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Abstract. The complexity of formal languages which are generated
by S-unimodal systems on interval covers is studied. It is shown that
there exist S-unimodal systems with nonrecursive languages, those
with recursive but not context-sensitive languages, and those with
context-sensitive but not regular languages. It is also shown that
S-unimodal systems with regular languages include all systems with
finite, periodic, and preperiodic kneading sequences, but also all in-
finitely renormalizable systems. Finally, it is shown that systems with
zero topological entropy might be characterized by periodic languages
(a subclass of regular languages), and systems with unique fixed points
can be characterized by bounded periodic languages.

1. Introduction

The rich variation of dynamics encountered in the simple quadratic family
fr(x) = rx(1 − x) has been a source of fascination resulting in deep mathe-
matical theorems (e.g., [6, 13–15]). Better understanding of the quadratic
family and more general unimodal families calls for classification schemes
which could evaluate their complexity. Their statistical complexity is well
captured by topological entropy, which is nondecreasing with the parameter
r (see [14]).

Another approach to the complexity of unimodal systems was pioneered
in [7] (see also [8, 18]) that is based on the theory of formal languages and
computational complexity. The decomposition of the real interval into two in-
tervals separated by the critical point yields a language of possible itineraries.
The obtained language is regular if the kneading sequence is finite or periodic
(when the system has a stable periodic orbit), or when its kneading sequence
is preperiodic (when the system is at a band merging bifurcation). Thus the
language complexity is not monotonous with r: the really complex behaviors
can be found only in the interior of the parameter range.
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This approach could be generalized. Every closed cover of the state space
of a dynamical system yields a language of its finite itineraries and the corre-
sponding subshift of its infinite itineraries. For classification purposes, suit-
able test covers have to be chosen. For zero-dimensional systems, appropriate
test covers seem to be clopen partitions (see [11]). In the one-dimensional
case we use interval covers that consist of intervals which intersect at most
in their end points. For a given class L of languages we say that a dynamical
system on a real interval is of class L, if there exists a separating sequence
of interval covers, each of which yields a language belonging to L (here sep-
arating means that the diameter of the covers tends to 0, and every cover
of the sequence refines the preceding one). Using this concept, the language
complexity of circle rotations has been investigated in [3].

In this paper we investigate unimodal systems in a similar manner. We
show that there exist S-unimodal systems with nonrecursive languages, those
with recursive but not context-sensitive languages, and also those with context-
sensitive but nonregular languages (no results have been obtained for context-
free languages). This has been demonstrated on S-unimodal systems with
nonrecurrent critical points, where the kneading sequence can be recon-
structed from the language of a sufficiently fine interval cover. The systems
with regular languages include again systems with finite, periodic, or preperi-
odic kneading sequences. However, in contrast to the results in [7], infinitely
renormalizable systems yield regular languages also. This is possible because
the cannonical cover plays no distinguishable role in our approach.

We also consider two subclasses of regular languages. We say that a
regular language is periodic if it can be generated by a finite graph whose
every communicating class is a cycle. This happens exactly when the corre-
sponding subshift is countable. We say that a periodic language is bounded
periodic if, in addition, every communicating set is final, that is, no edge
goes out of it. This happens exactly when the correponding subshift is finite.
We show that a unimodal system has periodic languages if and only if it
has zero topological entropy, that is, if it has finitely many periodic points
(whose periods must then be powers of 2) or if it is the Feigenbaum system.
Finally, the system has bounded periodic languages if and only if it has a
unique fixed point.

2. Subshifts and languages

A dynamical system (X, f ) is a continuous mapping f : X → X, where X is a
compact metric space. A homomorphism H : (X, f )→ (Y, g) is a continuous
map H : X → Y such that Hf = gH. A surjective homomorphism is called
a factor map, a bijective homomorphism is called conjugacy.

A point x ∈ X is periodic if fn(x) = x for some n > 0. It is eventually
periodic if fm(x) is periodic for some m ≥ 0 and it is preperiodic if it is
eventually periodic but not periodic. It is aperiodic if it is not eventually
periodic. A point x ∈ X is recurrent if for every neighborhood U of x there
exists n > 0 such that fn(x) ∈ U .



Language Complexity of Unimodal Systems 285

A dynamical system (X, f ) is equicontinuous if for every ε > 0 there exists
δ > 0 such that for every x, y ∈ X, if d(x, y) < δ, then d(fn(x), fn(y)) < ε
for every n ≥ 0. A subset Y ⊆ X is an attractor if there exists a closed
subset V ⊆ X such that f (V ) ⊂ int(V ), and Y = ∩n≥0fn(V ).

A closed cover of a space X is a finite collection V = {Va, a ∈ A} of its
closed subsets whose union is X. If Va ∩ Vb = 0 for a )= b, then all Va are
clopen (closed and open). In this case we say that V is a clopen partition. A
closed cover of a real compact interval is called interval cover, if it consists
of closed intervals which overlap at most in their end points. The diameter
of V is diam(V) = max{diam(Va); a ∈ A}. We say that V is finer than
W = {Wb; b ∈ B}, if there exists a function h : A → B such that Va ⊆Wh(a).
We say that (Vi)i∈IN is a separating sequence of closed covers, if Vi+1 is finer
than Vi, and limi→∞ diam(Vi) = 0.

If A is a finite alphabet n ∈ IN denote by An the set of words over A of
length n, A∗ = ∪n∈INAn the set of finite words over A, AIN the set of one-way
infinite words, and A∗ = A∗ ∪ AIN . For u ∈ A∗, denote by |u| its length
(0 ≤ |u| ≤ ∞). A language over A is any subset L ⊆ A∗. A (one-sided)
full shift is a dynamical system (AIN ,σ) on the power space AIN equipped
with the product topology, given by σ(u)i = ui+1. A subshift (over A) is
any subsystem of the full shift, that is, a dynamical system (Σ,σ), where
Σ ⊆ AIN is a nonempty closed subset Σ of AIN which is σ-invariant, that is,
σ(Σ) ⊆ Σ (the inclusion might be strict).

