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Abstract. The nature of iterative learning on a randomized initial
architecture, such as backpropagation training of a multilayer percep-
tron, is such that precise replication of a reported result is virtually
impossible. The outcome is that experimental replication of reported
results, a touchstone of “the scientific method,” is not an option for
researchers in this most popular subfield of neural computing. This
paper addresses the issue of replicability of experiments based on back-
propagation training of multilayer perceptrons (although many of the
results are applicable to any other subfield that is plagued by the
same characteristics) and demonstrate its complexity. First, an at-
tempt to produce a complete abstract specification of such a neural
computing experiment is made. From this specification an attempt
to identify the full range of parameters needed to support maximum
replicability is made and it is used to show why absolute replicability is
not an option in practice. A statistical framework is proposed to sup-
port replicability measurement. This framework is demonstrated with
some empirical studies on both replicability with respect to experimen-
tal controls, and validity of implementations of the backpropagation
algorithm. Finally, the results are used to illustrate the difficulties
associated with the issue of experimental replication and the claimed
precision of results.

1. Introduction

Experiments based on the iterative training of neural networks (NNs) are
known to be sensitive to initial conditions in weight space and some studies
have begun to explore the nature and extent of this sensitivity (e.g., [3, 7]).
However, the initial conditions for training involve much more than the initial
position chosen (usually by means of some “random” procedure) in weight
space. Some facets of the initial conditions are routinely reported (e.g., the
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network architecture, the number of inputs, hidden and output units), while
others are not (e.g., the precise criterion for learning algorithm termination).
Some aspects of the initial conditions are thought to be insignificant (e.g.,
batch or online update, an “implementation detail” within backpropagation,
see [1]) and others are simply unrecognized as characteristics of the initial
state (e.g., the composition and size of the training and test sets).

In this paper we investigate the issue of replicability, that is, what needs
to be specified in order to make a neural computing experiment replicable,
and what determines the degreee to which it is replicable.

We present a framework and mechanisms for quantifying the sensitivity
of such experiments to variations in the initial conditions. By “sensitivity”
we mean extent of effect on the resultant trained network, that is how much
does the parameter under study affect the behavior of the trained net? This
view of sensitivity can be contrasted with, for example, the studies in [3, 7]
into the effect on the rate of convergence to a solution during training. Our
method of specification will concentrate on elucidating the parameters on
which our experiments depend and making explicit the correctness criteria
that must be satisfied in order to conduct them.

Ultimately, our goal is to clarify the requirements for replicability in such
NN experiments, to introduce a statistical framework for improved replicabil-
ity, and to begin to relate the degree of replicability achieved to the precision
that can be justifiably associated with empirical results.

1.1 Background

In [7] it is reported that backpropagation is extremely sensitive to the choice
of initial weights. While that study revealed some interesting chaotic behav-
iors and provided analytic insights into a number of observed phenomena,
it does not have much impact from an engineering applications standpoint
(as was freely admitted). In our study it is the nature of the solution, the
trained net, that is of primary importance. The only attempt that was made
to address solution sensitivity in [7] is based on a weak notion of equivalent
solutions: “Two networks are considered equivalent if their weights have the
same sign.” It is acknowledged in a footnote that “it is extremely difficult to
know precisely the equivalence classes of solutions, so we approximated.” We
shall also approximate, but less approximately. By using appropriate met-
rics and measures we present a definition of the approximate correctness we
require of our networks, and use this to define a notion of functional equiva-
lence for a population of trained networks that exhibit structural differences.
Our notion of equivalence is founded on the similarities and differences in
the observable behavior of trained networks, more succinctly in the par-
lance of connectionism: equivalent networks generalize identically, that is,
two networks are equivalent if they fail on precisely the same test patterns.
Furthermore, we take the view that an experiment has been replicated if it
yields an equivalent network.



Replicability of Neural Computing Experiments 259

Testing, as a strategy for estimating degree of equivalence between two
networks, is itself vulnerable, because the outcome must depend, to some
degree, on the nature of the test set used. Yet the measured quantity is one
supposedly inherent to the networks.

For a well-defined “toy” problem, such as the one we use (see section 2.3),
the test set structure can be controlled, defined, and hence reproduced. But
for a “real world” problem this luxury cannot be taken for granted. However,
in practice all software is primarily validated by testing (proofs of correctness
in terms of program infrastructure remains an academic exercise restricted
to a few simple well defined examples).

Similarly, validation of NN implementations of real world problems must
(for the foreseeable future, at least) be testing based. A crucial determinant
of test set validity is that it exhibits the “normal usage profile” of the system
under test. Without pretending that it is either easy or straightforward to
construct valid test sets from available, but necessarily incomplete data, some
reasonable attempt must be made when dealing with NN implementations
of real world problems. There is no other option, and it is just such “valid”
test sets that we use to assess replicability.

1.2 Approach

Our approach to the replicability issue is from two rather different strategies:
first, we explore the potential for replicability based on formal specifications,
and second, we measure replicability achieved using several numerical quan-
tities derived from the network testing phase.

This study aims to deliver a precise and detailed description of our NN
experiment consisting of formal specifications for the NN, the learning algo-
rithm, and the task. From the specification we abstract a list of experimental
parameters designed to fully characterize the initial conditions of our exper-
iments and so provide a proper basis for maximum replicability. We then
present the results of an investigation into the effect of varying some of these
parameters on the observable behavior of a number of trained NNs, and hence
an indication of the replicability actually achievable under various relaxations
of controls. We provide a quantification of the effects of these changes using
statistical techniques. Finally, a validation scheme for implementations of
algorithms such as backpropagation is proposed and demonstrated.

