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Abstract. Eigen’s model for the molecular evolution of self-replicating
macromolecules is used to develop a method for predicting the distri-
bution of alleles in the framework of infinite population genetic al-
gorithms (GAs) with selection and mutation. A set of ordinary dif-
ferential equations which take into account selection and mutation is
derived and applied to GAs. By calculating the spectrum of a matrix
appearing in the equations, the method makes it possible to obtain
the distribution of alleles. It is shown that eigenvectors of the ma-
trix which includes only mutation are Walsh monomials. Some ap-
proximate expressions for the asymptotic behavior of GAs with small
mutation rates are also presented.

1. Introduction

Genetic algorithms (GAs) are a class of algorithms based on biological evo-
lution. In recent years, they are becoming more and more important in
machine learning and nonlinear optimization. However, in spite of the fact
that mathematical properties of GAs have long been investigated since the
pioneering work of Holland [1], the mechanisms of evolution in GAs are still
not well understood.

In this paper, we present a mathematical model for describing the time
rate of changes of relative frequencies of strings in GAs. For this purpose, we
employ a theory originally developed by Eigen and his colleagues [2, 3]. They
proposed a system of ordinary differential equations (ODEs) which describe
the rate of population changes of self-replicative macromolecules, such as
RNA or DNA, for the investigation of the origin and evolution of life. Each
equation contains a term which keeps the total population size constant. In
the analysis of their ODEs, they conceived a notion of “quasi-species” which
is defined as a distribution of species dominated by one or several sequences.
As a result, Eigen’s theory is sometimes called the quasi-species theory.
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In population genetics, Eigen’s theory corresponds to a multilocus model
of asexually reproducing haploid organisms. Higgs pointed out the relation-
ship between Eigen’s theory and haploid models, and derived the stationary
distributions of populations in some fitness landscapes [4]. Wiehe, Baake,
and Schuster investigated two (coupled and decoupled) versions of selection-
mutation equations for diploid organisms [5]. They obtained these equations
by modifying the ODEs of Eigen. In their study they also gave the equa-
tions for haploid organisms. We employ the coupled version of their haploid
equations to describe the time dependence of allele frequencies.

In section 2, the system of ODEs is presented for the time-dependent
description of the allele frequencies in GAs. An explicit form of a selection-
mutation matrix which appears in the system is given, and a procedure for
solving the equations is presented. We show that eigenvectors of the mutation
matrix are Walsh monomials. In section 3, we give several formulae for
small mutation rates obtained using two approximations: the neglect of back
mutations and perturbation theory. We apply them to three examples of
fitness landscapes. Comparisons between Eigen’s theory and GA experiments
by numerical calculations are presented in section 4. Finally in section 5, we
present a discussion of the results.

2. Selection-mutation model

In this section, we present a system of ODEs for simulating time-dependent
behavior of GAs. We also describe a method to solve this system. If the
fitness value of each allele is a function of Hamming distance from the fittest
allele, we can derive a simplified form of ODEs (Hamming class formalism).

2.1 Equations of evolution

We consider an infinitely large population reproducing with selection and mu-
tation, but neglect crossover. We adopt a single-locus multiple-allele model;
that is, binary strings of length l are treated as one gene having n = 2l alleles.
Let xi(t) be the relative frequency of the ith allele Bi at generation t, which
satisfies the normalization condition

n−1∑

i=0

xi(t) = 1. (2.1)

The selection procedure is the proportional selection used in the “simple
genetic algorithm” by Goldberg [6]. We start with a system of ODEs for
describing evolutionary behavior of GAs,

dxi(t)

dt
=

∑n−1
j=0 Aijxj(t)

f̄(t)
− xi(t) (i = 0, . . . , n − 1), (2.2)

f̄(t) =
n−1∑

i=0

fixi(t), (2.3)
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where fi is the fitness of the ith allele and f̄(t) stands for the average fitness
of a population at generation t. Here, Aij is an element of selection-mutation
matrix A which represents the combined effect of selection and mutation.
The matrix A can be decomposed into two parts, matrices F and M , which
represent the effects of selection and mutation, respectively. The selection
matrix F is a diagonal matrix whose ith diagonal element is fi. We assume
that all fitness values are positive and are not time dependent. The selection-
mutation matrix A is given by

Aij = (MF )ij = Mijfj. (2.4)

