ≤ t2(n)
in time t(n) = min{t1(n), t2(n)}. Let si and i = 1, 2 be two states not
belonging to Q1 ∪ Q2. We extend the transition rules δi by including the
rules δi(Fi, Fi) = Fi. Let δ′ be defined as δ′(si, si) = si:

δ′((q1, q2), (q
′
1, q

′
2)) = s1 if δ1(q1, q

′
1) = F1

δ′((q1, q2), (q
′
1, q

′
2)) = s2 if δ2(q2, q

′
2) = F2 and δ1(q1, q

′
1) -= F1, and

δ′((q1, q2), (q
′
1, q

′
2)) = (δ1(q1, q

′
1), δ2(q2, q

′
2)), otherwise.

Thus the selecting CA is K = ((Q1 × Q2) ∪ {s1, s2}, δ′, {s1}, {s2}). The
general and latent states are obviously (G1, G2) and (L1, L2). The selecting
automaton for the same condition in the two-dimensional case can be ob-
tained analogously. The selecting CA K can be used to obtain a solution
synchronizing at the maximum or minimum time between two solutions. In
fact, let us consider again two solutions R1 and R2 in time t1(n) and t2(n)
respectively. By Lemma 7 with Si = Ri, we can get a solution in time s(n),
with s(n) = t1(n) if t1(n) ≤ t2(n) and s(n) = t2(n) otherwise. Thus a solu-
tion synchronizing at the minimum time is obtained. If we apply Lemma 7
with S1 = R2 and S2 = R1, then a solution synchronizing at the maximum
time is obtained.

Example 2. In this example we describe a selecting CA K performing the
test n ≤ h, for a given positive integer h. The selecting automaton for the
same condition in the two-dimensional case can be obtained analogously.
Let Q = {G,L, p1, . . . , ph, p≤h, p>h} with G and L as the general and latent
states respectively, then K is defined as (Q, δ, {p≤h}, {p>h}) where δ can be
informally described as follows. In the first step the processors 0 and 1 enter
the states p1 and p2 respectively; next, each processor in the latent state
enters state pi+1 if its adjacent processor on the left is in state pi for i < h,
while it enters the state p>h if this neighbor is in state ph; the state p≤h is
entered by processor 0 if its adjacent processor on the left (i.e., the processor
n − 1) is in state pi for i ≤ h. When a processor enters the state p≤h or p>h

all the other processors are forced to enter the same state within a time n.
Obviously, K is a selecting CA in time t(n) = n + min{h, n}.

Synchronization of One-way Connected Processors 251

Note that the selecting CA of Example 2 can be used for any pair of
solutions, as the time of the selecting CA is less than the time of any solution.

5. Particular time solutions

In this section we show the existence of solutions to the FSSP in time n2,
n(log n), and 2n. In particular, the first two solutions are described directly
for the one-way CA and the solution in time 2n is obtained quite easily by
using the usual construction to convert a solution for a two-way CA into a
solution for a one-way CA.

Theorem 6 gives the solution in time n2.

Theorem 6. There is a solution to the FSSP on a one-way ring of n pro-
cessors and on a one-way square of n × n processors in time n2.

Proof. First we consider the one-dimensional case. Assume n ≥ 3, the case
n < 3 can be dealt with using a simple ad hoc strategy and is omitted
(Lemma 7 can be used with the test n ≥ 3 to select the behavior, see Exam-
ple 2).

The solution is divided into two phases: counting and synchronization.
The counting phase has length (n−2)n+1 and can be seen as constituted by
n − 2 iterations of a subphase of n steps. At the beginning of each iteration
a token T is in the first cell and at each step it is passed from cell j to cell
j+1. Thus, at the last step of the subphase, T is moved again to the first cell.
Moreover, in the first iteration the cell 3 enters a marker M (actually a token
and a marker are components of the states of processors). At each successive
iteration M is moved one cell to the right, so M is moved to the first cell
when n − 2 iterations have been executed, that is, at time (n − 2)n + 1.

The synchronization phase consists of a minimal time solution (in time
2n) to the FSSP on a one-way ring. Now we can suppose that during the
counting phase all the cells, except for the first cell and the cells in the states
containing M and T , are in the latent state. Thus at step (n − 2)n + 1
all the cells, except cell 0, are in the latent state. As a consequence, the
synchronization phase can start exactly at time (n − 2)n + 1 and the total
solution has thus length n2.