Let (X, f ) be a dynamical system and let V = {Va; a ∈ A} be a closed
cover of X. For u ∈ A∗ put

Vu = {x ∈ X; (∀i < |u|)(f i(x) ∈ Vui)} =
⋂

i<|u|
f−i(Vui)

LV(X, f ) = {u ∈ A∗;Vu )= ∅},
ΣV(X, f ) = {u ∈ AIN ;Vu )= ∅}.

Then ΣV(X, f ) is a subshift and L = LV(X, f ) is a right-central language,
that is, it is closed under subwords (if u ∈ L and v is a subword of u then
u ∈ L) and extendable to the right (if u ∈ L then there exists a ∈ A with ua ∈
L). In fact the right-central languages are in one-to-one correspondence with
subshifts (cf., [3]), and for a subshift Σ ⊆ AIN , and partition V = {[a]; a ∈ A},
LV(Σ,σ) is exactly the language of words occurring in points of Σ.

The topological entropy of a dynamical system (X, f ) on a cover V is

hV(X, f ) = lim
n→∞

1

n
ln card{u ∈ An;Vu )= ∅}

and the topological entropy of (X, f ) is h(X, f ) = supV hV(X, f ) where the
supremum is taken over all open covers of X. If X is a zero-dimensional
space and if (Vn) is a separating sequence of clopen partitions, then

h(X, f ) = lim
n→∞

hVn(X, f ) = lim
n→∞

h(ΣVn(X, f ),σ).
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3. Complexity classes of languages

We consider language classes using the Chomsky hierarchy. A language is re-
cursive (REC), if it can be recognized by a (deterministic or nondeterministic)
Turing machine. A language is context-sensitive (CS) if it can be recognized
by a nondeterministic Turing machine in linear space. A language is regular
(REG) if it can be recognized by a (deterministic or nondeterministic) finite
automaton.

A (finite) graph is a fourtuple G = (V,E, s, t) where V is a finite set of
vertices, E is a finite set of edges, and s, t : E → V are the source and target
maps such that s is surjective. A path in G is a sequence u ∈ E∗ such that
t(ui−1) = s(ui) for every 0 < i < |u|. A path is simple if it does not contain
any edge twice. We say that vertices a, b ∈ V communicate if there exists a
path from a to b and a path from b to a. The communication relation is an
equivalence on the set of those vertices which communicate with themselves.
The equivalence classes are called communicating sets. A communicating set
is a cycle, if for every a, b ∈ V there is exactly one simple path from a to b.
A communicating set is final, if no edge leaves it. Every graph has at least
one final communicating set.

A labeled graph over an alphabet A is a graph G = (V,E, s, t) together
with a labeling function l : E → A. A labeling function extends to paths
l : E∗ → A∗. The language LG,l and the subshift ΣG,l of a labeled graph are
the sets of the labels of its finite or infinite paths respectively. A right-central
language L is regular if and only if L = LG,l for some labeled graph (G, l).
A general language L (not necessarily right-central) is regular if and only if
there exists a labeled graph (G, l) and an initial vertex v0 ∈ V , such that L
is exactly the set of labels of paths which start in v0. In both cases we can
assume that the graph is right-resolving. This means that for every vertex
v ∈ V and every letter a ∈ A there exists at most one edge with source v
and label a.

For dynamical purposes, two subfamilies of the family of regular languages
seem to be useful. We say that a regular language is periodic (PER), if it
can be presented by a graph whose every communicating set is a cycle. We
say that a language is bounded periodic (BPER), if every communicating set
of the graph is also a final cycle.

Proposition 1. A subhift has bounded periodic languages if and only if it
is finite.

Proof. Let (G, l) be a labeled graph where every communicating set is a final
cycle. Let p be the least common multiple of the length of all cycles, and
let m be the maximal length of all paths outside of the communicating sets.
Then for every infinite path u of G, ui = ui+p for all i > m. Thus u is
determined by its initial substring of length m + p, so the number of infinite
paths is finite, and ΣG,l is finite too. Conversely if (X, f ) is a finite dynamical
system, construct a graph G = (X,X, s, f ), where s is the identity function,
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with a labeling function l : X → X which is identity also. Then G has the
required properties and (X, f ) is conjugate to (ΣG,l,σ).

Proposition 2. A subshift with regular languages has periodic languages if
and only if it is countable. In this case it has a nonzero finite number of
periodic orbits.

Proof. Let (G, l) be a labeled graph with every communicating set being
a cycle. Let W be the set of simple paths with sources and targets that
coincide. Let U be the set of simple paths with sources and targets that
lie in different communicating sets. Then W and U are finite. If x is an
infinite path in G, then x = u0w

k0
0 . . . um−1w

km−1
m−1 wm for some ui ∈ U and

wi ∈ W . This is a countable set, so ΣG,l is also countable. It is clear that
the set of periodic points is finite. Conversely, suppose that Σ ⊂ AIN is a
countable subshift with regular languages. Let (G, l) be a minimal right-
resolving presentation for Σ (see [12]). We show that every communicating
set W of G is a cycle. Indeed if not, then there exist different paths u, v, w
such that s(u) = s(v) = t(v) and t(u) = t(v) = s(w). Since (G, l) is right-
resolving, l(u) )= l(v). Then any sequence x = x0l(w)x1l(w)x2 . . . where
xi ∈ {l(u), l(v)}, belongs to Σ = ΣG,l. Thus Σ is not countable.

Let A1 and A2 be finite alphabets. A map h : A1 → A2 extends to a
monoid homomorphism h∗ : A∗

1 → A∗
2 by h∗(u)i = h(ui). We say that a

language L2 ⊆ A∗
2 is a factor of a language L1 ⊆ A∗

1 if there exists a map h :
A1 → A2 such that L2 = h∗(L1). (In formal language theory a more general
concept of λ-free homomorphism is used, e.g., [9].) For the corresponding
subshifts Σ1 andΣ2 we get a (“block one”) factor map hIN : (Σ1,σ)→ (Σ2,σ),
defined by hIN(u)i = h(ui).