Here, M is the mutation matrix whose element Mij stands for the probabil-
ity of mutation from allele Bj to allele Bi per generation and satisfies the
condition

∑
i Mij = 1. We assume that strings are reproduced with mutation

rate p per bit per generation. Then the mutation matrix M is described as

Mij = (1 − p)l−d(i,j)pd(i,j), (2.5)

where d(i, j) denotes the Hamming distance between alleles Bi and Bj.
By rescaling the time axis

τ =
∫ t

0

1

f̄(t′)
dt′,

the system of ODEs in equation (2.2) can be transformed to Eigen’s evolution
equation [5],

dxi(τ )

dτ
=

n−1∑

j=0

Aijxj(τ )− xi(τ )f̄(τ ), (i = 0, . . . , n − 1). (2.6)

Since the right-hand side of equation (2.6) contains the second order term
in x, this equation is nonlinear. However, it is shown by Thompson and
McBride [8] and independently by Jones, Enns, and Rangnekar [9] that a
transformation

xi(τ ) = yi(τ ) exp
(
−

∫ τ

f̄ (t′)dt′
)

(2.7)

takes the nonlinear equation into the linear equation

dyi(τ )

dτ
=

n−1∑

j=0

Aijyi(τ ). (2.8)

We can easily solve this system by calculating the spectrum of A. However, it
should be noted that the solution of the transformed system does not satisfy
the normalization condition, equation (2.1). But the solution of the original
system can be obtained by a transformation [9]

xi(τ ) = yi(τ )/
n−1∑

j=0

yj(τ ). (2.9)
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If mutation is absent; that is, p = 0, equation (2.2) becomes

dxi(t)

dt
=

fixi

f̄
− xi, (2.10)

and the solution is given by

xi(τ ) = aiexp(fiτ )/
n−1∑

j=0

ajexp(fjτ ), (2.11)

where constants aj are determined by the initial distribution of alleles in the
population. If only one allele has the maximum fitness value, the stationary
solution at t → ∞ is given by

xi =
{

1 i = 0
0 otherwise,

(2.12)

where i = 0 denotes the allele of the highest fitness.
In the case of no selection (f0 = · · · = fn−1 = 1), the system is solely

determined by mutation,

dyi(τ )

dτ
=

n−1∑

j=0

Mijyj . (2.13)

Since all elements Mij do not depend on time, we can get the solution by cal-
culating eigenvalues and the corresponding eigenvectors of M . Rumschitzki
developed a method to calculate eigenvalues and eigenvectors of matrices
appearing in Eigen’s systems [10]. By using the procedure of Rumschitzki
described in Appendix A, we can obtain the eigenvalues of M ,

(1 − 2p)k with multiplicity

(
l

k

)

, (k = 0, . . . , l). (2.14)

It is also shown in Appendix A that the eigenvectors of M are the Walsh
monomials, which have been widely used in the GA literature (e.g., [11]).

In the model including selection and mutation, it seems very difficult
to obtain the explicit expression for the spectrum of the selection-mutation
matrix A. Here, we describe some results concerning the properties of the
eigenvalues of A. In Appendix B, we show that all eigenvalues of A are real
if all fitness values are positive. It is also verified that the largest eigenvalue
is nondegenerate and positive.

2.2 Hamming class formalism

In GA applications, we frequently encounter a case where fitness values of
alleles depend only on their Hamming distances from an optimum allele. In
such a case the system of evolution equations can be reduced to a considerably
smaller size. We treat alleles having the same Hamming distance i from
the optimum allele as one group and call them Γi (i = 0, . . . , l). It may
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be reasonable to assume that, when the solution approaches a stationary
distribution, alleles within the same Hamming class distribute uniformly.
Then the evolution equations are reduced to

dzi(t)

dt
=

∑l
j=0 AH

ij zj(t)

f̄(t)
− zi(t), (i = 0, . . . , l), (2.15)

where zi denotes the relative frequency of Γi. The selection-mutation matrix
in the Hamming class formalism is given by

AH
ij = MH

ij fH
j , (2.16)

where fH
j stands for the fitness value of allele(s) within Γj. An element of

MH representing the collective effect of mutations from Γj to Γi is

MH
ij =

kmax∑

k=kmin

(
j

k

)(
l − j

i − k

)

(1 − p)l−i−j+2kpi+j−2k, (2.17)

where kmin = max(0, i+ j− l), and kmax = min(i, j) [5]. The mutation ma-
trix MH is no longer symmetric, but still satisfies the condition

∑
i M

H
ij = 1.