2. A formal definition of an experiment

In this study we shall concern ourselves with two-layer feedforward networks
trained to implement a simple function by a backpropagation learning al-
gorithm with momentum. We restrict ourselves to this particular neural
computing paradigm because it is the simplest backpropagation variant, and
is one of the most widely used, and so constitutes (in a practical sense) an
important type of neural computing experiment to be able to replicate.
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Most studies that use this type of network and training algorithm refer
to the seminal paper in [11] as the “definition” of their experimental setup.
It is tacitly assumed that all these experiments use functionally identical
versions of backpropagation, that is they differ only in implementation detail.
Unfortunately, problems experienced by ourselves and other researchers in
the field when trying to reproduce published experiments contradict this
assumption.

In this section we present a formal definition of our experiments with the
intention of making explicit the experimental parameters and assumptions
on which our studies depend.

2.1 The neural network

We concern ourselves with a class of feedforward two-layer NNs based on a
definition presented in [5]. They specify a two-layer feedforward NN over the
real numbers R by a triple (r,A,G) consisting of a number r ∈ N , a family
of affine functions A, and an activation function G. The family of functions
A has the form

(∀aj ∈ A) aj : Rr → R

(∀x ∈ Rr) aj(x) =
r∑

i=1

w1
jixi + b1

j

for j = 1, . . . , q, where x ∈ Rr are the inputs to the network, w1
ji ∈ R is the

weight from the ith input unit to the jth hidden unit in layer 1, and b1
j ∈ R

is the bias of the jth hidden unit. A single hidden layer feedforward NN with
one output is specified by the function f : Rr → R defined by

f (x) =
q∑

j=1

w2
jG(aj(x))

where w2
j ∈ R is the weight from the jth hidden unit to the output unit in

layer 2 and q is the number of hidden units. We shall assume that our net-
works have several output units labeled k = 1, . . . , s each with the activation
functions G (see [5]). In this study G is the logistic or sigmoid activation
function (see [11], page 329).

Later, when we come to specify our convergence criteria we shall, for the
sake of clarity, represent our network as a parameterized function

f : Wn × Ar → As

with the intention that f (w, a, ) ∈ As is the output pattern computed by the
NN f , parameterized with weights w = (w1, b1, w2, b2) on input pattern a. In
this case W = R and A = [0, 1], and n = q(r + s) + q + s is the number of
weights and biases, r is the number of inputs, and s is the number of outputs.
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2.2 The learning algorithm

We train our two-layer feedforward NN f : Wn × Ar → As using an online
backpropagation learning algorithm with momentum. The learning algo-
rithm itself is specified by three equations (see [11], page 327). It is a NN
based implementation of the steepest (gradient) descent optimization algo-
rithm, due originally to Fermat (see [11]). The task of the learning algorithm
is encoded in a (usually finite) set of patterns P , with elements

p = (xp, yp) = (xp1, . . . , xpr, yp1, . . . , yps).

The algorithm processes a sequence of patterns from P , and computes
a weight update ∆wij(p) for each weight wij and each pattern p.1 The
weight updates are used to modify the weights of the network w ∈ W , until,
typically, the error of the network, as measured by the function

E =
∑

p∈P

Ep =
s∑

j=1

(ypj − opj)
2

falls below some given magnitude. Formally, consider a nonempty set of
patterns P and let T be the natural numbers. The set [T → P ] is the set of
all sequences or streams over P with the intention that a ∈ [T → P ] is seen
as a sequence

a(0), a(1), a(2), . . .

of patterns from P . The learning algorithm computes a weight update
∆wij(a(t)) for each t ∈ T . These updates are added to the current weights
of the network and in this way the learning algorithm produces a sequence
of weights.

In symbols we have

Wji(0, a, w) = wji

Wji(t + 1, a, w) = Wji(t, a, w) +∆wji(a(t))

where wji is the initial weight of the connection and t ∈ T indexes the pattern
being processed.

In our experiments we also employ a momentum term α which determines
the effect of past weight updates on the current direction of descent (see [11],
page 330).

With this in mind we represent our learning algorithm by the stream
transformer

L : [T → A]r+s × Wn ×R2 → [T → W ]n

where L(a,w, η,α)(t) is the set of weights returned at time t on pattern
stream a, with initial weights w, learning rate η, and momentum α.

1We employ the functional notation ∆wij(p) instead of the more usual subscript nota-
tion ∆pwij to highlight the dependence on the current pattern being processed.
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2.3 Task specification

The launch interceptor problem has been used in a number of software en-
gineering experiments concerning correctness and reliability (e.g., [6]). Our
task is to implement one of the 15 so-called launch interceptor conditions,
LIC1. In [6] LIC1 is specified as a predicate that evaluates to true if:

“There exists at least one set of two consecutive data points that
are a distance greater than the length LENGTH1 apart

(0 ≤ LENGTH1).”

Here, LENGTH1 is a parameter of the condition. We shall abstract a functional
representation of this precise, though informal description. The intention
here is to make explicit the exact structure and semantics of the network
task.

Let S = [0, 1] × [0, 1] represent the set of all data points, let a = (x1, y1)
and b = (x2, y2) represent two consecutive data points and note that the
function

d(a, b) =
√

(x1 − x2)2 + (y1 − y2)2

is the euclidean distance on S. Formally, we require a NN implementation
of the bounded function

f : S × S × [0, 1] → B

defined by

f (a, b, LENGTH1) =

{
1 if d(a, b) > LENGTH1;
0 otherwise.

In fact, as our task will ultimately be executed on some digital computer, we
shall restrict our attention to the finite subset of rationals, with six decimal
places, in S × S × [0, 1].

LIC1 is a simple, well defined problem, although highly resistent to “cor-
rect” implementation with NNs. It is not a typical neural computing prob-
lem. It was however a conscious choice to use such a problem for the purposes
of illustration in this paper. The resultant demonstrations of various aspects
of the replicability difficulties are not confused by absence of information on
test set composition. It then remains to provide assurance that the observed
replicability phenomena are, in general, not artifacts of the chosen problem,
or problem type.