Definition 1. A family L of languages is closed under factors if it contains
all factors of all its members. A family of languages L is closed under concate-
nations if for every language L ⊆ A∗ of class L, and every n > 0, the language
Ln = {(u0 . . . un−1)(u1 . . . un) . . . (uk−1 . . . uk+n−2) ∈ (An)∗;u0 . . . uk+n−2 ∈ L)}
belongs to L.

All families of languages considered above are closed under both factors
and concatenations. In the sequel, any abstract family of languages consid-
ered is supposed to have these properties.

Definition 2. Let L be a class of right-central languages closed under fac-
tors. We say that a zero-dimensional system (X, f ) is of class L if there
exists a separating sequence of clopen partitions Vi of X, such that for every
i, LVi(X, f ) is in L. We say that a dynamical system (I, f ) on a real interval
is of class L if there exists a separating sequence of interval covers Vi of X,
such that for every i, LVi(X, f ) is in L.

Proposition 3. Every dynamical system (I, f ) of class L is a factor of a
zero-dimensional system of class L.
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The proof works for a general dynamical system (X, f ) possessing a sep-
arating sequence of closed covers. Let Vi = {Va; a ∈ Ai} be an increasing
sequence of closed covers and let hi : Ai+1 → Ai satisfy Va ⊆ Vhi(a) for every
a ∈ Ai+1. We have factor maps hIN

i : (Yi+1,σ)→ (Yi,σ) where Yi = ΣVi(X, f )
and hIN

i (u)i = h(ui). Let Y = {y ∈ ∏
i Yi; hIN

i (yi+1) = yi} be their inverse
limit, define g : Y → Y by g(y)i = σ(yi) and H : Y → X by H(y) = ∩iVyi0.
Then (Y, g) is a zero-dimensional system of class L and H : (Y, g) → (X, f )
is a factor map.

Proposition 4. Every dynamical system with bounded periodic languages
is equicontinuous.

Proof. Since every factor of an equicontinuous system is equicontinuous (see
[1]), it suffices to prove the theorem for zero-dimensional spaces. Given ε > 0,
let V = {Va; a ∈ A} be a clopen partition of X with diam(V) < ε such that
LV(X, f ) is bounded periodic. There exists δ such that whenever d(x, y) < δ,
then x and y belong to the same set of the partition, and therefore for all i,
d(f i(x), f i(y)) < ε.

Proposition 5. Every dynamical system with periodic languages has zero
topological entropy.

Proof. It is again sufficient to prove the theorem for zero-dimensional sys-
tems. Let (Vi)i∈IN be a separating sequence of clopen partitions of a zero-
dimensional space X. By the Bowen theorem (see [4]), the topological en-
tropy of a dynamical system is concentrated on its nonwandering set, so
the topological entropy of every (ΣVn(X, f ),σ) is zero. It follows that the
topological entropy of (X, f ) is also zero.

4. Symbolic dynamics of unimodal systems

With slight modifications we follow the exposition of unimodal systems in
[5, 14].

Definition 3. An S-unimodal system is a dynamical system (I, f ) on a
closed interval I = [a, b] with negative schwarzian derivative (and therefore
continuus third derivative) and negative second derivative such that there is
exactly one critical point c ∈ (a, b) with f ′(c) = 0, and f (a) = f (b) = a.

Let A be a finite alphabet and u, v ∈ A∗. We write u / v if u is an
initial segment of v, and u ! v if u is a proper initial segment of v. The
initial substring of a word u of length n is denoted by u|n = u0 . . . un−1. We
denote by λ the word of zero length, and by convention, put ui = λ if i ≥ |u|,
where |u| is the length of u. For binary alphabet 2 = {0, 1} and u ∈ 2 put
û = 1− u. For u ∈ 2∗ with |u| = n > 0 put û = u0 . . . un−2ûn−1.
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If (I, f ) is an S-unimodal system and x ∈ I, define its itinerary I(x) ∈ 2∗

by

I(x)i = 0 if f i(x) < c,
I(x)i = 1 if f i(x) > c

for all i < |I(x)| = min{i ≥ 0; f i(x) = c} ≤ ∞. The kneading sequence of
(I, f ) is K(f ) = I(f (c)). We have always I(a) = 0, I(c) = λ, and I(b) = 10.
For u, v ∈ 2∗ define u ≺ v if and only if for k = max{i;u|i = v|i} either

u0 + · · · + uk−1 mod 2 = 0 and uk ≺ vk, or
u0 + · · · + uk−1 mod 2 = 1 and uk 1 vk.

Here, if uk or vk is λ, which happens when one of the words is a proper initial
substring of the other, we put 0 ≺ λ ≺ 1. We also write u ≺

! v if u ≺ v or
u ! v, and u )

! v if u 1 v or u ! v. Of course u 2 v means u ≺ v or u = v.
The order ≺ corresponds to the order on the real line so that I(x) ≺ I(y)
implies x < y, and x < y implies I(x) 2 I(y).

There is the canonical interval cover Vc = {Vi; i ∈ 2} with V0 = [a, c] and
V1 = [c, b]. Since the intervals Vu overlap, we have a weaker form of the order
preserving property in Proposition 6.

Proposition 6. Suppose that u, v ∈ 2∗, |u| = |v|, u ≺ v, x ∈ Vu, and
y ∈ Vv . Then x ≤ y.

Proof. By induction on the common length of u and v.
An S-unimodal system has at most one (one-sided) stable periodic orbit,

and this happens exactly when its kneading sequence K(f ) is finite or per-
iodic. If K(f ) is infinite aperiodic (but possibly preperiodic), then Vc is a
generator so (I, f ) is a factor of (ΣVc(I, f ),σ). This yields an upper estimate
on the complexity of (I, f ).