3. Approximation for weak mutation

In this section, we present theoretical results applicable to systems evolving
with small p. First, we develop approximation methods for calculating a
stationary distribution of alleles by neglecting terms corresponding to “back
mutations” in equation (2.2). Second, we describe the results of the perturba-
tion theory that can express a stationary distribution of alleles in the power
series of p. The obtained formulae are applied to three fitness landscape
examples.

3.1 Neglect of back mutations

We follow the approach of Higgs who applied the quasi-species theory to pop-
ulation genetics [4]. His theory of a haploid organism reproducing asexually
is a powerful tool for analyzing the behavior of GAs. We assume a fitness
landscape depending only on Hamming distances from an optimum allele and
apply the Hamming class formalism. If the mutation rate p is small and the
length l of strings is sufficiently large, we may neglect back mutations, which
are mutations from Γj to Γi with i < j. This approximation is valid only for
small j. In the case of large j, the frequency zj may be negligibly small in
the total system and we can also ignore back mutations. With this approx-
imation, the mutation matrix MH is approximately given by retaining the
term of the lowest power in p, k = kmax = min(i, j) = j, in the summation
of equation (2.17),

MH
ij =

(
l − j

i − j

)

(1 − p)l−i+jpi−j , (0 ≤ j ≤ i ≤ l), (3.1)
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and otherwise MH
i,j is zero. Here we used the fact that matrix elements

corresponding to back mutations (i < j)

MH
ij =

(
j

i

)

(1 − p)l+i−jpj−i

are smaller than the elements given by equation (3.1) for large l and small
j. Then the equations in the Hamming class formalism take the simple form

dzi(t)

dt
=

i∑

j=0

(
l − j

i − j

)

(1 − p)l−i+jpi−jfH
j zj(t)/f̄ (t) − zi(t). (3.2)

We introduce a variable U = lp which may be more appropriate than p for
describing the effect of weak mutation. The new value U stands for the
mutation rate per string per generation. Since we assumed large l and small
p, the mutation matrix approximately takes the form of a Poisson distribution

MH
ij =

U i−j

(i − j)!
exp (−U), (i ≥ j). (3.3)

At equilibrium, in which dzi/dt = 0, we have these relations among allele
frequencies:

zi =
i∑

j=0

(
l − j

i − j

)

(1 − p)l−i+jpi−jfH
j zj

/ l∑

j=0

fH
j zj (3.4)

'
i∑

j=0

U i−j

(i − j)!
exp (−U)fH

j zj/f̄ . (3.5)

By setting i = 0 in equation (3.5), we have a very interesting relation

f̄ = fH
0 exp (−U) = fH

0 exp (−lp). (3.6)

This result for the mean fitness was already noted by Kimura and Maruyama
[12] in their analysis of the mutational load (fH

0 − f̄)/f̄ . The important point
is that the above relation is quite general, imposing no restriction on the form
of fitness landscape.

Now we consider two special examples of fitness landscapes. One is the
multiplicative landscape defined by

fH
i = (1 − r)i (0 < r < 1). (3.7)

If we take the limit l → ∞, we can obtain the stationary distribution for this
landscape by using equation (3.5)

zi =
(U/r)i

i!
exp

(
−U

r

)
, (3.8)
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which was given by Haigh [13]. On the other hand, Higgs gave an approxi-
mate solution for finite string length l by using equation (3.4) [4]

f̄ = (1 − p)l, (3.9)

zi =

(
l

i

)

(1 − p/r)l−i(p/r)i, (3.10)

where the following identity was used

(
l − j

i − j

)(
l

j

)

=

(
l

i

)(
i

j

)

.

It can be noted that the stationary distribution of alleles becomes a binomial
distribution determined by only one parameter p/r. This result also sug-
gests that each bit behaves independently of other bits in the multiplicative
landscape.

Another example of landscape is the single-peaked landscape defined by

fH
i =

{
1 (i = 0)
1− r (otherwise).

(3.11)

Only one allele has a high fitness, and all other alleles have a lower fitness
(0 < r < 1). This landscape has been studied intensively by Eigen and other
researchers because of the interesting behavior observed in the solution [3, 5].
An approximate solution for this landscape was also given by Higgs [4]

z0 = 1 − lp/r,

zi = (lp/r)i(1 − lp/r) (i ≥ 1), (3.12)

where lp ( 1 and r ( 1 are assumed.

