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Abstract. From the graphs of the Lyapunov exponent of the linear-
logistic map, (which is linear in the region on the left of its maximum
but logistic-like on its right), against its parameter r, the stable cycles
within the chaotic region can be classified into six different patterns.
In each of these patterns, at least one increasing arithmetic progression
is present and decreasing arithmetic progressions may also be present
as well; all the terms of these progressions are intermingled with chaos.
One of these patterns is self-similar, while in another the period-adding
phenomenon occurs. All the patterns are interrelated through their
dependence on the same variables.

1. Introduction

One-dimensional maps, such as the symmetric logistic [1] and asymmetric
maps [2–18, 29], have very interesting dynamical properties and are studied
as possible prototypes of more complicated dynamical systems. Recently,
the interest in asymmetric maps was enhanced by the discovery that the
dynamical structures of some physical processes are similar to those of these
simple maps [19–22]. One of these is a map that is quadratic at the right
of its extremum but linear at the left [19, 20]. This can be described by the
linear-logistic map:

g(xn) =
{

2rxn if xn < 1/2
4rxn(1 − xn) if xn ≥ 1/2.

(1)

We have found that the manner in which period-doublings occur in this
linear-logistic map is very unusual in two ways when compared to the logistic
and other quadratic maps [16]. One is that it undergoes period-doublings
whenever dgm(x)/dx, the slope at any of its m stable fixed points, is −1 or
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0. The other is that the rate of evolution of a new cycle, created by period-
doubling bifurcation, into a superstable cycle and then to an unstable cycle,
is very abrupt in the linear-logistic map.

In this paper we study the self-similarity and fine structures of the linear-
logistic map numerically. In section 2, we use the variation of the Lyapunov
exponent λ with the parameter r as a means for classifying the stable or-
bits of the linear-logistic map. From the graphs of λ versus r in the chaotic
region, we can identify periodic windows possessing many interesting fine
structures. We then classify the periods of some of the stable cycles in these
fine structures into six different patterns. Each pattern consists of at least an
increasing arithmetic progression (AP) which may or may not be accompa-
nied by one or more decreasing APs. For each pattern, a general expression
for each of the terms and several numerical examples are given.

We find that the first pattern studied is self-similar while in the last pat-
tern, the phenomenon of period-adding occurs. All the patterns are found to
occur on different scales, meaning that they are present in enlarged regions of
the r-λ plane. Further, all these patterns are interrelated as they are depen-
dent on the same variables n and p which will be defined below. It is interest-
ing that one of these patterns has already been observed experimentally [20].

2. Study of fine structures using the Lyapunov exponent

The linear-logistic map has very rich fine structures as many periodic win-
dows exist in the chaotic region. For quantification of chaos and order, the
Lyapunov exponent

λ = lim
N→∞

1

N

N−1∑

i=0

ln |g′(xi)| (2)

is often used. When λ < 0, the orbits are periodic and stable; when λ >
0, they are chaotic or unstable. In addition, λ is 0 at all period-doubling
bifurcation and tangent bifurcation points, and at all accumulation points
of the period-doubling cascades. Thus from the graphs of λ as a function
of r, unstable periodic and chaotic orbits can be distinguished from stable
periodic ones and some of the bifurcation points identified.

As our map is not differentiable at the extremum, the usual derivative in
the above definition of λ should be replaced by

g′(xi) =
ag′(xi + ε) + bg′(xi − ε)

a + b
(3)

where a and b are two real numbers and ε is an infinitesimal. Clearly, this
definition reduces to the usual one for maps which are differentiable every-
where.

As the measure of the extremum point is zero for our map, the probability
of any iterate xi being equal to the extremum value is zero in view of the finite
precision of computer arithmetic. Hence, though the formal definition of λ
given in equation (2) fails at the extremum point, in practice, this failure is
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not realized. The usual derivative at the extremum point x = 1/2 (obtained
by formally differentiating the function defined at this point) gives 0 implying
that λ is equal to minus infinity should any one of the iterates xi be equal to
1/2. In all our calculations, we find that λ is always finite which means that
equation (2) with the usual definition of the derivative can be used.

Here we use the r-λ graphs to classify the stable orbits. From special
features of the stable cycles in the chaotic regions of these graphs, we can
identify sets of stable cycles with periods that can be conveniently classified
into different patterns with explicitly defined rules, which shall be elaborated
below. An initial value x0 = 0.1 is used in all our computations.