2.4 Training and test sets

Many NN experiments reported in the literature fail to adequately charac-
terize the structure of the training and test sets. A consequence of this is



Replicability of Neural Computing Experiments 263

seed random number generator
for i = 0 to 1000 do

x1 = random()
y1 = random()
x2 = random()
y2 = random()
LENGTH1 = random()
print〈x1 , y1, x2, y2, LENGTH1, g(x1, y1, x2, y2, LENGTH1)〉

Figure 1: Training set generator algorithm, where random() is the
pseudorandom number generator of a Silicon Graphics computer sys-
tem.

for x1 = 0 to 1.0 step 0.1 do
for y1 = 0 to 1.0 step 0.1 do

for x2 = 0 to 1.0 step 0.1 do
for y2 = 0 to 1.0 step 0.1 do

for LENGTH1 = 0 to 1.0 step 0.1 do
print 〈x1, y1, x2, y2, LENGTH1, g(x1, y1, x2, y2, LENGTH1)〉

Figure 2: Test set generator algorithm.

that any reported training and generalization results are difficult to interp-
ret, and virtually impossible to reproduce. Proper characterization of the
training and test sets is one essential prerequisite of replicability.

The five training sets (that we shall use later) were constructed by select-
ing a seed i = 1, 2, . . . , 5 and generating 1000 random triples 〈a, b, LENGTH1〉
and applying the task specification g (see Figure 1). In principle, we are able
to generate the entire set of example patterns (recall that we have restricted
our attention to rationals of six decimal places). In practice, however, this
is (usually) not the case and a specification of the task function is usually
encoded in a (small) training set acquired during the requirements analysis
phase of the network design.

Our test set consists of 161051 patterns equally spaced throughout the
pattern space, and constructed according to the algorithm shown in Figure 2.
The resulting test set (of 161051 or 115 patterns) ensures that our networks
are tested over the whole input space as opposed to some subset.
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2.5 Convergence criteria

Given a set of patterns P that encodes our task specification, we usually
require that the error of the learning algorithm E falls below some given
magnitude. Such a convergence criterion does not allow us much control
over the nature of acceptable network solutions and fails to take into account
any a priori knowledge of a task. We shall employ a stronger convergence
criterion that addresses these deficiencies.

Specifically, let µ be a σ-finite measure defined on a σ-algebra in X (see
[4]), and let d be a metric in Y (see [2]). We require that our learning
algorithm either terminates at time t = e, or for some time t < e returns a
set of weights L(p,w, η,α)(t) = w such that the NN satisfies

[µ{xp|d(g(xp), f (w, xp)) ≥ ε} < δ].

And, in this case, we shall say that the learning algorithm has converged to
an approximately correct implementation of the target function g, to some
accuracy ε and some tolerance δ, under metric µ.

In this study, let r = 5, s = 1, and d(x, y) = |x − y|. Assume that X is
finite, and let µ be the measure defined over the power set of X by

∀xpµ({xp}) =
1

|X|

∀Uµ(U) =
|U |
|X|

.

The measure µ can be interpreted as a uniform probability distribution,
that is, every point in X has an equal probability of occurring naturally.
Intuitively, in this case, our correctness specification implies that learning
terminates when our NN is ε-close to our target function, on all but some
fraction δ of training patterns.

2.6 Initial conditions

From these formal specifications we can extract a set of the initial conditions
designed to prescribe a replicable neural computing experiment. Table 1 lists
the parameters necessary (it also includes specific values that are used later).
At this point the objective is to explicitly layout the parameters that must
be specified.

Despite our efforts to provide a complete and precise specification of our
experiments, we recognize that it falls short of our goal. The various “gener-
ators” (initial weights, training and test sets) will inevitably produce slightly
different results as the hardware and software platforms, upon which they are
implemented, vary. In an ideal computational environment these generators
would be presented as abstract specifications that always deliver the same
results on any correct implementation of some standard virtual machine.
However, the reality is that results are likely to differ from (real) machine to
machine, and (in some cases) from compiler to compiler. And, while these
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Table 1: Experimental parameters.

Level Name Parameter
Network Input Units r = 5

Hidden Units q = 8, 9, 10, 11, 12
Output Units s = 1
Activation G = sigmoid

Learning Initial Weights Seeds i = 1, 2, 3, 4, 5
Algorithm Initial Weights Range [−0.5, 0.5]

Learning Rate η = 0.05
Momentum α = 0.5
Update online or batch

Task Accuracy ε = 0.5
Tolerance δ = 0.0
Training Set Seeds i = 1, 2, 3, 4, 5
Training Pattern Generator specified in Figure 1
Number of Training Patterns m = 1000
Epochs e = 20000
Test Pattern Generator specified in Figure 2
Number of Test Patterns l = 161051

possibly small discrepencies may not be significant in conventional compu-
tational experiments, the iterative nature of neural computing is such that
they can become compounded to high levels of significance. Hence our earlier
assertion that total replicability is impossible in most cases.

3. Generalization diversity

Having isolated a number of experimental parameters and requirements, we
now turn to the question of quantifying the differences which may be ob-
served between different NN experiments. We make use of the following two
measures.

1. The “generalization diversity” or GD, that occurs within groups of
networks (see [9]).

2. The “intergroup diversity” or ρ that occurs between groups of networks
(see [8]).

3.1 Intraset diversity

Consider a set A of N NNs each trained to perform a well defined task.
Assume that each network in A is trained using differing initial conditions
and then evaluated on a set of l test patterns. If the number of patterns
that have failed on (any) n = 1, . . . , N networks in A is denoted kn, then the
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probability pn that exactly n = 1, . . . , N versions fail on a randomly selected
test pattern is given by the formula

pn =
kn

l
.

Thus, the probability that a randomly selected version in A fails on a ran-
domly selected input is given by

P (1 fails in A) =
N∑

n=1

n

N
pn.