Now let us consider the two-dimensional case. Here assume n ≥ 5 and,
as before, Lemma 7 is used to select the behavior. The solution in time n2

is easily obtained through the following two steps.

• The first row is synchronized in time 2n with a minimal time solution
on a one-way ring.

• A solution in time n2 − 2n is applied to each column.

The solution in time n2 − 2n is easily obtained from a solution in time
n2 on a one-way ring and modifying the first iteration of the counting phase
in order to mark the cell 5 (instead of 3). In this way the counting phase is
constituted by n − 4 iterations of the subphase, thus saving 2n steps.

252 S. La Torre, M. Napoli, and M. Parente

Now we show how to obtain a solution in time n log n. First let us recall
that given a line of n two-way connected processors, if the leftmost and
rightmost processors are in the general state in the starting configuration,
then by Theorem 1 there is a solution to the FSSP on a line of n processors in
time n. Note that it is easy to modify the solution in such a way that in the
(n − 1) configuration the processor (n/2i) − 1, for some i, is in a particular
state which is different from all the states entered by the other processors
(actually this “marking” of a processor is a standard technique widely used,
e.g., [2, 4, 5, 7]). A similar result can be easily obtained for the one-way ring.

Lemma 8. There is a solution to the FSSP on a one-way ring of n processors
in time 2n such that in the configuration 2n−1 the processor (n/2i)−1, for
a given i ≥ 0 is in a particular state which is different from the state of any
other processor.

Now we are ready for the solution in time n log n.

Theorem 7. There is a solution to the FSSP on a one-way ring of n pro-
cessors and on a one-way square of n × n processors in time n(log n).

Proof. First we consider the one-dimensional case. Let us assume for the
moment n > 8. The solution is divided into three phases: initialization,
iterative, and synchronization. The iterative phase is executed if n > 16,
otherwise it is skipped. Informally speaking, the whole solution is described
as follows.

In the initialization phase the cell (n/16)− 1 is marked with a particular
state marker. Then the cell 0 is marked if and only if n ≤ 16. Using Lemma 8
this phase can be realized in time 2n.

In the iterative phase, at the ith iteration the marker is moved from the
cell (n/2i+3) − 1 to cell (n/2i+4) − 1 for i = 1, . . . , (log n) − 4 and again the
cell 0 is marked if n ≤ 2i+4. The ith iteration starts at time (i + 1)n + 1
and ends at time (i + 2)n + 1. Note that the first step of the ith iteration
coincides with the last step of the (i−1) iteration. Thus the total time taken
by this phase is n((log n)−4)+1. The third phase is actually a minimal time
solution. Thus, the total time is 2n + n((log n)− 4) + 1 + 2n− 1 = n(log n).

The case n ≤ 8 can be easily solved with a particular strategy and the
appropriate behavior can be selected by using Lemma 7.

Now let us consider the two-dimensional case. Here assume n > 32 and,
as before, Lemma 7 is used to choose the behavior. The solution in time
n(log n) is easily obtained through the following two steps.

• The first row is synchronized in time 2n with a minimal time solution
on a one-way ring.

• A solution in time n(log n) − 2n is applied to each column.

Synchronization of One-way Connected Processors 253

The solution in time (log n) − 2n is easily obtained from the solution
in time n(log n) on a one-way ring by modifying the initialization phase in
order to mark the cell (n/64)− 1 (instead of cell (n/16)− 1) thus saving 2n
steps.

Theorem 8. There is a solution to the FSSP on a one-way ring of n pro-
cessors and on a one-way square of n × n processors in time 2n.

Proof. In [4] a solution to the FSSP in time 2n on a line of n two-way con-
nected processors is shown. Loosely speaking, a solution in time 2n−1 can
be obtained from this latter result by putting the second cell in a general
state and then starting a solution on n − 1 cells. In an analogous way it is
possible to obtain a solution in time 2n−2. Using very standard techniques as
in Lemma 1, any computation of a one-dimensional two-way CA A in time
t(n) can be executed by a one-dimensional one-way CA B in time 2t(n)− 1.
In fact, assume that cell i + j − 1 of B at time 2j − 1 has the state cell i
of A at time j. Now the cell i of A at step j needs the states of cells i − 1
and i + 1 at time j. Cell (i − 1) + (j − 1) of B at step 2j − 1 passes its own
state p to the cell (i +(j − 1)) and this forwards p along with its state to the
right neighboring cell, the cell (i + 1) + (j − 1), that at step 2j can simulate
cell i of A at step j. Now by this simulation and the above two solutions,
solutions to the FSSP on a one-way ring of n processors in time 2n and 2n−1,
respectively, are achieved. Moreover, a solution to the FSSP on a one-way
square of n × n processors in time 2n can be obtained by first synchronizing
the first row in time 2n−1 and then all the columns, always with the same
solution.