2.1 Pattern I

When λ is plotted against r, we find that there exist many periodic windows
which, together with the periodic region before the onset of chaos, are re-
ferred to simply as periodic regions. We find that every region consists of
several periodic subregions over each of which the period is constant. The
most obvious pattern observed, which we call Pattern I, is shown in Fig-
ure 1(a). The subregions relevant to this pattern are indicated by numbers
representing the periods of the corresponding stable cycles. Here, in the sub-
region labeled ‘2’ (appearing on the extreme left portion of the graph), λ
decreases from zero to a negative number while in each of the rest of the la-
beled subregions which have structurally the same features in the r-λ plane,
λ increases monotonically from a negative number to zero. For example, in
the subregion labeled ‘4’ shown in Figure 1(a), where r ranges from about
0.809 to about 0.819 and λ from about −4.0 to 0, there are stable cycles with
period 4. From Figure 1(a), we see that the periods of the stable cycles in
these labeled subregions of Pattern I form an AP

p → 2p → 3p → 4p → 5p → · · ·

with a common difference ∆ = p = 2. We expect that an infinite number of
terms in the sequence should exist, though of course, this cannot be observed
in practice due to the finite precision of computers and the decreasing size
of the subregions with increasing r.

The transition from the period 2 subregion to the period 4 subregion is to
be contrasted with that in the logistic map. In the latter, transition from one
period to another always occurs after λ has reached a value of 0. Here there
is a transition in period from the period 2 subregion to the period 4 subregion
even though λ never reaches 0. This sudden transition is in agreement with
the earlier result in [16] showing that an infinitesimal increase in r causes the
superstable 2-cycle to bifurcate to a superstable 4-cycle.

As r increases the 4-cycle period-doubles into an 8-cycle when λ = 0,
a process similar to that of the logistic map. Subsequently, this 8-cycle is
observed to bifurcate (by an unusual period-doubling mentioned earlier) into
a 16-cycle at a nonzero value of λ in a manner similar to the transition of
period 2 into period 4. This 16-cycle is now observed to bifurcate into a



324 B. L. Tan and T. T. Chia

(a)

(b)

Figure 1: (a) Lyapunov exponent λ as a function of r showing Pattern
I with p = 2. (b) Enlargement of a small region R1 in (a), showing
Pattern I with p = 8. Note that the two figures are self-similar.
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32-cycle when λ = 0 and so on. Though we can only see a few of such
period-doublings before the first entrance into chaos, there should exist an
infinite number of them as higher-order cycles occupy very narrow intervals
and thus are not visible from the graph.

We find that Pattern I is self-similar at smaller length scales. Figure 1(b)
is the enlargement of the small region labeled R1 in Figure 1(a) with r rang-
ing from 0.82215 to 0.82255. The labeled subregions of Figure 1(b) obey a
pattern similar to that of Figure 1(a) with the value of the common difference
∆ of this AP equal to p = 8. Both figures show self-similar structures. As
r increases, the periodic windows of higher terms become narrower. Pattern
I can also be observed from the enlargement of other portions of both these
figures, say, regions R2 and R3 of Figure 1(a) or region R1 of Figure 1(b). In
these three enlarged regions, the series are 12 → 24 → 36 → 48 → 60 → · · ·,
16 → 32 → 48 → 64 → 80 → · · ·, and 32 → 64 → 96 → 128 → 160 → · · ·
with ∆ = 12, 16, and 32 respectively.

From measurements of the intensity of pulses in a laser cavity [20], it was
found that these pulse intensities obey an equation “where the maximum is
quadratic at right but linear at left,” that is, by an equation of the same
form as the linear-logistic map. The discovery of several mathematical series
is reported in [20]. In fact, what was observed are those prominent periodic
regions in our Figure 1(a) and enlargements of regions R1, R2, and R3 of
the same figure. However, it was not mentioned that the terms of the series
actually formed APs as some of these terms were probably not observed.
Hence, our Pattern I accounts for their experimental observations.

One characteristic feature of Pattern I is the occurrence of chaos between
all the terms of the sequence, except between the first and second terms.
Within each of the chaotic regions lying between two consecutive terms,
there are tiny periodic windows which can be classified into other patterns,
as we show later.

2.2 Pattern II

With the exception of the first term, all the other terms of Pattern I are
separated by chaotic regions; the first chaotic region is denoted by C1, the
second by C2, and so on, as illustrated in Figure 1. Within each Cn, where
n = 1, 2, 3, 4, 5, . . ., we can find stable cycles with n different periods which
form a finite AP consisting of n terms and having a common difference ∆ = p.
We refer to this structure as Pattern II. Surprisingly, the number of terms
within Cn is equal to n, the subscript of Cn.