The probability that two versions in A selected at random (with replacement)
both fail on a randomly selected input is given by

P (2 both fail in A) =
N∑

n=1

n2

N 2
pn.

Note that in this case it is possible that the same network is selected twice. In
contrast, the probability that two versions in A selected at random (without
replacement) both fail on a randomly selected input is given by

P (2 different versions both fail in A) =
N∑

n=2

n(n − 1)

N (N − 1)
pn.

In this case, we note that it is impossible to select the same network twice.
Thus, we define the generalization diversity of a set of networks A to be

GD =
P (1 fails in A) − P (2 different versions both fail in A)

P (1 fails in A)
.

The measure GD has a minimum value of 0 when the N networks are all
identical (as measured by test set failures), and a maximum value of 1 when
all versions are maximally different, that is, every test pattern failure is
unique to one of the versions.

3.2 Interset diversity

In order to measure the diversity between two groups of networks we shall
employ a measure of correlation ρ (see [8]). Consider two nonempty sets of
networks A and B, each with NA and NB networks, trained to perform a well
defined task. Assume that each network in A and B is trained using differing
initial conditions and then evaluated on a common set of l test patterns.

If knAnB is the number of patterns that have failed on nA versions in A
and on nB versions in B, then the probability that exactly nA nets in group
A and exactly nB nets in group B all fail on a randomly selected test pattern
is given by the formula

pnAnB =
knAnB

l
.
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From this, the probability that two randomly selected versions (one from
each group) both fail on a randomly selected pattern is given by

P (1 fails in A & 1 fails in B) =
NA∑

nA

NB∑

nB

nAnB

NANB
pnAnB .

Thus we define ρ as

ρ =
P (1 fails in A & 1 fails in B) − P (1 fails in A)P (1 fails in B)√

(P (2 both fail in A) − P (1 fails in A)2) ∗ (P (2 both fail in B) − P (1fails in B)2)
.

We may interpret different values of ρ as follows.

1. A value of ρ = 1 indicates that the results of our groups are identical,
that is, the experiments are exact replications of one another. This
implies that every network in one group has an exact replication in the
other group.

2. A value of ρ > 0 indicates that our groups have not replicated exactly,
although the differences in the results are (statistically) similar, and
the value of ρ indicates the degree of similarity.

3. A value of ρ = 0 indicates that the differences in the results of our
groups are (statistically) unrelated; there is no evidence of replication
between individual networks in the two groups.

4. A value of ρ ≤ 0 indicates that test pattern failures in one group are
unlikely to be replicated in the other group, and again the value of ρ
indicates the degree to which this occurs.

5. A value of ρ = −1 indicates that within each group all failures are
coincident, that is, each network in a group fails on the same patterns,
while between the two groups no failures are coincident, that is, no
pattern that fails in group A also fails in group B, and vice versa. In
this (extreme) case we note that the GD of each group is 0, that is,
total lack of replication of failures between the two groups requires total
replication within each group.

The correlation coefficient ρ is thus a measure of the extent to which the
individual network experiments in one group have been replicated in another
group. It permits measurement of replicability over a set of individual net-
works and therefore can be used to avoid the idiosyncracies of individual
nets.

4. An empirical study of replicability

In order to demonstrate the application of our measures, we present a small,
but systematic investigation into the effect of changing update strategy used
in the backpropagation learning algorithm from online to batch. Although, in
theory, both update strategies lead to implementations of gradient descent,
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in practice they can lead, as we shall show, to different NN solutions. In the
literature, the choice of update strategy is often seen as merely an implemen-
tation detail, and so the choice of update strategy is omitted from the report
of the experiment entirely.

Specifically, we shall quantify the effect of the choice of update strategy
with respect to a population of 30 networks. The population was constructed
by training a group of 15 networks using first online, and then batch update.
The group consists of three subgroups of five networks each (denoted W, A,
and T), and constructed using the parameters shown in Table 1, according
to the following prescriptions.

1. Group W: Initial Weights. A NN with r = 5 input units, n = 10
hidden units, and s = 1 output unit was trained on a single randomly
constructed training set p3 of 1000 patterns, generated using seed 3,
using five different sets of weights wi, randomly generated from initial
seeds i = 1, 2, 3, 4, 5. We shall label these networks T3-A10-Wi.

2. Group A: Hidden Units. Five NNs with r = 5 input units, n =
8, 9, 10, 11, 12 hidden units, and s = 1 output unit were trained on
a single randomly constructed training set p3 of 1000 patterns gener-
ated using seed 3, using one set of weights w3, randomly generated from
initial seed 3. We shall label these networks T3-An-W3.

3. Group T: Training Set. Five NNs, each with r = 5 input units, n = 10
hidden units, and s = 1 output unit, were each trained on one of five
randomly constructed training sets pi, of 1000 patterns generated using
seeds i = 1, 2, 3, 4, 5, using one set of weights w3, randomly generated
from initial seed 3. We shall label these networks Ti-A10-W3.

Where appropriate we distinguish between networks generated with on-
line or batch update by the insertion of a “b” in the label of networks gen-
erated using the latter process. The two larger groups, online and batch, are
distinguished by denoting the component groups as A, W, or T and Ab, Wb,
or Tb, respectively.

4.1 Training

The results of training our population of 30 NNs is shown in Table 2. The
results demonstrate a high level of convergence, with only three networks
failing to learn after 20000 epochs. In these cases the numbers of patterns
remaining unlearned was small.