Theorem 1. Let L be a class of languages closed under factors and concate-
nations, and let (I, f ) be an S-unimodal system whose kneading sequence is
neither finite nor periodic. If LVc(I, f ) belongs to L then (I, f ) is of class
L .

Proof. For n > 0 put An = LVc(I, f ) ∩ 2n. By Theorems II.5.4 and II.6.2 in
[6], different points have different itineraries, so Vn = {Vu;u ∈ An} is a sep-
arating sequence of interval covers. Since L is closed under concatenations,
LVn(I, f ) = Ln

V(I, f ) belongs to L for every n.
We now characterize subshifts generated by the canonical covers. For

S-unimodal system (I, f ) define the upper kneading sequence K(f ) ∈ 2IN

as the maximal u ∈ 2IN for which f (c) ∈ Vu. If the kneading sequence is
infinite, then K(f ) = K(f ). If K(f ) = w0 . . . wn−2 is finite, and wn−1 =
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w0 + · · ·+wn−2 +1 mod 2, then K(f ) = w0 . . . wn−2wn−1w0 . . . wn−2ŵn−1. For
w ∈ 2IN put

Lw = {u ∈ 2∗; (∀i > 0)(σi(u) ≺
! w)},

Σw = {u ∈ 2IN ; (∀i > 0)(σi(u) 2 w)}.

A sequence w ∈ 2IN is called maximal if w ∈ Σw. If w is maximal, then it
can be reconstructed from Σw. Indeed, if v ∈ 2IN is the maximal sequence
with the property that 0v ∈ Σw, then v = w.

Theorem 2. Let (I, f ) be an S-unimodal system. Then LVc(I, f ) = LK(f)

and ΣVc(I, f ) = ΣK(f).

Proof. Suppose that u ∈ LVc(I, f ) with |u| = n. There exists x ∈ Vu, so
f i(x) ∈ Vσi(u). If σi(u) ≺

! K(f ) were not satisfied, then there would exist
j < n such that w0 . . . wj−i ≺ ui . . . uj. By Proposition 6 f (c) ≤ f i(x),
so f i(x) = f (c) and f (c) ∈ Vui...uj . This is however a contradiction, since
w0 . . . wj−i is the maximal string of length j− i+1 for which f (c) ∈ Vw0...wj−i.
Suppose that u ∈ LK(f). We proceed by induction on the length n = |u|. If
n = 1, then clearly u ∈ LVc(I, f ). Suppose that the claim holds for n − 1.
Then the condition is satisfied for σ(u), so it belongs to the language. For
i = 1 we get σ(u) ≺

! K(f ). If σ(u) ! K(f ), then c ∈ Vu. If σ(u) ≺ K(f ),
then every y ∈ Vσ(u) satisfies y ≤ f (c), so there exists x ∈ Vu with f (x) = y.
In both cases we have u ∈ ΣVc(I, f ). The equality of subshifts follows by
compactness.

If K(f ) is finite, then K(f ) is preperiodic and there exists a unimodal sys-
tem (I, g) with K(g) = K(f ). The two systems are, however, quite different:
the former has a superstable periodic orbit, while the latter is topologically
transitive on a finite union of closed intervals.

We now explore the relation between the complexity of an infinite max-
imal sequence w ∈ 2IN and its corresponding subshift Σw. Every maximal
w can be split in a unique manner into a sequence of blocks w = ∆0∆1 . . .
where |∆0| = 1, and for every k > 0, ∆k is the initial segment of w up to
and including the first difference, so ∆k = w0 . . . wj−1ŵj for some j ≥ 0. If
for some k there is no such j, then the last block is infinite, ∆k = w, and
the number of blocks ‖w‖ = k + 1 is finite. Otherwise the number of blocks
is infinite, ‖w‖ = ∞. If w0 = 0 then w = 0, so the splitting is w = 0.0 and
‖w‖ = 2. In all other cases ∆0 = 1. For every k > 0 we have ∆k ≺ w, so ∆k

is even and since ∆0 = 1, ∆0 . . .∆k is odd. Proposition 7 shows that every
block ∆k ends between two consecutive blocks.

Proposition 7. Let w ∈ 2IN be a maxinal sequence. Then for every 0 <
k < ‖w‖ there exists Q(k) < k such that ∆k = ∆0 . . .∆Q(k)−1∆̂Q(k). Put
Q(0) = −1. Q is called the kneading function and it completely determines
the kneading sequence.
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Proof. Suppose that ∆k = ∆0 . . .∆p−1∆ where 0 < |∆| < |∆p| for some
p. Then ∆ = w0 . . . wi−1ŵi for some i and since ∆ ≺ w, ∆ is even. On
the other hand, since ∆k ≺ w, we get ∆0 . . .∆p−1∆ ≺ ∆0 . . .∆p−1w0 . . . wi.
Since ∆0 . . .∆p−1 is odd, we get ∆ 1 w0 . . . wi, which is a contradiction.

Example 1 (Feigenbaum) The least kneading sequence of a unimodal sys-
tem is 0.0. The corresponding unimodal system has either a unique fixed
point, or two fixed points both less than the critical point. When the sec-
ond fixed point passes the critical point, the kneading sequence becomes 1.1,
and in a series of period doubling bifurcations we get systems with knead-
ing sequences 1.0.10, 1.0.11.1011, . . .. All these systems have finite splittings
and a kneading function Q(k) = k − 1. At the limit of these systems there
is the Feigenbaum system with infinite splitting and the kneading function
Q(k) = k − 1, so

K(f ) = 1.0.11.1010.10111011.1011101010111010 . . . .

Example 2 (Fibonacci) The Fibonacci unimodal system has the kneading
function Q(0) = −1, Q(1) = 0, Q(k) = k − 2 for k > 1, so

K(f ) = 1.0.0.11.101.10010.10011100.1001110110011 . . . .