Figure 2(a) shows a schematic diagram of the general Pattern I with
terms p, 2p, 3p, 4p, 5p, 6p, . . . separated by the chaotic regions Cn. The same
figure also shows that within each Cn there exists Pattern II consisting of
structurally similar terms. (A scaled diagram of Pattern II is shown in Figure
2(b).) The periods of cycles relevant to Pattern I and Pattern II are labeled
in the diagram with the terms of Pattern II underlined. Here p is an integer
which, in the case of Pattern I of Figure 1(a), is 2. For simplicity, we only
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(a)

(b)

Figure 2: (a) Schematic diagram of Pattern I, with Pattern II em-
bedded within Cn (see Figure 1 for region Cn). The terms belonging
to Pattern II are underlined. (b) An example of Pattern II occurring
within region C3 of Figure 1(b).
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Table 1: The terms of Pattern II for the labeled regions C1 to C3 in
Figure 1(a) with p = 2, and the labeled regions C1 to C6 in Figure 1(b)
with p = 8.

Region Terms of Pattern II
(i) From Figure 1(a): C1 10

C2 14, 16
C3 18, 20, 22

(ii) From Figure 1(b): C1 40
C2 56, 64
C3 72, 80, 88
C4 88, 96, 104, 112
C5 104, 112, 120, 128, 136
C6 120, 128, 136, 144, 152, 160

show the periodic windows relevant to Pattern II in Cn, though there exist
many more periodic windows which may occupy a great portion of Cn and
which may appear structurally similar to the terms of Patterns I or II. These
other windows are found to belong to other patterns described below. We
present the schematic diagram first instead of a scaled diagram as the latter
cannot display this information as well, since the terms of Pattern II occupy
much smaller intervals than those of Pattern I.

It can be seen in Figure 2(a) that the first term of Pattern II in Cn is
formed by adding p to the period-doubled term of Pattern I which lies just
before Cn. The other terms of this Pattern II are, of course, obtained from
the first term by adding p successively since this pattern forms an AP. Hence
we can easily predict all the terms of Pattern II belonging to any Cn. In
particular, C1 contains only one term that is always given by 4p + p or 5p.
In general, the tth term of Pattern II in Cn is given by (2n + 2 + t)p where
t = 1, 2, 3, . . . , n. Thus the terms in Cn range from (2n + 3)p to (3n + 2)p in
steps of p. As an illustration, Table 1 shows these terms of Pattern II for the
labeled regions C1 to C3 of Figure 1(a) where p = 2, as well as those terms of
regions C1 to C6 in Figure 1(b) where p = 8. We have actually verified that
all these terms do exist, and have further verified the existence of Pattern II
in other parameter ranges, such as those falling within the regions labeled R2

and R3 of Figure 1(a) and regions R1 to R6 of Figure 1(b) in each of which
the values of p are different.

A scaled diagram of Pattern II is given in Figure 2(b), an enlargement of
region C3 in Figure 1(b), where the terms 72, 80, and 88 that make up Pattern
II are indicated. Here, there are many chaotic regions that together occupy
a larger portion of the C3 region than for the previously discussed terms.
Thus, it requires some effort to isolate these terms especially when they
occupy such small intervals of r that on the same scale they do not appear to
resemble those more prominent terms which occupy larger intervals, though
on a smaller scale they would.
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2.3 Pattern III

In Figure 2(a) the beginning portion of each Cn region, sandwiched between
the first term of Pattern II and the period-doubled term of Pattern I just
before Cn, is labeled Dn. Note that a Dn region always exists within any
Cn region of any scale, for example, those appearing in Figure 1. From an
enlargement of any one of these Dn regions, we observe that many of the
stable cycles lying within it have periods that fall into a certain pattern
which we refer to as Pattern III.

The region Dn consists of n basic blocks that form Pattern III. Note that,
interestingly, the number of such basic blocks is the same as the subscript
of the region Cn. This is shown schematically in Figure 3(a). Within the
ith block, where i = 1, 2, 3, . . . , n, we observe that at the beginning of this
block, some of the stable cycles with the same structural features, have even
periods that form an increasing AP

[6N − (i − 1)]p → [8N − (i − 1)]p → [10N − (i − 1)]p

→ [12N − (i − 1)]p → [14N − (i − 1)]p → · · ·

as r is increased. This series has a common difference of 2Np where N = n+1
(to be deduced below) and p is the common difference of Pattern I. At some
value of r, this series gives way to a decreasing AP consisting of the following
terms

· · · → [11N − (i − 1)]p → [9N − (i − 1)]p → [7N − (i − 1)]p

→ [5N − (i − 1)]p → [3N − (i − 1)]p

with the same common difference |∆| = 2Np where N and p have been
defined above. Note again that these terms are also structurally similar to
each other. For example, in block 1 as r increases, the following increasing
AP

6Np → 8Np → 10Np → 12Np → 14Np → · · ·

develops from the beginning of the block. This is followed by a decreasing
AP

· · · → 11Np → 9Np → 7Np → 5Np → 3Np.

