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Abstract. New simulated evolution algorithms are presented for
global minimization. The main feature of these algorithms is to couple
the standard mutation and selection operators into a single operator.
Exponential probabilities are also introduced so as to stress the rele-
vance of statistical mechanics arguments. The work follows the stream
of large deviations techniques developed to analyze the simulated an-
nealing and genetic algorithms.

1. Introduction

The standard approach to optimization is to formulate a cost function that
translates the value of a decision and iteratively improve this value by se-
lecting among available alternatives. Optimization has a long history and
many classes of problems have been considered in the past. The methods
in this paper use randomness as a dominant mechanism. Consequently, the
corresponding search procedures are expected to be robust and not sensitive
to irregular cost functions. We shall consider new evolutionary algorithms.
Each maintains a population of trials solutions, imposes random changes to
those solutions, and incorporates the use of selection to determine which
solutions to maintain in future generations and which to remove from the
pools of trials [2, 7, 10, 11]. Following is an informal presentation of these
procedures.

• The problem to be addressed is captured in a positive cost function
f which is defined on a finite set E. In [11], it is suggested that all
solutions should be represented as binary strings. In such a case, the
set E would be equal to {0, 1}l for some integer l ≥ 0.

• A population of trial solutions is initialized and constrained to be in E.

• The new generation is randomly divided into two complementary sub-
sets. Then, selection acts on the current population and the offspring
solutions are moved in the first subset. The second subset consists of
solutions which are sampled from outside the current population ac-
cording to specified strategies.

c© 1996 Complex Systems Publications, Inc.



312 Olivier François

• This process is iterated until a suitable solution is found or the com-
puting time expires.

We shall develop mathematical foundations for these procedures involving
the formalism of Markov chains, random perturbations of dynamical systems,
and statistical mechanics. Our main stress will be on the absence of the
so-called premature convergence and on the parameters assessment which
guarantees it. Obviously, the previous procedure shares some properties
with the genetic algorithm (GA). However, the GA processes by sequentially
applying a mutation operator on the population and then a crossover operator
and finally a selection operator so that each step is composed of three basic
operations [5, 10]. This amount of complexity creates an obstacle to the
understanding of the process and to the correct assessment of its parameters.
An important feature of the new procedure described is that the population
is transformed from a single operation at each generation. This property
greatly simplifies the subsequent Markov chain analysis.

2. The Markov chain approach

In this section, we formally describe the algorithms that are dealt with. For
sake of simplicity, we assume that f is one-to-one on f (E) and admits a
unique minimal point that we denote by a∗. Since E is a discrete set and the
focus is on the minimal point and not on the minimal value, there is no loss
of generality in such an assumption. The principle of random search is to
create a noisy dynamics on a set X (X may be different from E) for which
the final state will correspond to the global minimum on E (as randomness
vanishes). Our search procedure uses a population of n solutions which evolve
simultaneously on E. Using notations from [5, 6], we set

X = En, n ≥ 2. (2.1)

For all x = (x1, . . . , xn) ∈ X, we denote

[x] = {x1, . . . , xn}. (2.2)

Let x∗ be the element for which f is minimal over [x] ⊂ E, that is, x∗ =
argminxi∈[x]f (xi).

We identify the uniform population (a, . . . , a) and the element a ∈ E
by denoting (a) = (a, . . . , a). To describe our algorithms, we need to intro-
duce some parameters. The first parameter is ε > 0, which will control the
intensity of randomness. As far as convergence results are concerned, this pa-
rameter must go to zero. Its role is the same as temperature in the simulated
annealing procedure [1, 3, 15]. Its role is to quantify the intensity of random
changes in the population. The lower it is, the more changes are allowed.
Let Xε

t be the vector of trial solutions obtained at time t and suppose that
Xε

t = x ∈ X. The basic algorithm is as follows.
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Algorithm 1.

1. Build a subset I ⊂ {1, . . . , n} by putting i independently in I with a
probability which is equal to

pε
mut = exp(−1/ε). (2.3)

2. If i ∈ I, choose yi ∈ E\[x] with uniform probability.

3. If i &∈ I, yi = x∗.

4. Do Xε
t+1 = y.

Building on the same structure, we can define many variants of this al-
gorithm just by modifying either item 1 or item 2. Regarding item 2, an
obvious possibility is to use a sampling procedure which is solution depen-
dent (yi depends on x and i). This hypothesis is not considered in this paper.
As a variation on item 2, we instead consider a gradient-based procedure as
follows.

Algorithm 2.

2′. If i ∈ I, choose yi ∈ E\[x] with uniform probability. Compute

∆ = f (yi) − f (xi). (2.4)

If∆ < 0 then accept yi otherwise accept yi with probability exp(−∆/ε).
Repeat the process until a yi is actually accepted.

We also consider another variation of Algorithm 1 obtained by modifying
the mutation probability. Modifying item 1 would permit the integration of
nonuniform changes. Including more competitors when the population is far
from the solution might speed up the optimization process. To do so, we
introduce a second parameter λ > 0. We assume that

λ > fmax (2.5)

where fmax is the maximum value of f . The variant is as follows.