3.2 Application of the perturbation theory

To obtain the stationary distribution of alleles, we have to carry out the di-
agonalization of matrix A in equation (2.8). However, in the case of weak
mutation, we have an approximation method to calculate the relative fre-
quencies of alleles by using the perturbation theory [14]. This method has
wide applicability and does not assume a special form of fitness landscapes.

The selection-mutation matrix A is divided into two parts, A(0) and Φ.
The unperturbed part A(0) is a diagonal matrix whose ith diagonal element
is λi≡A(0)

ii = Aii. We assume that the remaining part Φ = {φij} = A − A(0)

is small enough, so we treat it as a perturbation on A(0). Note that φij = Aij

for i *= j and φii = 0. We also assume that λ0, the maximum eigenvalue of
A(0), is not degenerate. This means the uniqueness of an optimum allele. The
procedure giving an approximate stationary distribution of alleles is described
in Appendix C. We show here the results of the second-order perturbation
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approximation. The approximate solution for equation (2.8) at t→∞ is given
as the power series expansion in φ

y0 = 1, (3.13)

yi '
φi0

λ0 − λi
+

∑

j

′ φijφj0

(λ0 − λi)(λ0 − λj)
, (i ≥ 1), (3.14)

where the prime on
∑

j
′ denotes the omission of the term j = 0.

By substituting the expressions for λi = Aii and φij = Aij from equa-
tions (2.4) and (2.5) into equation (3.14), we can obtain the approximate
solution for yi. We will calculate yi to second order in p. When the allele i is
a member of Hamming class k, we can write the first term in equation (3.14)
as

φi0

λ0 − λi
=

f0

f0 − fi
pk(1 − p)−k ' f0

f0 − fi
(p + p2)k, (i ∈ Γk). (3.15)

This term represents the one-step mutation process from the optimum allele
to a mutant allele with k point mutations. Since this calculation is restricted
to second order in p, only yi with i ∈ {Γ1,Γ2} have nonzero terms in equa-
tion (3.15). The second term in equation (3.14) contains the quantities φijφj0

in the summation. This term represents the process of two-step mutation
0 → j → i. For φij, it should be noted that φii = 0 and that φij = o(p2)
or higher order in p when both i and j are members of the same Hamming
class. Within the approximation to second order in p, the only remaining
terms in the summation in equation (3.14) are those of j ∈ Γ1 and i ∈ Γ2.
Furthermore, if we fix the subscript i, corresponding to an allele with two
point mutations, only two terms within the summation of j remain in the
calculation. Each term corresponds to an allele having one point mutation
at either of the two point mutations in the allele i.

The results for yi are summarized as follows:

yi '
f0

f0 − fi
(p + p2) = Fip + Fip

2, (i ∈ Γ1)

yi '
f0

f0 − fi



1 +
∑

j

′′ fj

f0 − fj



 p2 = Fi(1 + G)p2, (i ∈ Γ2), (3.16)

where we have used the abbreviations

Fi =
f0

f0 − fi
, G =

∑′′

j

fj

f0 − fj
.

Here
∑′′

j stands for the summation of the above mentioned two terms in Γ1.
By using the approximation for small p, 1/(1+ap+bp2) ' 1−ap−bp2 +a2p2,
we obtain

x0 =
y0∑
i yi

' 1 − F (1)p + {F (1)}2p2 − F (1)p2 − F (2)(1 + G)p2, (3.17)
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where

F (1) =
∑

j∈Γ1

Fj, F (2) =
∑

j∈Γ2

Fj.

We also obtain the relations

xi ' Fip + Fi(1 − F (1))p2, (i ∈ Γ1),

xi ' Fi(1 + G)p2, (i ∈ Γ2). (3.18)

3.3 Perturbation expansion in Hamming class formalism

When we apply the perturbation theory to GAs in the Hamming class for-
malism, we derive

z0 = 1 − g1lp + g2
1l

2p2 − g1lp
2 − g2

(
h1 +

1

2

)
l(l − 1)p2,

z1 = g1lp − g2
1l

2p2 + g1lp
2,

z2 = g2

(
h1 +

1

2

)
l(l − 1)p2, (3.19)

where

g1 =
fH

0

fH
0 − fH

1

, g2 =
fH

0

fH
0 − fH

2

, h1 =
fH

1

fH
0 − fH

1

.