We find that for all values of n, it is easier to locate the terms of the
ith block in region Dn than in region Dn+1. Within each region Dn, the
interval of r occupied by the ith block decreases with increasing i. Further,
within any of these blocks the higher terms of both increasing and decreasing
APs tend to occupy narrower intervals. This observation implies that there
should exist an infinite number of terms, though of course this cannot be
proven numerically.

From a λ versus r graph, we can easily distinguish pictorially the terms of
the increasing AP from that of the decreasing AP of Pattern III: the terms
of an increasing AP form the rising portions of the “mountains,” whereas
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(a)

(b)

Figure 3: (a) Schematic diagram of Pattern III, which occurs in Dn

(see Figure 2(a) for region Dn). The terms in each block i, where
i = 1, 2, 3, . . . , n, are given in the text. (b) An example of Pattern III
occurring within region D3 of Figure 2(b).
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those of a decreasing AP form the descending portions of “valleys,” as can
be seen in Figure 3(a). This pictorial rule also applies to other patterns to
be presented below as well as to Patterns I and II: this is not too surprising
as the terms of each AP of each pattern must be structurally similar to each
other. Note that only mountains are present in Figures 1 and 2 as the terms
of Patterns I and II form increasing APs.

From Figures 2(a) and 3(a), it can be deduced that N = n + 1 and that
2N = 4, 6, 8, 10, 12, . . . for the Dn region where n = 1, 2, 3, 4, 5, . . . respec-
tively. If Pattern III in Figure 3(a) is examined carefully, it can be seen that
the first half of block 1, where mountains are formed, together with the two
terms 2Np and 4Np just before it, are actually Pattern I if 2Np is replaced
by p.

The first numerical example of Pattern III is obtained from an enlarge-
ment of region D1 (though not indicated) of Figure 1(a), where p = 2. As
n = 1, then according to Figure 3(a), D1 must lie within the terms 2Np or 8
and (2N + 1)p or 10. Thus D1 overlaps the entire region R1 in Figure 1(a)
(which forms Pattern I) and extends into the only term of Pattern II in C1,
which is 10. We observe in D1 the increasing AP

8 → 16 → 24 → 32 → 40 → 48 → · · ·

followed by the decreasing AP

· · · → 52 → 44 → 36 → 28 → 20 → 12

with |∆| = 2Np = 8 for each AP.
Another example is given by region D3, which forms part of C3, in Fig-

ure 1(b) which is an enlargement of the small region R1 of Figure 1(a). Here,
as indicated in the diagram, p = 8 and N = n+1 = 4. Thus region D3 must
lie between the term 2Np or 64 and the term (2N + 1)p or 72 and this is
indicated in Figure 2(b). As n = 3, there exist three blocks where the terms
are given by

192 → 256 → 320 → 384 → 448 → 512 → · · ·
· · · → 416 → 352 → 288 → 224 → 160 → 96

for block 1,

184 → 248 → 312 → 376 → 440 → 504 → · · ·
· · · → 408 → 344 → 280 → 216 → 152 → 88

for block 2, and

176 → 240 → 304 → 368 → 432 → 496 → · · ·
· · · → 400 → 336 → 272 → 208 → 144 → 80

for block 3. Thus within each block, there exists an increasing AP followed
by a decreasing AP where |∆| = 2Np = 64 for each AP.
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Figure 4: Schematic diagram of Pattern II in Cn, with the terms
expressed as a function of N . Also shown are the locations of regions
Dn, En, and Fn,m, where 1 ≤ m ≤ n− 1.

A scaled diagram of Pattern III discussed in the preceding example is
given in Figure 3(b), which shows an enlargement of region D3 from Fig-
ure 2(b) with some of the terms making up this pattern for block 1 and
block 2 labeled. Other terms given in the preceding numerical example are
not visible in this graph as they occupy very narrow intervals.

2.4 Pattern IV

The terms of the general Pattern II appearing in region Cn can be expressed
as functions of N and are shown underlined in Figure 4 to distinguish them
from the two terms of Pattern I and a period-doubled term which are also
shown. All the terms except Np are separated from each other by chaotic
regions labeled Dn, Fn,1, Fn,2, Fn,3, . . . , Fn,n−2, Fn,n−1, and En in order of
increasing r in the same figure.

Just as some of the stable cycles within the chaotic region Dn can be
arranged into Pattern III, it can be seen that another interesting pattern,
called Pattern IV, exists within region En which lies between the last term
of Pattern II and the next nearest term of Pattern I, that is, between the
terms (2N + n)p and (N + 1)p shown in Figure 4.