6. Conclusions

In this paper networks of processors connected via one-way links are consid-
ered. In particular, the focus is on processors arranged in a one-way ring or
in a square having rows and columns that are one-way rings. For the first
time an algorithm to synchronize the one-way ring of n processors in time
2n and an algorithm to synchronize the one-way square of n × n processors
in time 3n − 1 are presented. It is proved that both of these algorithms are
optimal in time. The optimality of the algorithm for the ring contradicts a
result of [2] which claims to synchronize the ring in time 2n − 1.

Moreover, different ways to combine more solutions in order to obtain
new ones are shown. In particular, given two solutions in time t1(n) and
t2(n), solutions are provided in time t1(n) + t2(n) + d, for an integer number
d, and t1(n)t2(n) and given a condition P (n), a solution is provided having
time t1(n), if P (n) holds, and t2(n) otherwise.

A final contribution of this paper is represented by the algorithms to
synchronize the one-way ring of n processors and the one-way square of n×n
processors in time n log n, n2, and 2n. These algorithms give the solution to

254 S. La Torre, M. Napoli, and M. Parente

the space-time constructibility of CA [6] for the pairs (n, f (n)) where f (n) is
one of the above times.

A development of this research is the realization of new solutions in mean-
ingful time and the study of new topologies of networks. The results on the
one-way rings and one-way squares can be extended to k-dimensional one-way
hypercubes. Concerning the k-dimensional one-way hypercubes of nk pro-
cessors we conjecture that the lower bound to the time of a solution to the
FSSP on such networks is greater than or equal to (k + 1)n − (k − 1).

In this paper we have not considered faulty processors and communication
channels without noise. We might ask how the algorithms would change to
obtain the synchronization with a reasonable likelihood in a certain time if
these aspects are considered. In this case we have to consider in our model
the probabilities with which the transitions happen and some results of the
Code Theory could be used.

Aknowledgements

Work partially supported by M.U.R.S.T. in the framework of the project
“Modelli di Sistemi Concorrenti.” We thank the referee for their careful
reading of this paper.

References

[1] R. Balzer, “An 8-states Minimal Time Solution to the Firing Squad Syn-
chronization Problem,” Information and Control, 10 (1967) 22–42.

[2] K. Culik, “Variations of the Firing Squad Problem and Applications,” In-
formation Processing Letters, 30 (1989) 153–157.

[3] K. Kobayashy, “The Firing Squad Synchronization Problem for Two-
Dimensional Arrays,” Information and Control, 34 (1977) 177–197.

[4] S. La Torre, M. Napoli, and M. Parente, “Synchronization of a Line of Identi-
cal Processors at a Given Time,” in Proceedings of the Colloquium on Trees
in Algebra and Programming CAAP ’97 (TAPSOFT’97), Lille (France),
1997. Lecture Notes in Computer Science, 1214 (1997) 405–416.

[5] J. Mazoyer, “A Six States Minimal Time Solution to the Firing Squad Syn-
chronization Problem,” Theoretical Computer Science, 50 (1987) 183–238.

[6] J. Mazoyer and N. Reimen, “A Linear Speed-up Theorem for Cellular Au-
tomata,” Theoretical Computer Science, 101 (1992) 59–98.

[7] J. Mazoyer, “On Optimal Solutions to the Firing Squad Synchronization
Problem,” Theoretical Computer Science, 168 (1996) 367–404.

[8] M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Lon-
don, 1972).

Synchronization of One-way Connected Processors 255

[9] E. F. Moore, Sequential Machines, Selected Papers (Addison Wesley, Read-
ing, 1964).

[10] Z. Roka, “The Firing Squad Synchronization Problem on Caley Graphs,” in
Proceedings of the 20th International Symposium on Mathematical Founda-
tions of Computer Science MFCS’95, Prague, Czech Republic, 1995. Lecture
Notes in Computer Science, 969 (1995) 402–411.

[11] I. Shinahr, “Two- and Three-Dimensional Firing-Squad Synchronization
Problems,” Information and Control, 24 (1974) 163–180.

[12] A. Waksman, “An Optimum Solution to the Firing Squad Synchronization
Problem,” Information and Control, 9 (1966) 66–78.