The first point to note is that one network experiment, that involving
network T3-A10-W3, is repeated within each of the six groups. Note further
that it appears to train in precisely the same way within the three batch
groups, and within the three online groups (same error to six decimal places
and same number of epochs to convergence), but that between these two
groups this network trains very differently (e.g., nearly 50% more epochs to
convergence when using batch rather than online weight update).
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This result suggests two things. First, we are completely and precisely
replicating the basic initial conditions from group to group, because we do
seem to obtain complete replicability for individual network experiments (but
remember we are using the same hardware, software, random number gen-
erator, etc., all of which would not normally be possible for researchers at
another site, or at another time). Second, the switch from batch to online
update strategy appears to wreck the replicability at the level of individ-
ual nets. However, it may be that apparently large training differences do
not become manifest as similarly large generalization differences, that is, all
six instances of the trained network T3-A10-W3 may be much the same in
terms of generalization behavior. To explore this possibility we need to test
the trained nets.

4.2 Testing

The results of testing each of these NNs on our test set of 161051 is shown
in Table 3. The results demonstrate a high level of generalization (minimum
96.04%, maximum 97.67%) and appear to indicate a low level of diversity,
that is, it appears that our networks have all converged to roughly equiva-
lent solutions as witnessed by the similarity in generalization results. This
suggests that, in terms of the generalization results, we might have achieved
replicability to within less than 2%.

In addition, it can be seen that again, within the batch and online groups,
the evidence points to complete replicability which strongly suggests that the
test is indeed identical within each group of three. Further examination of the
successes and failures of the test patterns on network T3-A10-W3 confirmed
that it was precisely the same 5694 patterns that failed within the online
group, and the same 6332 patterns that failed within the batch groups.

Apart from this example of complete replicability when precisely the same
network is subjected to precisely the same experiment, notice that no other
examples of total replication are evident in Table 3, which suggests that
varying weight initialization, varying number of hidden units, and varying
the training set composition (i.e., different randomly selected patterns) will
each individually destroy replicability at the level of individual nets. This is
as we would expect, but note also that there are no examples of replicability
between the batch and online groups.

Between these two groups the most similar experiment appears to be the
T3-A10-W4 network with 5515 test pattern failures in the W group, and
5520 failures within the Wb group (shown in bold in Table 3). This is a
difference of only five patterns in a test set of 161051, that is, 0.003%, which
is not too significant, perhaps. But what is hidden by this presentation is
whether the “overlap” in test failures, that is, the 5515 tests that they both
failed on, are the same 5515 tests. Clearly, to support the claim that the T3-
A10-W4 experiment was effectively replicated between the batch and online
strategies, these 5515 failures ought to be exactly (or very nearly exactly)
the same 5515 test patterns. But when we examine the test results more
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Table 2: The results of training the online and batch groups.

Incorrect Error Epochs Version Group
0 2.046708 5331 T3-A10-W1
0 1.414763 10757 T3-A10-W2
0 1.885597 5029 T3-A10-W3 W
0 2.106218 6953 T3-A10-W4
0 1.849380 6627 T3-A10-W5
0 2.289617 9906 T3-A8-W3
0 2.232139 6343 T3-A9-W3
0 1.885597 5029 T3-A10-W3 A
0 2.920789 3871 T3-A11-W3
0 1.441672 6186 T3-A12-W3
1 1.111853 20000 T1-A10-W3
0 4.774262 1863 T2-A10-W3
0 1.885597 5029 T3-A10-W3 T
0 1.846951 2824 T4-A10-W3
0 4.150957 1430 T5-A10-W3
0 1.050877 9211 T3-A10-Wb1
3 5.272037 20000 T3-A10-Wb2
0 2.076072 7461 T3-A10-Wb3 Wb
0 1.922335 7622 T3-A10-Wb4
0 2.435892 12153 T3-A10-Wb5
0 1.525628 7006 T3-Ab8-W3
0 2.253490 15224 T3-Ab9-W3
0 2.076072 7461 T3-Ab10-W3 Ab
0 1.384206 8118 T3-Ab11-W3
0 1.445946 9845 T3-Ab12-W3
2 2.218627 20000 Tb1-A10-W3
0 4.151362 2660 Tb2-A10-W3
0 2.076072 7461 Tb3-A10-W3 Tb
0 1.992639 8255 Tb4-A10-W3
0 2.005054 3149 Tb5-A10-W3

closely (as provided in Table 4), we find that both versions only have 3114
test failures in common; the other 2401 seemingly joint failures were, in fact,
a different 2401 test failures for each of the two versions. So a more accurate
measure of the replicability achieved in this case is that 4807 test patterns
failed uniquely on one of the two versions of T3-A10-W4, that is a difference
of 4807/161051 ≈ 3%, a much more potentially significant discrepancy.

If we plot the test failures for T3-A10-W4 and T3-A10-Wb4 (see Fig-
ures 3 and 4) the difference in test failures can be clearly seen. Each test

failure is plotted as euclidean distance (i.e.,
√

(x1 − x2)2 + (y1 − y2)2) against
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Figure 3: Graphical representation of the failures of T3-A10-W4 dur-
ing testing.

Figure 4: Graphical representation of the failures of T3-A10-Wb4
during testing.
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LENGTH1. The decision boundary for the task LIC1 is then the line
Length = Distance; points above this line are tests that should evaluate
to 1 but actually produced 0, and points on and below the line should have
evaluated to 0 but actually gave 1.

A comparison of these two plots clearly reveals the many test pattern
failures that were different between the two networks. In addition, it can be
seen that the test failure differences are heavily concentrated in the 1 results
wrongly computed as 0, that is, on tests above the decision boundary.

From Table 3, the maximum lack of replicability appears to be for net-
works T3-A11-W3 and T3-Ab11-W3 (shown in bold in Table 3). In group
A it exhibits 6376 test pattern failures and in group Ab there are 4006 such
failures. In this case there might be as many as 4006 common failures (i.e.,
the same test pattern failing on both versions), but further inspection reveals
that only 2580 test patterns, in fact, failed on both versions. The number of
unique failures was 5222, which also gives a difference of 5222/161051 ≈ 3%.