Proposition 8. Let w = ∆0∆1 . . . be a maximal sequence with infinite split-
ting ‖w‖ = ∞. Let G be an infinite graph with vertex set VG = {−1, 0, 1, . . .}
having labeled edges −1 0→ 0, −1 1→ 0, k

∆k→ k + 1, and k
∆̂k→ Q(k) + 1 for

k ≥ 0. Then Σw consists exactly of the labels of infinite paths in G which
start at vertex −1.

Proof. Note that for every u ∈ 2IN there is at most one path with label u
starting at −1. Let u ∈ Σw. Then u can be split in a unique way into blocks
u = Γ0Γ1 . . . such that Γ0 = 10k or Γ0 = 0k+1 for some k ≥ 0, 1 / Γ1, and
for every k > 0, Γk is the initial sequence of w up to the last block where
there is no difference encountered. In other words there exists R(k) > 0 such
that Γk = ∆0 . . .∆R(k)−1 and ∆R(k) )/ Γk+1. If for some k no difference is
encountered, then the number of blocks is k + 1 and Γk is infinite. We show
that ∆̂R(k) / Γk+1. Indeed, suppose that ∆0 . . .∆R(k)−1∆ ! ΓkΓk+1 . . . with
∆ = w0 . . . wi−1ŵi for some i with 0 < |∆| < |∆R(k)|. Then ∆ ≺ w, but
∆0 . . .∆R(k)−1∆ ≺ w, and ∆0 . . .∆R(k)−1 is odd, so ∆ 1 w and we get a

contradiction. It follows that ∆̂R(k) = ∆0 . . .∆Q(R(k)) / Γk+1, so there is a
path

R(k)
∆̂R(k)−→ Q(R(k)) + 1

∆Q(R(k))+1−→ · · ·
∆R(k+1)−1−→ R(k + 1)

and R(k)
Γk+1−→ R(k+1). Put R(0) = 0. Since −1

Γ(0)→ 0
Γ(1)→ R(1), u = Γ0Γ1 . . .

corresponds to an infinite path in G. Conversely every infinite path u in G
can be split into blocks u = Γ0Γ1 . . . such that Γ0 is the longest path with
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Figure 1: The graphs for the Feigenbaum and Fibonacci systems.

source −1 and target 0 = R(0). Γ1 is the longest path with source R(0) with
vertices that increase. Denote by R(1) its target. For every k > 1, Γk is
the longest path with source R(k − 1), going first to Q(R(k − 1)) and then
continuing to ever increasing vertices Q(R(k − 1)) + 1, . . . until some R(k).
Suppose by contradiction that for some i > 0 we have σi(u) 1 w. Then there
exists k, l, and j such that σi(u) 4 ΓΓk+1 . . .Γl = w0 . . . wj−1ŵj , where Γ is
either a proper final segment of Γk or it is empty. But then Γk . . .Γl is an
initial segment of w, and Γk+1 . . .Γl 1 w which is in contradiction with the
maximality of w. The graphs for the Feigenbaum and Fibonacci systems are
shown in Figure 1.

Proposition 9. Let w ∈ 2IN be an infinite maximal sequence that is eventu-
ally periodic. Then there exists a finite labeled graph such that Σw consists
exactly of the labels of infinite paths in G.

Proof. The splitting of w is either infinite eventually periodic or it is finite.
In the former case w = ∆0 . . .∆q−1∆q . . .∆q+p−1 and the graph constructed
in Proposition 8 works for it. (Note that the period ∆q . . .∆q+p−1 is even in
this case.) For every r > q we can identify vertices r, r + p, and r + 2p, . . .
without changing the language. Thus we obtain a finite graph with vertex
set VG = {−1, 0, . . . , q +p}, and the same edges except that ∆q leads to q +1

now, q+p
∆q→ q+1. If the spliting of w is finite w = ∆0 . . .∆q, then the graph

constructed in Proposition 8 also works, but there is a unique path from q
with infinite label ∆q = w. (Note that the period ∆0 . . .∆q−1 is odd in this
case.) The same language can be obtained by a finite graph with vertex set
VG = {−1, 0, . . . , q} and the same edges, except that there is a single edge

q
∆0...∆q−1−→ q starting at q. The graphs for 101 = 1.0.11 and 100 = 1.0.0.100

are shown in Figure 2.

Definition 4. Let L be a class of right-central languages. We say that an
infinite sequence u ∈ AIN is of class L, if the langauge {u|n;n ∈ IN} belongs
to L.

Observe that u is regular if and only if it is eventually periodic.
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Figure 2: The graphs for 101 = 1.0.11 and 100 = 1.0.0.100.

Theorem 3. Let w ∈ 2IN be a maximal sequence. For the classes L of
regular, context-sensitive, and recursive languages, the language Lw is of
class L if and only if w is of class L.

Proof. Note that w can be reconstructed from Σw. If v is the maximal
sequence with the property that 0v belongs to Σw, then v = w. Suppose
that Lw is a regular language. Let G with vertex set |G| be a right-resolving
labeled graph and y0 ∈ |G| be an initial vertex such that Lw is the set
of labels of paths in G which start at y0. Construct sequences yi ∈ |G|,
xi, vi ∈ 2, i > 0 as follows. y1 is the vertex for which there exists an edge

y0
0→ y1, and x1 = 0. Suppose that yi and xi have already been constructed.

