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Abstract. This paper deals with the regenerative reliability system
in terms of the birth and death process n(t). Using the first transition
time between two fixed states, the conservative breakdown process
a(t) of the system is defined in such a way that the system falls into
the breakdown state when n(t) attains the upper limit state and falls
into the working state when n(t) attains the lower limit state. The
conservative breakdown process and the corresponding “k-out-of-n”
breakdown process are compared. It is concluded that the conservative
process is more stable when considering the coefficient of variation of
the working or breakdown time and also in the sense of forming the
clusters of “on” and “off” changes in time t.

1. Conservative breakdown processes

Let n(t), t ≥ 0, denote the birth and death process defined on the state set
{0, 1, . . . , N}, (N finite or infinite) with the birth rate λn and the death rate
µn when n(t) = n. We consider that each state of the process is transitive,
that is, we assume that λi > 0, µi+1 > 0, and i = 0, 1, . . . , N − 1. If N is
infinite then the conditions for stationarity and ergodicity of the process are
assumed (see [2]):

∞∑

n=0

θn < ∞,
∞∑

n=0

1

λnθn

n∑

i=0

θi = ∞

where

θ0 = 1, θn =
n−1∏

i=0

λi

µi+1
.

Let us consider the process to be right-continuous, n(0) = 0, and let
0 ≤ L < U ≤ N be fixed integers. Let us define the conservative alternating
process a(t), t ≥ 0, in the following way.
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1. a(0) = 1.

2. If n(τ ) < U for 0 < τ < t, n(t) = U , then a(τ ) = 1 for 0 < τ < t,
a(t) = 0.

3. If a(t0) = 0, n(τ ) > L for t0 < τ < t, n(t) = L, then a(τ ) = 0 for
t0 < τ < t, a(t) = 1.

4. If a(t0) = 1, n(τ ) < U for t0 < τ < t, n(t) = U , then a(τ ) = 1 for
t0 < τ < t, a(t) = 0.

The realization of a birth and death process and the conservative alter-
nating process corresponding to it for L = 1 and U = 4 are given in Figure 1.

The reliability interpretation of our processes is as follows. Let us consider
a system of N elements, let n(t) denote the number of failed elements in the
system and let a(t) denote the state of the system in time t. Note that if
L = U − 1 then the system has the “U -out-of-N” structure. Let Tk,n, k &= n,
denote the first transition time from state k to state n. In the conservative
alternating process (excluding the working time of the system starting at
t = 0) the working times are a sequence of probabilistic copies of a random
variable TL,U , the breakdown times are a sequence of probabilistic copies
of a random variable TU,L. The properties of the birth and death process
also guarantee that consecutive working and breakdown times are mutually
independent.

The reliability system is characterized by probability distribution func-
tions of the working and breakdown times. Two reliability characteristics of
the distributions are considered: the moments of the probability distribution
functions and the probability of a system failure in the initial phase of the
working time of the system. The moments are useful when describing the
regenerative system. The other characteristics are useful when the system
has to work in fixed time only and its further existence is not of interest [4].

Figure 1: The realization of a birth and death process and the alter-
nating conservative process.
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Note that for the birth and death type random walk the first transition
time to the given state set has a large variability. Nevertheless, in the se-
quence of consecutive sojourn times in the given state, sets are stochastically
independent but in time t clusters of “on” and “off” changes are observed.
The examples show that the conservative system is more stable than the cor-
responding “k-out-of-n” system when considering the coefficient of variation
of the first transition times and also in the sense of the formation of clusters.

2. Basic mathematical equations

Let n > 0 be a fixed integer. Using a semi-Markov process as the structure of
a birth and death process the following equalities are satisfied in distributions:

T0,n
d= e0 + T1,n,

Tk,n
d= ek + (1 − δk)Tk−1,n + δkTk+1,n, k = 1, 2, . . . , n − 1, (1)

where Tn,n = 0, all random variables (ek, δk, Tk−1,n, Tk+1,n) are mutually
independent, ek is exponentially distributed with parameter λk + µk, and δk

is the binary random variable, P (δk = 1) = pk = λk/(λk + µk), P (δk = 0) =
qk = 1 − pk.

System (1) enables the analysis of moments of the first transition times,
the distribution functions of the preceding random variables, and estimation
of the distribution function.

2.1 Laplace–Stieltjes transform of the distribution

Let f ∗
k,n(s) = E(exp(−sTk,n)), Re(s) > 0, denote the Laplace–Stieltjes trans-

form of the distribution Fk,n(x) = P (Tk,n ≤ x), x ≥ 0. From system (1) we
find the following (see also [1, 2]).