The tentative conclusion must be that the choice of batch or online update
strategy is not an implementation detail. It appears to introduce performance
differences of around 3% in individual nets. And furthermore, this lack of
replicability may be almost completely hidden in overall generalization per-
formance measures. Generalization performance for T3-A10-W4 is 96.58%
in group W and 96.57% in group Wb.

4.3 Replicability “on average”

It is possible that, although the choice of the weight update strategy may
undermine replicability between individual network experiments, it may be
effectively cancelled out by working with groups of networks. This is the
next hypothesis examined.

Using the measure of generalization diversity (GD specified earlier), which
is based on the numbers of unique and nonunique test failures in a set of
nets, we can quantify how differently individual networks in a set of networks
perform on a given test set. Clearly, if the five networks that constitute the W
group, say, were identical, that is, the same training had replicated the same
trained network five times despite different random weight initialization, then
there would be no performance difference, the GD value would be 0. At the
other extreme, if the five networks in group W were maximally different (i.e.,
different weight initialization led to minimum replicability in experiments),
then all test failures would be unique to just one of the networks (any common
failure indicates similarity of performance), and the GD value would be 1.

As an example, Table 5 provides the GD value for each group and the av-
erage of the generalization performances for the five networks in each group.
Again, it is clear that lack of complete replicability is evident even in these
“average” or group measures. Between batch and online update groups, the
maximum difference between GD values is 4% (between W and Wb), and
the maximum difference between average generalization performance is 0.43%
(between A and Ab). The two most similar groups appear to be T and Tb,
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Table 3: The results of testing the online and batch groups.

Group Version Failures Success Prob(fail) Prob(success)
T3-A10-W1 5390 155661 0.0335 0.9665
T3-A10-W2 6164 154887 0.0383 0.9617

W T3-A10-W3 5694 155357 0.0354 0.9646
T3-A10-W4 5515 155536 0.0342 0.9658
T3-A10-W5 6064 154987 0.0377 0.9623
T3-A10-Wb1 5722 155329 0.0355 0.9645
T3-A10-Wb2 6374 154677 0.0396 0.9604

Wb T3-A10-Wb3 6332 154719 0.0393 0.9607
T3-A10-Wb4 5520 155531 0.0343 0.9657
T3-A10-Wb5 5254 155797 0.0326 0.9674
T3-A8-W3 4930 156121 0.0306 0.9694
T3-A9-W3 4776 156275 0.0297 0.9703

A T3-A10-W3 5694 155357 0.0354 0.9646
T3-A11-W3 6376 154675 0.0396 0.9604
T3-A12-W3 6083 154968 0.0378 0.9622
T3-Ab8-W3 4124 156927 0.0256 0.9744
T3-Ab9-W3 5871 155180 0.0365 0.9635

Ab T3-Ab10-W3 6332 154719 0.0393 0.9607
T3-Ab11-W3 4006 157045 0.0249 0.9751
T3-Ab12-W3 4106 156945 0.0255 0.9745
T1-A10-W3 5307 155744 0.0330 0.9670
T2-A10-W3 4734 156317 0.0294 0.9706

T T3-A10-W3 5694 155357 0.0354 0.9646
T4-A10-W3 4779 156272 0.0297 0.9703
T5-A10-W3 3804 157247 0.0236 0.9764
Tb1-A10-W3 5745 155306 0.0357 0.9643
Tb2-A10-W3 4217 156834 0.0262 0.9738

Tb Tb3-A10-W3 6332 154719 0.0393 0.9607
Tb4-A10-W3 3748 157303 0.0233 0.9767
Tb5-A10-W3 4452 156599 0.0276 0.9724

Table 4: Test pattern failure summary.

Group Version Unique Failures Common Failures
W T3-A10-W4 2401 3114
Wb T3-A10-Wb4 2406 3114
A T3-A11-W3 3796 2580
Ab T3-Ab11-W3 1426 2580
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Table 5: Intragroup generalization diversity and average generaliza-
tion.

Group GD Avg. Gen.(%)
A 0.47 96.54
Ab 0.50 96.97
W 0.45 96.42
Wb 0.49 96.37
T 0.61 96.98
Tb 0.60 96.96

Table 6: Inter-group similarity

Groups ρ
A,Ab 0.83
W,Wb 0.84
T,Tb 0.85

with a GD difference of only 1% and generalization difference of only 0.02%.
These results might be taken to suggest that across a population of networks
variation of the (random) composition of the training set more or less cancels
out the lack of replicability between batch and online update for individual
nets. However, we must examine the results more carefully before we can
even begin to conclude this.

These results also suggest that, within a group, variation among the in-
dividual networks is substantially more sensitive to training set composition
(GD ≈ 0.6 in both T and Tb groups) than to either weight initialization or
to number of hidden units (GD ≈ 0.5 for both W and both A groups), and
that sensitivity to variation of these latter two parameters is about equal.
More extensive studies (e.g., [9]) confirm these tentative observations.

In Table 6 the intergroup diversity values are given. This quantity is a
measure of the similarity between the variety of test failures in two groups
of nets. If in both groups precisely the same number of networks fail on
precisely the same test patterns, then the ρ value will be 1, but if between
the two groups every test pattern failure is unique to its own group then the
correlation coefficient value will be negative. A failure distribution with a ρ
value very close to 1 is illustrated later in Table 9.

As can be seen, although the amount of diversity within each group is
similar (see Table 5), the specific differences within each batch update group
are quite different from the differences in each online update group. The
intergroup ρ values indicate that the between group differences are of a sim-
ilar magnitude, although this tells us nothing about whether these observed
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differences are similar in terms of the coincidence of specific test failures.
Taking groups T and Tb as examples: they differ in average generalization
performance by only 0.02%; they differ in GD by only 1.7%; but the similar-
ity of individual failures between the two groups correlate to only 0.85. So,
as with replicability between single-network experiments, there is an illusion
of similarity in the average measures on groups of nets, but these similar
“difference” values are composed from very different constituents. The ρ
values suggest that, in terms of group performance (rather than individual
networks), the lack of replicability (with respect to specific test failures) is
more that 10%. So lack of replicability between individual networks does not
“cancel out” within groups. On the contrary, it appears to become magni-
fied.