Then there exists the unique couple vi, yi+1 such that there exists an edge

yi
vi→ yi+1, and if the other outcoming edge yi

v̂i→ y′ exists, then either xi = 0
and v̂i ≺ vi or xi = 1 and v̂i 1 vi. Put xi+1 = xi + vi mod 2, thus at
each step xi is the parity of v0 . . . vi−1. Since there are only finitely many
possibilities for the pairs (yi, xi), v is either periodic or preperiodic. Since
v is the maximal sequence with the property that 0v ∈ Σw, v = w, so w is
regular. Suppose now that Lw is context-sensitive. Given u ∈ 2∗, construct
a word v ∈ 2∗ with length |u| which is maximal with the property that 0v
belongs to Lw. Since Lw is context-sensitive, this construction might be done
in linear space, and v ! w. Then it suffices to verify whether u = v. If Lw

is recursive, then we get instead a recursive procedure for the recognition of
w. Conversely, if w is regular, then Σw is regular by Proposition 9. Suppose
that w is context-sensitive. We describe a Turing machine that recognizes
in linear space whether a given u ∈ 2∗ belongs to Lw. Suppose that u is
written on tape 1 of the machine. Using the machine for the recognition
of {w|n;n ≥ 0} we construct on tape 2 (using as many additional tapes as
this machine requires) the initial substring of w of length |u|. Consider the
alphabet A = {0, 1, •} and the word w• = ∆0 • ∆1 • . . . ∈ AIN obtained
from the splitting of w by inserting • between the blocks. Construct on
tape 3 the initial substring of w• obtained from tape 2. Its length is at
most 2|u| and it can be constructed in linear space. Finally, verify whether
u corresponds to a path in the graph associated to w using tapes 2 and 3.
First skip u0 and compare σ(u) bit by bit with the string on tape 3 ignoring
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the bullets. If a discrepancy is encountered in the middle of the block, the
input word is rejected. If a discrepancy is encountered at the end of a block
∆k, the machine finds on tape 3 the beginning of the block ∆k. Then it
compares ∆k with the initial string on tape 2 (ignoring the bullets) until the
first discrepancy is encountered, which is at the end of block ∆Q(k). Mark
this position on tape 2, reposition the pointers on both tapes 2 and 3 to the
beginning, and advance them simultaneously, until the marker on tape 2 is
encountered. In this situation, the pointer at tape 3 is at the end of block
∆Q(k), and the interrupted comparison of tapes 1 and 3 can be resumed. If
no difference is found, u is accepted. If w is recursive, then we get a recursive
procedure for the recognition of ∆w.

5. Periodic languages

In conformity with Definition 2 we now consider general interval covers.
Every interval cover of I = [a, b] is determined by an increasing sequence
a = d0 < · · · < dn = b, and we can then write V = {Vi; i ∈ A}, where
A = {0, 1, . . . , n− 1}, and Vi = [di, di+1].

Theorem 4. An S-unimodal system (I, f ) has bounded periodic languages
if and only if it has a unique fixed point.

Proof. If the only fixed point of (I, f ) is a, then f (x) < x for every x ∈ I. If
V is an interval cover with a ∈ V0, then there exists m such that for every
u ∈ ΣV(I, f ) and every i > m, ui = 0, so LV(I, f ) is bounded periodic.
On the other hand, if (I, f ) has a fixed point different from a then it is
not equicontinuous and by Proposition 4 it does not have bounded periodic
languages.

Theorem 5. Let (I, f ) be an S-unimodal system, then the following condi-
tions are equivalent.

1. (I, f ) has periodic languages.

2. (I, f ) has zero topological entropy.

3. The period of every periodic point of (I, f ) is a power of 2.

4. K(f ) 2W = 1.0.11.1010 . . . (Feigenbaum system).

Proof. 1 ⇒ 2: Proposition 5.
2 ⇔ 3: A theorem of Misiurewicz (Proposition VIII.34 in [4]).
3 ⇒ 4: Suppose by contradiction that K(f ) 1 W , let K(f ) = ∆0∆1 . . .
be its splitting and let ∆k be the first block different from the splitting of
W . Then Q(k) = j − 1 for some j < k and there exists a periodic point

ŴjŴjWj . . . Wk−1 of period 2k−1 + 2j−1.
4 ⇒ 1: Suppose first K(f ) ≺W . Then (I, f ) has a finite number of periodic
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points and for every x ∈ I, fn(x) converges to a periodic orbit (see Propo-
sition VI.10 in [4]). Denote by P the set of periodic points of (I, f ). There
exists a system of closed disjoint intervals {Vp; p ∈ P} such that if p is stable,
then f (Vp) ⊂ Vf(p), and if p is unstable, then f (Vp) ⊃ Vf(p). The system
{Vp; p ∈ P} can be extended into an interval cover {Va; a ∈ A} such that
P ⊂ A and for every a ∈ A which is not an unstable periodic point there
exists a unique b ∈ A with f (Va) ⊆ Vb. Consider a labeled graph G with
vertex set |G| = A and labeled edges a a→ b if and only if f (Va) ∩ Vb )= ∅.
Then every communicating set of G is a cycle, and G presents LV(I, f ).
Clearly a separating sequence of interval covers can be constructed in this
way. Suppose finally that (I, f ) is the Feigenbaum system. Then there ex-
ists a system of periodic points {pu;u ∈ 2∗}, a system of closed intervals
{Ju;u ∈ 2∗} such that Ju ∩ Jv = ∅ for |u| = |v| and u )= v, Ju ⊂ Jv for
u ! v, pu ∈ Ju − (Ju0 ∪ Jv1), and there exists a length preserving function
g : 2∗ → 2∗ such that for every n, g restricted to 2n is a permutation and
f (pu) = pg(u), f (Ju) ⊆ Jg(u). Moreover, for every n the union ∪{Ju;u ∈ 2n}
is an attractor and finally for every u ∈ 2IN the intersection ∩{Jv; v ! u} is
a one-point set. Given n > 0 we construct an interval cover Vn as follows.
Since ∪{Ju;u ∈ 2n} is an attractor, there exists a system of disjoint closed
intervals {Vu;u ∈ 2n} such that Ju ⊂ int(Vu), f (Vu) ⊂ intVg(u). Since for
every u with |u| < n, pu is a repelling periodic point, there exists a system of
disjoint closed intervals {Vu; |u| < n} such that pu ∈ int(Vu), f (Vu) ⊃ Vf(u).
We can again extend {Vu; |u| ≤ n} into an interval cover Vn = {Va; a ∈ An}
so that for every a ∈ An which is not an unstable periodic point there exists
unique b ∈ An with f (Va) ⊂ Vb. Thus LVn(I, f ) is a periodic language. It is
easy to see that Vn can be constructed as a separating sequence.