In this section we present the formulae obtained by the perturbation theory
for the following three examples of fitness landscapes.

1. Additive landscape: fH
i = l − i.

2. Multiplicative landscape: fH
i = (1 − r)i.

3. Single-peaked landscape: fH
0 = 1, fH

i = 1 − r (i ≥ 1).

The additive landscape defined here is essentially the same as that used in
the “counting ones” problem. Though this landscape includes an allele of
zero fitness value, it is straightforward to extend the results of Appendix B
to this case.

The stationary distributions for these landscapes can easily be obtained.
For the additive landscape we get

z0 = 1 − lU +
1

4
(2l + 5)(l − 1)U2,

z1 = lU − (l2 − 1)U2, z2 =
1

4
(2l − 1)(l − 1)U2, (3.20)

where U = lp.
For the multiplicative landscape we obtain

z0 = 1 − lu +
1

2
(l − 2r + 1)lu2,

z1 = lu + (r − l)lu2, z2 =
1

2
l(l − 1)u2, (3.21)
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where we define u = p/r. For large l we get

z0 = 1 − lu + l2u2/2, z1 = lu − l2u2, z2 = l2u2/2.

For the single-peaked landscape we obtain

z0 = 1 − lu +
1

2
(rl − 3r + 2)lu2,

z1 = lu + (r − l)lu2, z2 =
2 − r

2
l(l − 1)u2, (3.22)

where u = p/r. For large l , 1 but small r ( 1

z0 = 1 − lu, z1 = lu − l2u2, z2 = l2u2.

4. Numerical calculations

Here we compare the theoretical results derived in the previous sections with
GA calculations. The GAs on the additive, multiplicative, and single-peaked
fitness landscapes were used as examples. Figure 1 demonstrates the time
dependence of the relative frequencies in three fitness landscapes with string
length l = 3. A population size of N = 1024 and mutation rate p = 0.1
were used in the GAs. All calculations started at generation t = 0 with the
uniform initial distribution xi(0) = 1/2l. It can be seen that Eigen’s model
performs very close to GA calculations in all cases.

Figure 2 shows the results of the theoretical prediction and actual GA
calculations with string length l = 8 on the three landscapes. The theoretical
calculations were performed using ODEs in the Hamming class formalism
equation (2.15). We used a population size N = 4096 and mutation rate
p = 0.01. Though there are noticeable discrepancies between theoretical and
GA calculations in the transient regions, both calculations agree very well in
the stationary regions.

Figure 3 shows the theoretical results for the mutation rate dependence of
the stationary distributions of Hamming classes with l = 8 in the three land-
scapes. The calculations were performed in the Hamming class formalism.
There is a close resemblance between the distributions in the additive and
multiplicative landscapes, but that in the single-peaked landscape is quite
different from the others. As the mutation rate p increases in the additive
and multiplicative landscapes, the frequency of the fittest class Γ0 decreases
very rapidly, and alternatively Γ1 appears as the main component. With the
further increase of p, Γ2 becomes dominant instead of Γ1, and in this way
the next Hamming class occupies the main part in the population one after
another. The distribution in the single-peaked landscape exhibits striking
contrast to other landscapes. We observe a phase-transition-like behavior
around p = 0.04. Below this critical p, the distribution behaves in the same
manner as those of other landscapes, but it changes drastically above this
point, where all alleles are distributed uniformly in the population. This
critical p = pc is called the error threshold. For more detailed discussions,
see [5, 7, 15].



Figure 1: Evolution of population distributions in GAs on three fitness
landscapes; (a) additive, (b) multiplicative, and (c) single-peaked.
Solid lines are the results of Eigen’s evolution model and dotted lines
show GA calculations. The symbol {i} stands for the strings in the
Hamming class i. For example, {0} = {000}, {1} = {001, 010, 100}
and so on.
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Figure 2: Evolution of population distributions as in Figure 1.
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Figure 3: Mutation rate dependence of the stationary distributions of
Hamming classes in three landscapes.
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Figure 4: Perturbation approximation in the additive landscape. Solid
lines for the exact calculation, dotted lines for the second-order per-
turbation, and symbols • and ◦ for the first-order perturbation.