Algorithm 3.

1′. Build a subset I ⊂ {1, . . . , n} by putting i independently in I with a
probability which is equal to

pmut = exp(−(λ − f (x∗))/ε). (2.6)
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Equation (2.5) suggests that the cost function f must be rescaled so that
large costs are less influential. However, we must warn of the danger of
rescaling too much. Randomness would play a too important part and the
population would wander as a random walk.

In the three algorithms, the random variable Xε
t evolves as a Markov

chain. We denote by Qi
ε (i = 1, 2, 3) the corresponding matrix of transition

probabilities. We have the following logarithmic equivalents

∀x, y ∈ X, qi
ε(x, y) ∼ exp(−Ci(x, y)/ε) as ε → 0 (i = 1, 2, 3) (2.7)

with, for Algorithm 1,

C1(x, y) = |I(x, y)|, (2.8)

for Algorithm 2,

C2(x, y) = |I(x, y)| +
∑

i∈I(x,y)

(f (yi) − f (xi))
+, (2.9)

and, for Algorithm 3,

C3(x, y) = (λ − f (x∗))|I(x, y)|, (2.10)

where I(x, y) is the subset of {1, . . . , n} for which yi &∈ [x] and we denoted
(α)+ = max{0,α}.

The principle of these procedures is to keep a strong memory of the best
current solution throughout the selection operation and evolve the population
by introducing reasonable changes. The replacement of some solutions by
new competitive ones is performed by sampling over the search space. As
ε goes to zero, no more change occurs and selection acts as a deterministic
mechanism on the whole population, leading to a uniform population in a
single generation.

3. The statistical mechanics perspective

The basic idea underlying the convergence of algorithms 1, 2, and 3 is that a
deterministic mechanism is perturbed at each step. This deterministic mech-
anism is easy to identify. It consists of assigning to each pool of solutions x
the uniform element (x∗) (see also [5, 6]). In all cases, the Markov transition
matrix Qε which is associated to the algorithm satisfies the classical conver-
gence conditions of the Perron–Frobenius theorem. Thus, the Markov chain
(Xε

t ) converges to a unique stationary distribution as t goes to infinity. The
convergence of the algorithms relies upon the concentration of the stationary
distribution on a∗ as ε goes to zero. In [9], a theoretical framework is devel-
oped which is appropriate for dealing with the markovian perturbations of
dynamical systems. We apply the results in [9] to simulated evolution. We
give here a brief account of the Freidlin–Wentzell theory, adapting it to our
specific context. Of course, a thorough exposition can be found in [9] (see
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also [6, 12, 13]). Consider a finite set X and the dynamical system defined
by

∀t ≥ 0, xt+1 = F (xt), x0 ∈ X (3.11)

with F a discrete map from X to itself. A markovian perturbation of the
dynamical system (3.11) is a Markov chain (Xε

t ) on X such that the following
logarithmic equivalent holds

∀x, y ∈ X, P(Xε
t+1 = y | Xε

t = x) ∼ exp(−ε−1C(x, y)) as ε → 0. (3.12)

The quantity C(x, y) is called one-step communication cost between x and
y. It expresses the difficulty for the chain (Xε

t ) to move from x to y in one
step. This cost is presumed to satisfy the following conditions.

1. For all x ∈ X,

C(x, F (x)) = 0. (3.13)

2. For all x ∈ X, y &= F (x),

C(x, y) > 0. (3.14)

3. For all (x, y) ∈ X × X, there exists a sequence (x0 → x1 → · · · → xr)
such that

x0 = x, xi ∈ X, xr = y, and
r−1∑

k=0

C(xk, xk+1) < ∞. (3.15)

Every pair (x, y) ∈ X × X is weighted by the communication costs. Con-
dition 1 formulates that no cost is allowed to the paths of the deterministic
mechanism (3.11). By condition 3, every point y ∈ X will be reachable
from x in finitely many perturbative steps. These conditions warrant that
the chain (Xε

t ) is ergodic and that its paths are close to that of the de-
terministic system as ε goes to zero. We assume that the set A of attrac-
tors of the dynamical system (3.11) consists of fixed points of f and denote
A = {a1, . . . , aL} ⊂ X. The stationary distribution of the perturbed Markov
chain concentrates around these fixed points. However, some of these points
are favored with regard to the others. In [9], it is shown that the limiting
perturbed dynamics (as ε → 0) can be described by introducing a Markov
chain on the set of attractors of the dynamical system. The communication
cost from ai to aj in A is defined in [9] as

V (ai, aj) = min

{
r−1∑

t=0

C(xt, xt+1), x0 = ai, xt ∈ X, xr = aj , r ≥ 1

}

. (3.16)

The virtual energy function is defined on the set A by:

∀l = 1, . . . , L, W (al) = min
g∈GA(al)