Figure 5(a) shows a schematic diagram of Pattern IV occurring in region
En with the terms of this pattern expressed as functions of n, N , and p which
are the same variables defined earlier. We observe that as r is increased up
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(a)

(b)

Figure 5: (a) Schematic diagram of Pattern IV, which occurs in En

(see Figure 4 for region En). (b) An example of Pattern IV occurring
within region E3 of Figure 2(b).
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to a certain value, the stable cycles in this region have periods which form
an increasing AP

(4N + n)p → (6N + n)p → (8N + n)p → (10N + n)p

→ (12N + n)p → · · ·

with a common difference ∆ = 2Np. Note that the term (2N +n)p belonging
to Pattern II just before region En can also be regarded as the first term of
this increasing AP. When r increases beyond this value, the periods fall into
a decreasing AP with |∆| = 2Np:

· · · → (9N + n)p → (7N + n)p → (5N + n)p

→ (3N + n)p → (N + n)p.

This decreasing AP terminates at (N + n)p which in turn is followed by
another decreasing AP consisting of n terms with |∆| = p:

(N + n)p → · · · → (N + 5)p → (N + 4)p → (N + 3)p

→ (N + 2)p → (N + 1)p.

The term (N +n)p is regarded as belonging to both decreasing APs and that
when n = 1, the last series does not exist as it has only one term. As higher
terms usually occupy narrower intervals of r, we expect that in both of the
first two APs, each with |∆| = 2Np, there should exist an infinite number
of terms. It should be noted that all the terms belonging to the same AP of
Pattern IV have similar features in the r-λ plane.

When the region C1 shown in Figure 1(a) is enlarged (which is not shown
here), we find that within the region E1 there exists an example of Pattern
IV with n = 1, N = 2, and p = 2. We observe an increasing AP followed by
only one decreasing AP in E1, with |∆| = 2Np = 8 for both APs:

10 → 18 → 26 → 34 → 42 → 50 → · · ·
· · · → 46 → 38 → 30 → 22 → 14 → 6.

If n > 1, an extra decreasing AP exists with |∆| = p having n terms. For
instance, there exists one increasing and two decreasing APs in the region E3

which forms part of C3 in Figure 1(b) where p = 8, n = 3, and N = 4. This
region, which occurs between the terms (2N + n)p = 88 and (N + 1)p = 40,
is indicated in Figure 2(b) and an enlargement of E3 is shown in Figure 5(b).
We observe in E3 another example of Pattern IV consisting of the following
three APs:

88 → 152 → 216 → 280 → 344 → 408 → · · ·
· · · → 376 → 312 → 248 → 184 → 120 → 56 → 48 → 40

with the three underlined terms forming the n = 3 terms of the last decreasing
AP with |∆| = p = 8, while |∆| = 2Np = 64 for each of the other two
preceding APs.
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2.5 Pattern V

Between any two consecutive terms of the n terms of Pattern II occurring
within Cn as shown in Figure 4, there exists another chaotic region labeled
Fn,m where the first subscript refers to the region Cn while the second can
range from 1 to n− 1. When we enlarge any one of these Fn,m regions which
lie between the terms (2N + m)p and (2N +(m + 1))p where 1 ≤ m ≤ n− 1
and as before, N = n+1, we find an interesting variation of λ with r as shown
schematically in Figure 6(a). In each of these (n − 1)Fn,m regions, there are
stable cycles with periods that obey a pattern, referred to as Pattern V.
Clearly, the Fn,m regions are present only if n is greater than 1.

In each of the regions Fn,m, there exist a finite number of blocks and,
surprisingly, this number is exactly equal to n. Within each of these n blocks,
labeled block i in Figure 6(a) where i = 1, 2, 3, . . . , n, there are stable cycles
with periods that fall into an increasing AP for values of r less than a certain
value and into a decreasing AP for larger values of r. This increasing AP
takes the form

[4N + (m − (i − 1))]p → [6N + (m − (i − 1))]p → [8N + (m − (i − 1))]p

→ [10N + (m − (i − 1))]p → [12N + (m − (i − 1))]p → · · ·

with a common difference ∆ = 2Np while the decreasing AP is

· · · → [11N + (m − (i − 1))]p → [9N + (m − (i − 1))]p

→ [7N + (m − (i − 1))]p → [5N + (m − (i − 1))]p → [3N + (m − (i − 1))]p

(a)



(b)

(c)

Figure 6: (a) Schematic diagram of Pattern V, which occurs in the
region Fn,m between any two consecutive terms of Pattern II in Cn,
where n ≥ 2. See the text for the terms in each block i, where
i = 1, 2, 3, . . . , n. (b) Schematic diagram showing the values of the first
and second term of each increasing AP of Pattern V found in block
i, region Fn,m as a function of i but for a fixed n. (c) An example of
Pattern V occurring in the region F3,1 between the consecutive terms
72 and 80 of Figure 2(b).
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which again has |∆| = 2Np. Within each block, the higher terms usually
occupy narrower intervals of r and therefore, each AP should contain an
infinite number of terms. We find that within any Fn,m region inside the Cn

region, the interval of r occupied by the ith block decreases with increasing
i and that it is easier to identify Pattern V for smaller values of m. Further,
it is easiest to recognize Pattern V within Cn when n is smaller.