5. Validating implementations of backpropagation

A crucial element in achieving replicability in neural computing experiments
is to ensure that different implementations of the basic algorithms are in-
deed equivalent, that is, they are correct implementations of the specified
algorithms. Although we do not present a proof that the software employed
in our practical experiments is a correct implementation of our NN model and
learning algorithm, we can show that a particular piece of software is in fact
an “acceptable” implementation of a designated algorithm. This statistics-
based empirical validation is particularly applicable to NN experiments where
random initialization and the iterative numerical nature of the computations
being performed make exact replicability practically impossible from one site
to another (because of differences in hardware and software). In addition, the
fault tolerant nature of NNs themselves make it difficult to spot “obvious”
errors.

Essentially, the idea is to compare the outputs of two systems; one being
the software we are attempting to validate, the other being either a machine
executable version of our specification or an accepted standard implemen-
tation. We execute both programs in parallel, on identical test sets and
compare the results. In theory, the results of the computation should be
identical. In practice however, there may be many discrepancies and in this
case we may employ our statistical framework to quantify these discrepan-
cies in order to make a reasoned judgement as to whether our software is a
close enough approximation to our standard. In this section we illustrate this
idea with a comparison between two versions of backpropagation developed
independently.

5.1 Experimental structure

We use two different versions of online backpropagation; bpsig, which was
used to generate the results of section 4, and a new version, bpmon. The
versions are assumed to be functionally identical but were developed inde-
pendently. The aim is to test and quantify the validity of this assumption,
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Table 7: Training results.

Incorrect Error Epochs Version Group
0 2.048734 5329 T3-A10-W1
0 1.418497 10748 T3-A10-W2
0 1.884790 5033 T3-A10-W3 bpmom
0 2.105070 6960 T3-A10-W4
0 1.849360 6630 T3-A10-W5
0 2.046734 5331 T3-A10-W1
0 1.414893 10774 T3-A10-W2
0 1.885629 5048 T3-A10-W3 bpsig
0 2.106218 6972 T3-A10-W4
0 1.849377 6646 T3-A10-W5

and to demonstrate that even when our NNs and learning algorithms are
simple and well documented, complete replicability cannot be guaranteed.

Two groups of five networks each, T3-A10-Wi (where i = 1, . . . , 5) were
trained and tested using all the initial conditions specified in Table 1. One
group was trained with the bpsig implementation and the other with the
bpmom.

5.2 Training

Before training, our 10 networks were loaded with identical weight sets and
tested. The networks produced identical results over our test set of 161051
patterns and thus we shall regard them as identical. The results after training
(shown in Table 7) demonstrate that our two learning algorithm implemen-
tations differ very slightly. An interesting point to note here is the slight
difference between the bpsig results presented here and the bpsig results pre-
sented in the previous sections (see Table 2 for the W group). Although the
experimental setup was identical, in the previous section the weights were
generated “in memory” using 64 bits of precision, while in this experiment
the weights were loaded from an ASCII file using six decimal places of preci-
sion. The difference, while small, is enough to create slight differences in the
results, demonstrating the extreme sensitivity of backpropagation to initial
conditions.

5.3 Testing

The results of testing our networks are shown in Table 8. They are, as one
would expect, very similar. This observation is supported when one notes
that the correlation between the two groups is ρ = 0.9996. The correlation
between the bpsig results reported here and the bpsig results of the previous
section is ρ = 0.9999.
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Table 8: bpmom program failure probabilities.

Group Version Failures Success Prob(fail) Prob(success)
T3-A10-W1 5390 155661 0.0335 0.9665
T3-A10-W2 6159 154892 0.0382 0.9618

bpsig T3-A10-W3 5694 155357 0.0354 0.9646
T3-A10-W4 5515 155536 0.0342 0.9658
T3-A10-W5 6064 154987 0.0377 0.9623
T3-A10-W1 5391 155660 0.0335 0.9665
T3-A10-W2 6154 154897 0.0382 0.9618

bpmom T3-A10-W3 5698 155353 0.0354 0.9646
T3-A10-W4 5516 155535 0.0343 0.9657
T3-A10-W5 6065 154986 0.0377 0.9623

These high correlations indicate that within each group, as a whole, pre-
cisely the same numbers of nets failed on precisely the same test patterns. It
is just possible that the two groups of very similar looking nets (as presented
in Table 8) are in fact quite dissimilar when looking at which individual nets
failed on which individual test patterns. Recall the earlier example of the
two nets (batch and online trained) that agreed overall to 0.003% and yet
exhibited 3% difference in the specific test patterns that failed.

In order to examine the situation in this case of apparently very high
replicability between two sets of experiments, we again choose net T3-A10-
W4 and examine it more closely. According to the summary data in Table 8
the net T3-A10-W4 when trained with the bpsig backpropagation algorithm
failed on 5515 test patterns (precisely the same number as earlier, see the T3-
A10-W4 entry of the W group in Table 3). When trained with the bpmom
implementation of backpropagation 5516 test failures were recorded.