Proposition 1. If k < n, then

(s + λ0)f
∗
0,n(s)− λ0f

∗
1,n(s) = 0,

− µkf
∗
k−1,n(s) + (s + λk + µk)f

∗
k,n(s) − λkf

∗
k+1,n(s) = 0, (2)

k = 1, 2, . . . , n − 1, where f ∗
n,n(s) = 1.

2.2 Moments

Let us denote mk,n = E(Tk,n), σ2
k,n = Var(Tk,n).

Theorem 1. If k < n, then

mk,n =
n−1∑

j=k

dj, σ2
k,n =

n−1∑

j=k

cj , k = 0, 1, . . . , n − 1;
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where

dj =
1

λjθj

j∑

i=0

θi,

cj =
1

λjθj

j∑

i=0

θiui,

uj = µjd
2
j−1 + λjd

2
j , j = 0, 1, . . . .

2.3 Estimation of the distribution function

Let fk,n = F ′
k,n denote the density of probability distribution function Fk,n.

Theorem 2. If x ≥ 0, then

Fn−k,n(x) =
1

k!
B(k)

n−k,nx
k +

1

(k + 1)!
B(k+1)

n−k,nx
k+1 + o(xk+1), x → 0, (3)

where

B(k)
n−k,n =

n−1∏

j=n−k

λj , B(k+1)
n−k,n = −B(k)

n−k,n

n−1∑

j=n−k

(λj + µj).

Remark

Let (d denote the ordering of the random variables in distribution (i.e.,
X (d Y iff P (X > x) ≥ P (Y > x)). From system (1) it follows that
Tk,n (d ek +δkTk+1,n, hence Tk,n (d ek +δkek+1+· · ·+(δk · · · δn−2)en−1, where
ek, δk are as defined in system (1). It may be verified that the estimation,
equation (3), is a consequence of the above ordering, hence it is an upper
estimation.

2.4 Supplementary results

If k > n and N is fixed, then Tk,n may be given using the process n̄(t) =
N − n(t), t ≥ 0, for which λ̄i = µN−i, µ̄i = λN−i, i = 0, 1, . . . , N . Hence the

equality Tk,n
d= T̄n̄,k̄ follows, where k̄ = N − n, n̄ = N − k.

Proposition 2. If n(t), t ≥ 0, is the stationary birth and death process,
then the conservative alternating process a(t), t ≥ 0, is stationary too and

P (a(t) = 1) =
E(TL,U )

E(TL,U ) + E(TU,L)
=




U−1∑

j=L

1

λjpj

j∑

i=0

pi








U−1∑

j=L

1

λjpj




−1

,

where pj = P (n(t) = j) = θj(
∑∞

j=0 θj)−1, j = 0, 1, . . . , U − 1.
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Table 1: The expected values of Tk,n.

k\n 1 2 3 4 5 6 7 8 9
0 0.111 0.250 0.433 0.690 1.097 1.855 3.704 10.676 67.454
1 0.139 0.321 0.579 0.986 1.744 3.593 10.565 67.343
2 0.183 0.440 0.847 1.605 3.454 10.426 67.204
3 0.258 0.664 1.422 3.271 10.244 67.021
4 0.406 1.164 3.013 9.986 66.763
5 0.758 2.607 9.579 66.357
6 1.849 8.821 65.599
7 6.972 63.750
8 56.778

Table 2: The coefficients of variation Var1/2(Tk,n)/E(Tk,n) of Tk,n.

k\n 1 2 3 4 5 6 7 8 9
0 1.000 0.745 0.654 0.624 0.637 0.692 0.789 0.904 0.982
1 1.077 0.809 0.719 0.700 0.734 0.813 0.914 0.983
2 1.165 0.882 0.796 0.792 0.844 0.926 0.985
3 1.261 0.962 0.881 0.889 0.942 0.988
4 1.355 1.039 0.959 0.966 0.992
5 1.421 1.088 1.005 0.998
6 1.419 1.085 1.009
7 1.320 1.038
8 1.154

3. Example

Let N > 1 be a fixed integer, λn = (N−n)λ, µn = nµ, n = 0, 1, . . . , N . Then

n(t) d=
∑N

i=1 ai(t), where ai(t), i = 1, 2, . . . , N , are the breakdown processes of
independent elements for which the working time is exponentially distributed
with parameter λ and the breakdown time is exponentially distributed with
parameter µ.