6. Regular languages

By Theorems 1, 2, and 3, every S-unimodal system with a preperiodic knead-
ing sequence has regular languages. In the last section we have seen that
systems with zero topological entropy have regular languages too. Besides
these systems there are many others with stable periodic orbits, and at their
limits there are infinitely renormalizable systems. All these systems have
regular languages too.

Definition 5 (cf. [14]) An S-unimodal system (I, f ) is renormalizable with
period n > 1, if there exists a proper (restrictive) subinterval J ⊂ I, such that
the interiors of J , f (J),. . . ,fn−1(J) are disjoint, fn(J) ⊆ J , fn(∂J) ⊆ ∂J ,
fn−1(J) contains the critical point, and J is maximal with these proper-
ties. An S-unimodal system is infinitely renormalizable if it has restrictive
subintervals of arbitrary large periods n.

Let J be a proper restrictive subinterval of period n. Put J = J0 = [a0, b0],
Ji = f i(J), ai = f i(a0), bi = f i(b0) for i < n. Put wi = K(f )i for i < n− 1,
and wn−1 = w0 + · · ·+wn−2 +1 mod 2, so that w = w0 . . . wn−1 is odd. Then
for i < n− 1, f : Ji → Ji+1 is increasing if wi = 0, and decreasing if wi = 1,
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∂Ji = {ai, bi}, and there exists unique points ci ∈ Ji with fn−i−1(ci) = c ∈
Jn−1. If wn−1 = 1, then fn−1 : J0 → Jn−1 is increasing, so an−1 < c < bn−1,
and fn : J0 → J0 is increasing on [a0, c0] and decreasing on [c0, b0]. If
wn−1 = 0, then fn−1 : J0 → Jn−1 is decreasing, so bn−1 < c < an−1, and
fn : J0 → J0 is increasing on [a0, c0] and decreasing on [c0, b0]. Thus in both
cases (J0, fn) is S-unimodal. It follows I(an−1) = ŵn−1ŵ, I(bn−1) = wn−1ŵ,
I(a0) = ŵ, I(b0) = wŵ. For the upper kneading sequences we have

K(f )jn+i = wi for j > 0, 0 ≤ i < n− 1,
K(f )jn+n−1 = K(fn)j + wn−1 + 1 mod 2 for j ≥ 0.

We consider the renormalization interval cover Wr = {Wi; i ∈ C}, where
C = {0, c, 1} and

W0 = [a, an−1] Wc = [an−1, bn−1] W1 = [bn−1, b] if an−1 < bn−1

W0 = [a, bn−1] Wc = [bn−1, an−1] W1 = [an−1, b] if bn−1 < an−1.

Lemma 1. Let (I, f ) be renormalizable with period n > 1. Let u ∈ C∗ and
put k = min{i < |u|;ui = c} or k = |u| if u ∈ 2∗. Then u ∈ LWr(I, f ) if and
only if the following conditions are satisfied.

1. uk+nj+i+1 = wi for j ≥ 0, 0 ≤ i < n− 1, k + nj + i + 1 < |u|.
2. uk+nj ∈ {ŵn−1, c} for j ≥ 0, k + nj + i + 1 < |u|.
3. There exists vk ∈ 2 such that for v = u0 . . . uk−1vkw0 . . . wn−2 (or for

v = u if k = |u|) we have σi(v) ≺
! I(a0) = ŵ for 0 < i < k.

Proof. Suppose for simplicity that an−1 < bn−1. Let u ∈ LWr(I, f ) and pick
a point x ∈ Vu. We can assume that f i(x) )= c for i < |u|+n, since otherwise
there exists in the vicinity of x a point which belongs to Vu also. Put vk = 0
if f k(x) < c, and vk = 1 if f k(x) > c. Then v ! I(x), so the conditions 1
and 2 are satisfied. Suppose that σi(v) 1 I(a0) for some 0 < i < k. Then
f i(x) > a0, and therefore an−1 < fi−1(x) < bn−1, which is a contradiction.
Suppose conversely that the conditions 1, 2, and 3 are satisfied. Assume
that there exists a minimal j < |u| such that σj(v) is an initial substring of
either I(an−1) or I(bn−1). Put xj = an−1 in the former case and xj = bn−1

in the latter case. Obviously, if k < |u|, then j ≤ k. Then succesively for
i = j − 1, j − 2, . . . we construct xi ∈ Vσi(v) with f (xi) = xi+1. This is
always possible since σi(v) ≺ I(a0) 2 K(f ) as otherwise σi−1(v) would be
an initial substring of either I(an−1) or I(bn−1). Thus x0 ∈ Vv , and since
f i(x0) )∈ (an−1, bn−1) for 0 < i < j, x0 ∈ Wu. If there exists no j < |u|
such that σj(v) is an initial substring of either I(an−1) or I(bn−1), then for
all i > 0, σi(u) ≺ I(a0) 2 K(f ), so u ∈ LVc(I, f ), and there exists x ∈ Vu.
Again f i(x) )∈ (an−1, bn−1) for 0 < i, so x ∈Wu.

Proposition 10. If (I, f ) is renormalizable, then LWr(I, f ) is a regular lan-
guage.
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Proof. By Proposition 9 there exists a finite labeled graph G for Σ
ŵ
. Extend

G as follows. Let i be a vertex such that there exists a path with source i and
label wn−1w0 . . . wn−2 or ŵn−1w0 . . . wn−2. Add to G new vertices v0, . . . , vn−1

and labeled edges i c→ v0
w0→ · · · wn−2→ vn−1

ŵn−1→ v0 and vn−1
c→ v0. Then the

extended graph is a presentation for LWr(I, f ).

Theorem 6. Every S-unimodal system whose kneading sequence is either
finite or periodic has regular languages.