In Figure 4, a comparison of the perturbation approximation with the
exact solution is presented for the stationary distribution of the additive
landscape with string length l = 20. It should be noted that the stationary
distribution of this landscape has a particular l dependence. As we have
already derived in equations (3.20) through (3.22), the relative frequency z0

is approximately given by 1−l2p+o(p2) in the additive landscape and by 1−
lp/r+o(p2) in other landscapes. The additive landscape has an l2 dependence
in the first order of p while other landscapes have an l dependence. Therefore
this fact suggests that we should choose smaller p for the additive landscape
than values used for other landscapes.

Figure 5 shows a comparison among the exact solution, an approximation
based on the neglect of back mutations, and the second-order perturbation
theory for the stationary distribution of the multiplicative landscape with l =
20. When z0 decreases to 0.7 with increasing p, the results of the second-order
perturbation begin to deviate rapidly from the exact solution as in Figure 4.
On the other hand, the approximation obtained by neglecting back mutations
gives a surprisingly good agreement with the exact solution. This fact may
suggest that there is a deeper relationship between this approximation and
the exact solution.

In Figure 6, a comparison of two approximations with the exact solution
is presented for the single-peaked landscape with l = 20. While the exact
solution and the perturbation calculations are virtually identical for z0, the
second-order perturbation calculation deviates remarkably from the exact one
for z2 in large p. Though the agreement is not complete, the approximation
neglecting back mutations also reproduces the exact solution.

Figure 7 shows the results of three calculations of the average fitness in
the multiplicative landscape with l = 20. The solid line shows the exact
solution, the dotted line represents the approximation (3.6) f̄ = exp (−lp),



Application of Eigen’s Evolution Model 359

Figure 5: Comparison of approximations with the exact solution in
the multiplicative landscape. Solid lines for the exact calculation;
dotted lines for the second-order perturbation; and symbols •, ◦, and
so on for the approximation by neglecting back mutations.

Figure 6: Comparison of two approximations with the exact solution
in the single-peaked landscape as in Figure 5.

and the symbol ◦ shows another approximation (3.9) f̄ = (1 − p)l. The two
approximations are virtually identical, and agree very well with the exact
average fitness.

5. Discussion

In this paper the use of Eigen’s theory for understanding the behavior of
allele frequencies in GAs has been studied. The system of ODEs with the
selection-mutation matrix A excellently reproduced the GA experiments of
a large population size. It can be seen from equations (2.2) and (2.4) that
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Figure 7: Comparison of two approximations with the exact solution
for the average fitness in the multiplicative landscape.

the allele frequencies are determined by the combined effect of selection and
mutation. Therefore it is essential to obtain the spectrum of the matrix A for
predicting GA behavior. In particular, the stationary distribution of alleles
is completely determined by the eigenvector corresponding to the maximum
eigenvalue of this matrix. Therefore it will become a powerful tool if an
analytic procedure can be found to calculate the eigenvectors and eigenvalues
of A in its general form. It seems, however, very difficult to derive explicit
expressions for them. Rumschitzki tried to derive a full solution for matrix
A [10]. He calculated the eigenvalues of A in the single-peaked landscape
with l = 2 using the REDUCE system. The obtained solution has a very
complicated form and, therefore, he concluded that it may not be possible
to solve the general case exactly. Thus the spectrum of the matrix A can
usually only be obtained by numerical methods.

The GA model of this paper, based on Eigen’s theory, is a deterministic
one which assumes an infinitely large population and neglects the effect of
genetic drift caused by random sampling. Since all practical GAs use small
populations, it is inevitable to extend the present theory to the stochastic
one. The relation between the deterministic and stochastic theories in GAs
has been discussed in [16] and references therein. The stochastic approach
based on Eigen’s model has been attempted by Nowak and Schuster [15].
They obtained an expression for the population size dependence of the error
threshold in the single-peaked landscape. However, their theory is still not
satisfactory enough to be used in GAs.

There are two instructive examples thoroughly investigated in population
genetics. Both examples use a two-allele model of one-bit strings denoted by
alleles a and a′ with finite population size N . One is a system without
selection and mutation, the other is a system including mutation. Kimura’s
diffusion model [17] makes it possible to calculate the probability density
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φ(x, t) of the relative frequency x at generation t of allele a. The probability
density function φ(x, t) is obtained by solving a Fokker–Planck equation with
the initial condition φ(x, 0) = δ(x− x0), where δ is the Dirac delta function.

When there is no selection and mutation, only genetic drift is present.
The function φ satisfies the Fokker–Planck equation,

∂φ

∂t
=

1

2N

∂2

∂x2
{x(1 − x)φ}.