Tables 1 and 2 give the expected value and the coefficient of variation
of the random variables Tk,n for N = 9, λ = µ = 1. It is proved [1,3]
that the probability distribution function of the first transition times to the
given state, under a suitably defined passing to the limit, is exponentially
distributed. The sufficient condition for this conjecture is limit 1 for the
coefficient of variation.

The diagonal of Table 2 shows that if n increases then the coefficient of
variation of the “n-out-of-N” systems tends to 1 rather slowly. The special
examples also give this index for the conservative systems and corresponding
“k-out-of-n” systems. Let N = 9, L = 4, U = 5, λ = µ = 1. For the 5-

out-of-9 system we have T4,5
d= T5,4, E(T4,5) = 0.406, Var1/2(T4,5)/E(T4,5) =
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1.355, and for the conservative system we have T3,6
d= T6,3, E(T3,6) = 1.422,

Var1/2(T3,6)/E(T3,6) = 0.881. In both cases the stationary probability of
working state of the system is P (a(t) = 1) = 0.5.

In the asymmetry case let us consider the k-out-of-n system in which the
working time is T5,6 and the breakdown time is T3,4. We have E(T5,6) = 0.758,
E(T3,4) = 0.258, Var1/2(T5,6)/E(T5,6) = 1.421, Var1/2(T3,4)/E(T3,4) = 1.261.
For the conservative system let us assume T4,7 for the working time and
T2,5 for the breakdown time. We have E(T4,7) = 3.013, E(T2,5) = 0.847,
Var1/2(T4,7)/E(T4,7) = 0.959, Var1/2(T2,5)/E(T2,5) = 0.796.

Now the stationary probability of working state of the system P (a(t) = 1)
changes from 0.746 in the first case to 0.781 in the second.

Now we consider the problem of estimation of the probability distribution
function of the first passage time. From Theorem 2 we obtain

F4,5(x) = λ4x − 1

2
λ4(λ4 + µ4)x

2 + o(x2),

F3,6(x) =
1

6
λ3λ4λ5x

3 − 1

24
λ3λ4λ5(λ3 + µ3 + λ4 + µ4 + λ5 + µ5)x

4 + o(x4).

For the working time of the 4-out-of-9 system we have F4,5(x) = 5x−22.5x2+
o(x2), and for the working time of the conservative system we have F3,6(x) =
20x3 − 135x4 + o(x4). Let x = 0.0222. Then F4,5(x) ∼= 0.1, F3,6(x) ∼= 0.0002.

The example shows that under a similar probability of the working state
of the system the conservative system is more stable in the sense that the
changes “on” and “off” are not cluster forming.

Appendix

Proof of Proposition 1. From system (1) there immediately follows

f ∗
0,n(s) =

λ0

s + λ0
f ∗

1,n(s),

f ∗
k,n(s) =

λk + µk

s + λk + µk
(qkf

∗
k−1,n(s) + pkf

∗
k+1,n(s)), k = 1, 2, . . . , n − 1,

where f ∗
n,n(s) = 1. Transforming it we find equation (2).

Proof of Theorem 1. Taking in system (1) the expected value we find

m0,n =
1

λ0
+ m1,n,

mk,n =
1

λk + µk
+ qkmk−1,n + pkmk+1,n, k = 1, 2, . . . , n − 1,

where mn,n = 0.
Transforming this we find

λ0m0,n − λ0m1,n = 1,

−µkmk−1,n + (λk + µk)mk,n − λkmk+1,n = 1.
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We now introduce the notation dk,n = mk,n − mk+1,n, k = 0, 1, . . . , n − 1.
From the above we find

d0,n =
1

λ0
, λkdk,n − µkdk−1,n = 1, k = 1, 2, . . . , n − 1.

Hence

dk,n =

∑k
i=0 θi

λkθk
, mk,n =

n−1∑

j=k

dj,n.

Let m(2)
k,n = E(T 2

k,n). Taking the square in system (1) and next taking the
expected value, because δ2

k = δk, (1 − δk)2 = 1 − δk, δk(1 − δk) = 0, we find

m(2)
k,n = E(e2

k) + qkm
(2)
k−1,n + pkm

(2)
k+1,n + 2E(ek)(qkmk−1,n + pkmk+1,n).

Introducing the variances we find

σ2
k,n + m2

k,n =
2

(λk + µk)2
+ qk(σ

2
k−1,n + m2

k−1,n) + pk(σ
2
k+1,n + m2

k+1,n)

+
2

λk + µk
(qkmk−1,n + pkmk+1,n).