Closer inspection confirmed that the test failures are in fact identical,
save for the one extra failure by the bpmom version. This confirms that the
two groups of trained nets are indeed as similar as the correlation coefficient
suggests. One set of five experiments has been replicated (to a high degree
of accuracy), experiment for experiment, in the other set. From the table of
coincident failures (Table 9), this high correlation between the two groups of
networks can be clearly seen. It can also be seen that it is not perfect. To
produce a ρ value of 1, all failures would have to be on the diagonal from
top-left to bottom-right. All but 72 (i.e., 0.0004%) of the test failures are on
this diagonal, and each of the 72 that are not on it are in adjacent positions.
This means that, at most, only one individual network was involved in the
lack of total replication observed. Each entry in this table is the number of
test patterns that failed on precisely nA and nB networks, where both indices
are integers ranging from 0 to 5, set A is the bpsig group and set B is the
bpmom group.
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Table 9: Coincidence of test pattern failures between two implemen-
tations of the backpropagation algorithm.

bpmom
0/5 1/5 2/5 3/5 4/5 5/5

bpsig
0/5 149169 9
1/5 12 4304 10
2/5 10 2412 8
3/5 6 2038 8
4/5 5 1838 2
5/5 2 1218

Table 10: Generalization diversity and average failure probabilities.

Group GD Avg. Gen.
bpsig 0.4474 96.42
bpmom 0.4472 96.42

From our results, it is clear that although our versions are not identical,
there is a strong correlation indicating that they are similar enough to jus-
tify the view that they are both implementations of backpropagation. The
ρ value of 0.9996 indicates that our assumption of equivalence is valid to
a degree greater than 0.01%. It would, however, take a proper numerical
analysis of these values to transform them into reliable quantifications of
replicability, but the direct comparisons we have presented should provide a
guide to replicability, that is, the higher the ρ value, the better the replication
achieved.

6. Conclusions

This paper has accomplished the following.

1. Presented a formal specification of a simple NN experiment and at-
tempted to establish the problems that make replicability of simple
experiments virtually impossible.

2. Proposed and demonstrated a statistical framework that provides a
general measure of replicability achieved in the context of a well spec-
ified set of initial conditions.

3. Demonstrated the relative effects on replicability of a number of con-
ditions, some well known as important (but not how important), some
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generally seen as unimportant (e.g., batch or online weight update),
and some not generally recognized as conditions at all (e.g., precision
of hardware).

4. Proposed and demonstrated how the statistical framework for repli-
cability assessment can also be used as a way of validating supposed
implementations of the backpropagation algorithm (or indeed of any
other similarly “awkward” algorithm).

A systematic exploration of the possible interactions between the many
parameters is desirable, but will require a number of substantial studies in
their own right. The results of one study, such as [9] on the GD measure,
indicate that the examples presented in this paper are representative of gen-
eral trends on the LIC1 problem. Subsequent studies across problem types
LIC1, LIC4 (a more complex well defined problem), and OCR (a data-defined
letter recognition problem) as in [10], indicate that the results generalize to
other similar problems as well as to more traditional data-defined real world
problems. The results presented are then generally illustrative of the back-
propagation style of neural computing, which is not surprising given that it
relies on a dynamic “balancing” of many separate accumulations of small
increments in real-number space. What is surprising, and revealed by the
results, is the extent, pervasiveness, and complexity of the nonreplicability.

Further complicating the problem of replicability is the question of what
particular features one is trying to replicate. If, for example, one considers
generalization performance and commonality of test pattern failure, the for-
mer is often quite replicable while the latter is not, even though the former is
a direct consequence of the latter. Recall, for example, the online and batch
results with the net T3-A10-W4 (Table 3). The generalization performance
was replicated to less than 0.001%, but the actual test set failures varied by
40% (Table 4). A replication in terms of one feature is far from a replication
in terms of another.

One rather different approach to replicability would be for researchers to
establish publically accessible data sets consisting of the training set, test set,
and initial weight set (together with architecture and necessary mappings).
Even this would not ensure complete replicability, but it would, however, go
some way towards reducing the inevitable diversity of network solutions.

This paper has pointed out that the claimed accuracy of experimental
results must be related to the experimental control exercised, both the degree
of control and what is controlled. This is, of course, in addition to all the
usual requirements of experimental validity. A proper numerical analysis is
needed to firmly establish the exact relationship between statistical measures
of replicability (e.g., ρ and GD) and the accuracy of reported results. But
even without such an analysis the replicability measures can be used as a
rough guide to the acceptable accuracy of reported results.

The (generally) consistent reproducibility of a coarse-grained measure-
ment, such as generalization performance, contrasts sharply with the lack
of replicability at the fine-grained level of specific test pattern failures of
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individual networks. The situation is reminiscent of many natural complex
systems (e.g., the real gases of physics, or many features of biological sys-
tems) where macro-predictability is secure despite micro-unpredictability, for
example, the pressure exerted by a volume of gas at a given temperature
can be accurately predicted, despite the fact that the speed and trajectories
of the individual molecules (which collectively produce this pressure) can-
not. Classic science tackles this problem by attempting to replicate only the
macro-phenomena, although there is also some considerable discussion about
how, whether, and in what way the more micro-phenomena in, say, biology
can be treated as reproducibly “scientific” phenomena.

Neural computing, which is a man-made artifact rather than a “given”
that the scientist must make the best of, begins to look all too organic in prac-
tice, even though it is a well-defined abstraction. If this “macro-determinacy
but micro-indeterminacy” view is accepted, then one can only reasonably ex-
pect replicable experiments in terms of the macro-properties of neural com-
puting.

This paper demonstrates that lack of replicability is a more insidious
problem than most neural-computing practitioners realize because of the fol-
lowing.

1. Not only do “mere implementation” differences lead to different results,
but even slight changes in the usage of exactly the same implementation
can also yield differences.

2. Common measures of replication, such as percent correct, can suggest
accurate replication, whereas our more discriminating technique reveals
that this is far from true.

In conclusion, we view the controls needed to guarantee replicability of
a single-net neural computing experiment to be excessive (and in practice
usually impossible). In neural computing, a replicable experiment seems to
imply group averages if not statistics in one form or another. In fact, the
long-running saga in classic science of whether cold fusion is a reality or an
illusion has caused many to question the apparent simplicity and significance
of replicability as the foundation stone of scientific method.
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