For a fixed n, Figure 6(b) shows schematically the first and second terms
of each increasing AP of Pattern V, found within block i of region Fn,m, as a
function of i. It is obvious that the higher terms are located on loci parallel
to those shown but shifted upwards by a multiple of 2Np. Hence, it can be
deduced that in a given Fn,m region, each term of the increasing AP decreases
by p as a higher block is reached. Moreover, within the same block and the
same Fn,m region, successive terms differ by 2Np.

The first example of Pattern V is found within F2,1 lying inside region
C2 of Figure 1(b). Here n = 2, N = 3, m = 1, and p = 8. Table 1 shows
that Pattern II occurring within C2 has only two terms, 56 and 64. Thus,
there exists only one F2,m region in C2, namely F2,1. Further, as n = 2,
Pattern V occurring within this F2,1 region consists of only two blocks in
each of which there is an increasing AP followed by a decreasing AP each
with |∆| = 2Np = 48. The terms of block 1 and block 2 are given by

104 → 152 → 200 → 248 → 296 → 344 → · · ·
· · · → 320 → 272 → 224 → 176 → 128 → 80

and

96 → 144 → 192 → 240 → 288 → 336 → · · ·
· · · → 312 → 264 → 216 → 168 → 120 → 72

respectively.
Another example of Pattern V occurs within the region F3,1, the first

of the two F3,m regions lying within region C3 shown in Figure 1(b). Here
n = 3, N = 4, m = 1, and p = 8. Note that the terms of Pattern II on
either side of F3,1 are equal to 72 and 80 which are given by (2N + 1)p and
(2N + 2)p respectively and in Table 1. Within this F3,1 region, as n = 3, we
observe Pattern V which contains three blocks with terms given by

136 → 200 → 264 → 328 → 392 → 456 → · · ·
· · · → 424 → 360 → 296 → 232 → 168 → 104

for block 1,

128 → 192 → 256 → 320 → 384 → 448 → · · ·
· · · → 416 → 352 → 288 → 224 → 160 → 96

for block 2, and

120 → 184 → 248 → 312 → 376 → 440 → · · ·
· · · → 408 → 344 → 280 → 216 → 152 → 88

for block 3. In each case, we observe an increasing AP followed by a decreas-
ing AP each with |∆| = 2Np = 64.
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Figure 6(c) is a scaled diagram showing Pattern V of the preceding ex-
ample. This figure is an enlargement of the F3,1 region lying between the
two terms labeled 72 and 80 shown in Figure 2(b). It should be noted that
as some of the terms of Pattern V occupy very small intervals of r, they are
not visible on the graph.

2.6 Pattern VI

In this section we encounter the phenomenon of period-adding in another pat-
tern of the linear-logistic map. Period-addings have already been observed
experimentally [23] and in other maps [24–28]. Though in some sense it
resembles the summation rule for discontinuous maps [14, 15], to our knowl-
edge, this is the first time that period-addings have been observed in a con-
tinuous, one-dimensional map without a cusp [26–28].

When certain regions of Patterns III, IV, and V are enlarged, we find the
existence of yet another pattern, called Pattern VI. Surprisingly, this last
pattern has the same structure whether it orginates within Pattern III, IV,
or V.

We have shown that both Patterns III and V contain blocks, each of which
contains an increasing AP and a decreasing AP with common differences
|∆| = 2Np. Pattern IV consists of an increasing AP and a decreasing AP
with the same |∆| = 2Np and another decreasing AP with a different |∆| = p
if N > 2. When we enlarge the region between any two consecutive terms
of any of these decreasing APs with |∆| = 2Np (i.e., the region between two
consecutive valleys, shown in Figures 3(a), 5(a), and 6(a) which correspond
respectively to Patterns III, IV, and V), we find the existence of many new
prominent stable cycles with periods that can be arranged into Pattern VI.
An enlargement of this region is shown schematically in Figure 7(a).

In Figure 7(a), it can be seen that Pattern VI consists of two parts. In
part (i), we observe a series of mountains followed by a series of valleys with
the mountain terms forming an increasing AP and the valley terms forming
a decreasing AP just as in Patterns III through V. In part (ii) of Pattern
VI, the terms have valley-like appearance but unlike the earlier valleys, these
new terms form an increasing AP instead. Further, we find that in this
part, the terms obey a period-adding rule which will be elaborated below.
It is interesting to note that the presence of either an increasing AP (as in
Patterns I through V and part (i) of Pattern VI) or an AP with terms which
have valley-like structures in the r-λ plane (as in Patterns III through V and
part (i) of Pattern VI) does not guarantee the existence of period-adding
whereas in part (ii) of Pattern VI, period-adding occurs in an increasing AP
consisting of terms with valley-like appearance.