Proof. We can suppose that K(f ) is neither of λ, 1, 0, nor 1, as in these
cases Theorem 5 applies. Let n be the period of K(f ) if K(f ) is periodic,
and n = |K(f )| + 1 if it is finite. Then n > 1 and there exists a stable or
semistable periodic orbit of period n which attracts the critical point. It
follows that there exists an interval J containing the critical point such that
fn(J) ⊆ J , and J , f (J),. . . ,fn−1(J) are disjoint. By Lemma 5.1 in [14],
(I, f ) is renormalizable and the renormalized unimodal system (Wc, fn) has
a stable fixed point. Given m > 0, there exists an interval cover Vm of Wr,
such that diam(Vm) < 2−m and LVm(Wc, fn) is regular. There exists p such
that Um = (Vm ∪ {W0,W1})p has diameter less than 2−m. This follows from
a theorem of Misiurewicz (Theorem II.5.2 in [6]), saying that for a unimodal
system with stable periodic orbit the only homtervals are those that are
eventually mapped into VK(f). By a choice of Vm, Um+1 will be a refinement
of Um and LUm(I, f ) is regular.

Theorem 7. Every infinitely renormalizable S-unimodal system has regular
languages.

Proof. We have a decreasing sequence of intervals I = J0 ⊃ J1 . . ., such that
(Jk, fnk) is S-unimodal. Let Vk be an interval cover consisiting of Jk and
connected components of Ji−Ji+1 for i < k. Then LVk(I, f ) is regular. There
exists an increasing sequence mk such that Vmk

k is a separating sequence of
interval covers which all yield regular languages.

Corollary 1. Every S-unimodal system with a finite or eventually periodic
kneading sequence has regular languages. Every infinitely renormalizable
S-unimodal system has regular languages.

7. Nonrecurrent critical point

For S-unimodal systems whose kneading sequence is neither finite nor pe-
riodic, the language complexity of the kneading sequence yields an upper
estimate on the language complexity of the system in question (Theorem 1).
For the S-unimodal systems whose critical point is not recurrent, we have a
lower estimate as well. This is a variation on Theorem 3.
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Theorem 8. Let (I, f ) be an S-unimodal system with a nonrecurrent crit-
ical point. Then for the classes L of regular, context-sensitive and recursive
languages, if (I, f ) is of class L, then K(f ) is of class L also.

Proof. Let ε > 0 be such that for all n > 0 we have |fn(c) − c| > ε. There
exists an interval cover V = {Vi; i ∈ A} with diam(V) < ε such that LV(I, f )
is in L. If V contains c among its end points, then it is a refinement of
the canonical cover Vc, so LVc(I, f ) is also in L. If not, then there exist
real numbers a = d0 < · · · < dk < c < dk+1 < · · · < dm = b, such that
A = {0, . . . ,m − 1}, and Vi = [di, di+1]. Put B = A − {k} and define map
ν : B → 2 by ν(i) = 0 if i < k and ν(i) = 1 if i > k. Define order ≺ on B∗

by u ≺ v if and only if for k = max{i;u|i = v|i} either

ν(u0) + · · · + ν(uk−1) mod 2 = 0 and uk ≺ vk,

or

ν(u0) + · · · + ν(uk−1) mod 2 = 1 and uk 1 vk.

Here 0 ≺ · · · ≺ k − 1 ≺ λ ≺ k + 1 ≺ · · · ≺ m − 1. Let w ∈ BIN be the
maximal sequence satisfying kw ∈ ΣV(I, f ). We claim ν(w) = K(f ). Indeed,
consider alphabet C = B ∪ {k0, k1} and the interval cover W = {Wi; i ∈ C}
which is the common refinement of V and Vc. We again have an order ≺ on
C∗ which corresponds to the order on the real line. Suppose that v ∈ CIN

is the maximal sequence with the property that both k0v and k1v belong to
ΣW(I, f ). Then f (c) ∈ Wv, and since f i(c) never visits neither Vk0 nor Vk1,
we have v = w ∈ BIN , and ν(v) = K(f ). Suppose that LV(I, f ) is a regular
language. Let G with the vertex set |G| be a right-resolving labeled graph
and y0 ∈ |G| be an initial vertex such that LV(I, f ) is the set of labels of
paths which start at y0. We construct sequences yi ∈ |G|, vi ∈ B, and xi ∈ 2

as follows. y1 is the vertex for which there exists an edge y0
k→ y0, and x1 = 0.

Suppose that yi and xi have already been constructed. Then there exists the

unique couple vi, yi+1, such that there exists an edge yi
vi→ yi+1, and if yi

v′→ y′

is another edge coming out from yi, with vi )= v′ ∈ B, then either xi = 0
and v′ ≺ vi, or xi = 1 and v′ 1 vi. Put xi+1 = xi + vi mod 2. Thus at each
step, xi is the parity of v0 . . . vi−1 and K(f ) = ν(v0v1 . . .). Since there are only
finitely many possibilities for yi and xi, K(f ) is either periodic or preperiodic,
and therefore regular. Suppose that LV(I, f ) is context-sensitive. For given
u ∈ 2∗ construct a word v ∈ B∗ with length |v| = |u| that is maximal
with the property that kv belongs to LV(I, f ), and verify whether ν(v) = u.
If LV(I, f ) is recursive, then we get instead a recursive procedure for the
recognition of K(f ).

Example 3. Every sequence w = 1.0.0.∆3.∆4 . . . with ∆i ∈ {11, 101} is
maximal, and its correponding unimodal system has a nonrecurrent critical
point. Thus there exist S-unimodal systems which are context-sensitive but
not regular, those that are recursive but not context-sensitive, and also those
that are not recursive.
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For the systems with a recurrent critical point that are not infinitely
renormalizable, no lower estimate has been obtained. These systems include
the Fibonacci systems from Example 2 with a kneading sequence easily shown
to be context-sensitive. The regularity of the Fibonacci system remains an
open question.
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