Transforming this we find

(λk + µk)σ
2
k,n − µkσ

2
k−1,n − λkσ

2
k+1,n

=
2

λk + µk
− (λk + µk)m

2
k,n + µkm

2
k−1,n + λkm

2
k+1,n

+
2

λk + µk
(µkmk−1,n + λkmk+1,n)

=
2

λk + µk
+ µkd

2
k−1,n + λkd

2
k,n + 2mk,n(µkdk−1,n − λkdk,n)

+
2

λk + µk
(µkmk,n + µkdk−1,n + λkmk,n − λkdk,n)

= µkd
2
k−1,n + λkd

2
k,n.

Let uk,n = µkd2
k−1,n + λkd2

k,n. Hence

−µkσ
2
k−1,n + (λk + µk)σ

2
k,n − λkσ

2
k+1,n = uk,n, k = 1, 2, . . . , n − 1.

Similar to before, introducing the notation ck,n = σ2
k,n − σ2

k+1,n, we find

λkck,n − µkck−1,n = uk,n, k = 1, 2, . . . , n − 1.

From the first line of system (1) it follows that c0,n = σ2
0,n − σ2

1,n = 1
λ2
0
,

u0,n = λ0c0,n. Hence

ck,n =
1

λkθk

k∑

i=0

θiui,n, σ2
k,n =

n−1∑

j=k

cj,n.
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Note that dj,n = dj , uj,n = uj, cj,n = cj do not depend upon n.

Proof of Theorem 2. Let us consider the Laurent expansion of f ∗
k,n(s) in the

neighborhood of ∞:

f ∗
k,n(s) =

∞∑

j=1

B(j)
k,n

1

sj
.

The function f ∗
k,n, as the quotient of two polynomials, is regular in infin-

ity. Hence the original is determined by transformation and the following
equalities are satisfied

fk,n(x) =
∞∑

j=0

B(j+1)
k,n

xj

j!
, Fk,n(x) =

∞∑

j=1

B(j)
k,n

xj

j!
.

we find

f ∗
k,n(s) =

1

s + λk + µk
(µkf

∗
k−1,n(s) + λkf

∗
k+1,n(s))

=
1

s

(
1 − (λk + µk)

1

s
+ · · ·

)
(µkf

∗
k−1,n(s) + λkf

∗
k+1,n(s)).

This implies that the first term of the expansion is

B(1)
k,n = 0, k = 0, 1, . . . , n − 2.

Now we recurrently obtain

B(i)
k,n = 0, k = 0, 1, . . . , n − i − 1, i = 1, 2, . . . , n − 1.

From

f ∗
n−1,n(s) =

1

s

(
1 − (λn−1 + µn−1)

1

s
+ · · ·

)
(µn−1f

∗
n−2,n(s) + λn−1),

and using the terms obtained before, we find the first and second nonzero
terms of the expansion:

B(1)
n−1,n = λn−1,

B(2)
n−1,n = −λn−1(λn−1 + µn−1).

From the equation

f ∗
n−i,n(s) =

1

s

(
1 − (λn−i + µn−i)

1

s
+ · · ·

)
(µn−if

∗
n−i−1,n(s) + λn−if

∗
n−i+1,n(s)),

we recurrently obtain

B(i)
n−i,n = λn−iB

(i−1)
n−i+1,n,

B(i+1)
n−i,n = λn−i(B

(i)
n−i+1,n − (λn−i + µn−i)B

(i−1)
n−i+1,n).



Breakdown Processes of Conservative Systems 309

Hence

B(k)
n−k,n =

n−1∏

j=n−k

λj , B(k+1)
n−k,n = −(

n−1∏

j=n−k

λj)
n−1∑

j=n−k

(λj + µj).

Proof of Proposition 2. The expected value of TL,U , L < U , is given in
Theorem 1 where k = L, n = U . Moreover we have

E(TU,L) = E(T̄L̄,Ū ) =
N−L−1∑

j=N−U

1

λ̄j θ̄j

j∑

i=0

θ̄i =
U−1∑

j=L

1

λjθj

N∑

i=j+1

θi.

The process a(t), t ≥ 0, is a stationary alternating process for which (e.g.,

[1]) P (a(t) = 1) = E(TL,U )
E(TL,U )+E(TU,L) . The substitution of expected values ends

the proof of Proposition 2.
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