Whenever Pattern VI originates between two consecutive valleys of Pat-
tern III with terms denoted by A and B, we observe in this pattern an
increasing AP

A + 2Np → A + 4Np → A + 6Np → A + 8Np → A + 10Np → · · ·



(a)

(b)

Figure 7: (a) Schematic diagram of Pattern VI, which occurs in the
region between any two consecutive terms of the decreasing AP with
|∆| = 2Np belonging to Pattern III, IV, or V. See Table 2 for the
values of A and B, as well as the sequences occurring in parts (i) and
(ii). (b) An example of Pattern VI occurring in the region between
the consecutive terms 288 and 224 of the decreasing AP of Pattern
III, block 1 in Figure 3(b).
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in the earlier segment of part (i). This is followed in the later segment by a
decreasing AP

· · · → A + B + 8Np → A + B + 6Np → A + B + 4Np

→ A + B + 2Np → A + B.

Each of these sequences has a common difference |∆| = 2Np.
Whenever Pattern VI originates from the region between two consecutive

valleys of Pattern IV or Pattern V , again denoted by A and B, the increasing
AP in part (i) of this pattern becomes

A + np → A + (n + 2N )p → A + (n + 4N )p → A + (n + 6N )p

→ A + (n + 8N )p → · · ·

while the decreasing AP in the same part has the same form as that origi-
nating from within Pattern III. Again, both APs have the same |∆| of 2Np.
For Patterns III and V, we have only verified our results for block 1 since the
other blocks have very narrow ranges in r.

In part (ii) of Pattern VI, regardless of whether it originates from con-
secutive valleys A and B of Pattern III, IV, or V, we always observe an
increasing AP

A + B → A + 2B → A + 3B → A + 4B → A + 5B → · · ·

with ∆ = B. This period-adding sequence is formed by just adding B to
A repeatedly. Though this is an AP, it is not a special case of the previous
sequences since here ∆ is exactly equal to B, which is the term of the valley
to the right of the sequence, whereas in the other sequences ∆ is not related
to any term on the right.

We expect that in each of the sequences discussed, an infinite number of
terms should exist with the higher terms usually occupying narrower inter-
vals.

As there are three possible ways in which Pattern VI can arise, namely
from between two consecutive valleys of either Pattern III, IV, or V which
all occur within Cn, the values of A and B which are the terms of these
consecutive valleys will have different functional dependence on N , n, and
m, as can be seen in Table 2. From the expressions for A and B, the precise
forms of the increasing and decreasing APs of Pattern VI for each of the
three cases can be easily obtained. These are also shown in Table 2.

We now give an explicit illustration for each of the three different ways
Pattern VI can arise. Consider the first case when Pattern VI arises from
between two consecutive valleys of the decreasing AP of block 1 within Pat-
tern III, namely from the second example in section 2.3 where p = 8, n = 3,
and N = 4. Here A = 288 and B = 224. From the expressions for A and B
for case (a) shown in Table 2, we find that s = 7. Thus part (i) of Pattern
VI consists of the increasing AP

352 → 416 → 480 → 544 → 608 → 672 → · · ·
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Table 2: Values of A and B as well as the sequences occurring within
parts (i) and (ii) of Pattern VI shown in Figure 7(a).

Details of Pattern VI
Case (a): Pattern VI originates from Pattern III, block 1

A = (s + 2)Np, B = sNp, possible values of s = 3, 5, 7, 9, 11 . . .
Part (i): (s + 4)Np → (s + 6)Np → (s + 8)Np → (s + 10)Np → · · ·

{increasing AP, ∆ = 2Np}
··· → (2s+8)Np → (2s+6)Np → (2s+4)Np → (2s+2)Np
{decreasing AP, |∆| = 2Np}

Part (ii): (2s+2)Np → (3s+2)Np → (4s+2)Np → (5s+2)Np → ···
{increasing AP, ∆ = sNp}

Case (b): Pattern VI originates from Pattern IV
A = [(u + 2)N + n]p,B = (uN + n)p, u = 1, 3, 5, 7, 9 . . .
Part (i): [(u+2)N +2n]p → [(u+4)N +2n]p → [(u+6)N +2n]p →

[(u + 8)N + 2n]p → · · · {increasing AP, ∆ = 2Np}
··· → [(2u+8)N+2n]p → [(2u+6)N+2n]p → [(2u+4)N+
2n]p → [(2u + 2)N + 2n]p {decreasing AP, |∆| = 2Np}

Part (ii): [(2u + 2)N + 2n]p → [(3u + 2)N + 3n]p → [(4u + 2)N +
4n]p → [(5u + 2)N + 5n]p → · · · {increasing AP, ∆ =
(uN + n)p}