∑

(ai→aj)∈g

V (ai, aj). (3.17)



316 Olivier François

In equation (3.17), the minimum is taken on the set of all al-graphs on A
and the sum runs over the edges of these graphs. Recall that an x-graph
(g ∈ G(x)) ends at x and contains no cycle (each y &= x is the starting
point of exactly one edge). The virtual energy W describes the asymptotic
behavior of the chain (Xε

t ) as the perturbation vanishes. In [9], a logarithmic
equivalent of the (stationary) probability that the perturbed process visits
the attractor al is obtained:

∀l = 1, . . . , L, pε
l ∼ exp

(
Wmin − W (al)

ε

)

as ε → 0. (3.18)

Let W∗ be the set of points in A for which the minimum Wmin of W is
attained. Equation (3.18) states that the distribution concentrates on W∗

(see also [6, 13]). As ε → 0, the stationary distribution behaves as a gibbsian
distribution associated with the energy W . The most probable states are the
states for which W (al) is low. As far as stochastic optimization procedures
are concerned, the statistical mechanics perspective is natural. This was the
point of view of simulated annealing based procedures. However, the energy
function in these procedures was always chosen equal or closely related to
the cost function f itself. In our approach, the function W might be very
different from f . In such a case there is no guarantee that convergence holds.
Additional conditions on the communication costs ensure the concentration
of the stationary distribution around the best solution a∗.

Theorem 3.1. Assume that there exists an a∗ ∈ A such that

∀x, y ∈ A, y &= a∗ , V (x, a∗) < V (a∗, y). (3.19)

Then, for all x &= a∗, W (a∗) < W (x) (the chain concentrates on a∗).

We turn now to Algorithms 1, 2, and 3. We shall prove that the previous
result ensures that premature convergence is avoided and that the Markov
chain (Xε

t ) concentrates on (a∗) in the long run. First of all, we must check
that the quantities C(x, y) define one step communication costs for all algo-
rithms. Actually, the sole condition to check is item 2. We must have

Ci(x, y) > 0 ∀y &= (x∗) i = 1, 2, 3 (3.20)

which is immediate in Algorithms 1 and 2 and results in

λ >f max (3.21)

in Algorithm 3.

Theorem 3.2. (Concentration on a∗). Consider the Markov chains de-
fined by Algorithms 1 and 2. Then, we have

W∗ = {(a∗)} (3.22)

with a∗ the unique minimum of f . If λ >f max, the same conclusion holds
for Algorithm 3.



Convergence in Simulated Evolution Algorithms 317

Proof. Let a ∈ E, a &= a∗. We first deal with Algorithm 1. We have

V ((a), (a∗)) = C1((a), (a∗, a, . . . , a)) = 1 (3.23)

and

V ((a∗), (a)) = C1((a
∗), (a)) = n. (3.24)

Now we can apply Theorem 3.1 to reach the conclusion. With regard to
Algorithm 2, we must have

n >
1

1 + δ
(3.25)

with δ = f (a)−fmin. This condition is obviously satisfied. Finally, concerning
Algorithm 3, the condition to check is

n >
λ − f (a)

λ − fmin
(3.26)

which is again obviously satisfied.

Comments

It is possible to combine items 1′, 2′, and 3 to obtain a fourth algorithm.
The same conclusion holds for this algorithm as far as condition (3.21) is
satisfied.

4. Conclusion

New simulated evolution algorithms are presented for global minimization.
The main feature of these algorithms is to couple the standard mutation and
selection operators into a single one. Exponential probabilities were also in-
troduced so as to stress the relevance of statistical mechanics arguments. The
work followed the stream of techniques developed to analyze the simulated
annealing [1, 4, 13] and genetic algorithms [5, 6] by discrete versions of the
Freidlin–Wentzell theory. Many computer simulations of the four algorithms
have been performed on quadratic test functions. The best performances
were obtained with Algorithms 2 and 4. Moreover, an additional (signif-
icant) gaussian noise was added to those functions and good convergence
properties were also observed. These algorithms were also run on knapsack
problems with again the best results for Algorithm 2. However, the perfor-
mances depend on a good choice of the parameter ε. This parameter must
be large enough to allow convergence in a reasonable computing time. We
are aware that our study must be completed by the comparison of the algo-
rithms. Unfortunately, the concentration is only an asymptotical property.
In practice, ε never goes to zero and it does not make sense to compare the
different algorithms at the same value of ε. On the other hand, a theoret-
ical study would involve asymptotics on the spectrum of the corresponding
Markov chains. Such results are available [9] but deserve a specific study.
We emphasize that concentration is the main point in practical situations.
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Appendix

We give a proof of Theorem 3.1. Let x &= a∗ with g being a graph for which

W (x) =
∑

(ai→aj)∈g

V (ai, aj).

We built an a∗-graph by deleting the edge (a∗ → y) in g and introducing the
edge (x → a∗). Thus, we have

W (a∗) ≤ W (x) + V (x, a∗) − V (a∗, y) < W (x).
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