Case (c): Pattern VI originates from Pattern V, block 1
A = [(v + 2)N + m]p,B = (vN + m)p, v = 3, 5, 7, 9, 11 . . .
Part (i): [(v+2)N+2m]p → [(v+4)N+2m]p → [(v+6)N+2m]p →

[(v + 8)N + 2m]p → · · · {increasing AP, ∆ = 2Np}
··· → [(2v+8)N+2m]p → [(2v+6)N+2m]p → [(2v+4)N+
2m]p → [(2v + 2)N + 2m]p {decreasing AP, |∆| = 2Np}

Part (ii): [(2v + 2)N + 2m]p → [(3v + 2)N + 3m]p → [(4v + 2)N +
4m]p → [(5v + 2)N + 5m]p → · · · {increasing AP, ∆ =
(vN + m)p}

which is followed by the decreasing AP

· · · → 832 → 768 → 704 → 640 → 576 → 512.

Each of these two APs has |∆| = 2Np = 64. In part (ii) of Pattern VI, we
have the period-adding sequence

512 → 736 → 960 → 1184 → 1408 → 1632 → · · ·

with ∆ = B = 224.
Figure 7(b) is a scaled portion of the r-λ plane showing the preceding

example of Pattern VI. This figure is an enlargement of the region between
the consecutive terms 288 and 224 of the decreasing AP occurring in block
1 of Figure 3(b). Some terms of the sequences of Pattern VI occupy very
narrow intervals and are not visible in the graph.
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The region between the valley terms A = 120 and B = 56 of the de-
creasing AP of the second example of Pattern IV presented in section 2.4
where p = 8, n = 3, and N = 4 gives rise to an example of Pattern VI.
From the expressions for A and B for case (b), we find that u = 1. In part
(i) of this Pattern VI we find an increasing and a decreasing AP, each with
|∆| = 2Np = 64:

144 → 208 → 272 → 336 → 400 → 464 → · · ·
· · · → 496 → 432 → 368 → 304 → 240 → 176.

In part (ii), we find the period-adding sequence

176 → 232 → 288 → 344 → 400 → 456 → · · ·

with ∆ = B = 56.
In the region between the two consecutive valley terms A = 176 and

B = 128 of the decreasing AP of the first example of Pattern V given in
section 2.5 where p = 8, m = 1, n = 2, and N = 3, we have an example of
Pattern VI. From the expressions for A and B for case (c), we get v = 5. Part
(i) of Pattern VI consists of the following increasing and decreasing APs:

192 → 240 → 288 → 336 → 384 → 432 → · · ·
· · · → 544 → 496 → 448 → 400 → 352 → 304

each with |∆| = 2Np = 48, while part (ii) consists of the following period-
adding sequence:

304 → 432 → 560 → 688 → 816 → 944 → · · ·

with ∆ = B = 128.

3. Conclusions and summary

From the graphs of the Lyapunov exponent λ against r, which are used as a
means for classifying the stable orbits, we find many periodic windows in the
chaotic region of the map with periodicities obeying some specified rules. We
have classified some specific stable cycles in these windows into six different
patterns and have formulated rules for the patterns. We find that Pattern
I is self-similar as stable cycles in enlargements of the same diagram obey
the same pattern (Figure 1). Both Patterns I and II are increasing APs.
In each of Patterns III trhough VI, we find both increasing and decreasing
APs. Though such APs have already been discovered to occur before the
onset of chaos in one-dimensional discontinuous maps [4–7, 14, 15], these are
different from those presented here. In our case, the terms of such APs occur
after the onset of chaos and they are always interposed with chaos. Further,
in Pattern VI, we find that the phenomenon of period-adding occurs. All
these patterns, which are found to occur on different scales, are related to
one another through their dependence on the same variables n and period
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p. We can also use these patterns to predict the existence of certain stable
cycles in some domains of r of the linear-logistic map.

A typical term in each AP of each of the above patterns can be expressed
in terms of the integral variables such as n and p. Amazingly, these variables
are intimately related to one another in different parts of the r-λ plane.

Though here we have identified six different patterns, obviously there
exist many other very narrow periodic windows which remain to be classified
and which may contain different patterns. However, it would be a formidable
task to classify all these extremely narrow periodic windows.

It is amazing that, in the r-λ plane, this asymmetric linear-logistic map
exhibits patterns that do not seem to exist in other known maps. We have
found in an exploratory study that there is another map which seems to
possess some of these patterns. This is the logisitic-linear map

j(xn) =
{

4rxn(1 − xn) if xn ≤ 1/2
2r(1 − xn) if xn > 1/2,

(4)

which is the mirror-image of the linear-logistic map.
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