The solution of this equation has an interesting property. As the number of
generations increases, φ is approximately given by

φ(x, t) ∼ 6x0(1 − x0) exp(−t/N), (0 < x < 1).

Thus, when t → ∞, φ approaches 0 in the region of 0 < x < 1; both
boundaries x = 0 and x = 1 act as absorbing barriers in this case. In this
model, the mean value of x is not dependent on t and given by x = x0. The
infinite population model also gives the result that x(t) = x0 at all t. This
fact tells us that close attention should be paid when the results of an infinite
population model are interpreted.

On the contrary, another example produces an optimistic result. When
mutation is present in an infinite population system, the differential equation
for describing x(t) is ẋ = −px + p(1 − x), where ẋ stands for the time
derivative of x. The solution of this equation is given by x(t) = 1/2 + (x0 −
1/2) exp(−2pt), and approaches 1/2 as t → ∞. On the other hand, the
diffusion model predicts the stationary distribution of x as [17]

φ(x) ∼ Cx2Np−1(1 − x)2Np−1 (t → ∞),

where C stands for the normalization constant. This distribution has a peak
at x = 1/2 and becomes more and more like δ(x−1/2) as N increases. Thus,
in this example, the infinite population model is a good approximation to the
stochastic approach. In any case, the development of the stochastic theory
of Eigen’s model may answer the question of what is the relation between
finite and infinite population models in GAs.
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Appendix A. Spectrum of the mutation matrix

Let Ml be a mutation matrix for l-bit strings. In this appendix we added
the subscript l to distinguish the length of strings. The mutation matrix M1

plays the role of a building block and is given by

M1 =

( s1
0 s1

1

s1
0 1− p p

s1
1 p 1− p

)

,
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where s1
0 and s1

1 denote one-bit strings 0 and 1, respectively. The eigenvalues
of M1 are 1 and 1 − 2p, and corresponding eigenvectors can be represented
by the Hadamard matrix

H1 =
(

1 1
1 −1

)
,

where the columns of H1 give the eigenvectors.
If we have the mutation matrix Ml−1 for (l− 1)-bit strings, we can recur-

sively construct the mutation matrix Ml for l-bit strings. It is convenient
to arrange l-bit strings in the order 0s0, . . . , 0sm−1, 1s0, . . . , 1sm−1, where
s0, . . . , sm−2, and sm−1 stand for the m = 2l−1 (l−1)-bit strings. This order-
ing is equivalent to that of the binary representation of unsigned integers in
the ascending order. In this ordering, the matrix Ml is given by

Ml =
(

(1 − p)Ml−1 pMl−1

pMl−1 (1 − p)Ml−1

)
= M1 ⊗ Ml−1,

where ⊗ stands for the Kronecker product.
Applying this equation repeatedly, we can easily show

Ml = M1⊗M1⊗· · ·⊗M1︸ ︷︷ ︸
l

. (A.1)

In the same way, the eigenvalue matrix Hl is also represented by the Kro-
necker products of H1

Hl = H1⊗H1⊗· · ·⊗H1︸ ︷︷ ︸
l

, (A.2)

where each column vector of the Hadamard matrix Hl gives the eigenvector
of Ml. The eigenvalues of Ml are also represented by using two eigenvalues
of M1, 1 and 1 − 2p. The terms appearing in the expansion

(1 + 1 − 2p)l =
l∑

k=0

(
l

k

)

(1 − 2p)k

give the eigenvalues,

(1 − 2p)k with multiplicity

(
l

k

)

, (k = 0, . . . , l). (A.3)

From this expression we can show that the maximum eigenvalue of Ml is 1
with multiplicity one.

The eigenvectors of the mutation matrix given by equation (A.2) can also
be represented by the Walsh monomials. Here we may use the fact that one
of the representations of the Walsh monomials is given by the Hadamard
matrix. Let s = xlxl−1. . .x1 be an l-bit string with each bit xi ∈ {0, 1} at
position i. In the binary representation, an integer j (0 ≤ j ≤ 2l − 1) is also
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given by j = jljl−1 . . . j1, where ji ∈ {0, 1}. We define auxiliary variables
yi ∈ {1,−1} by

xi =
1

2
(1 − yi), (i = 1, . . . , l).

By using these definitions, we can calculate the n = 2l Walsh monomials

ψj(Sk) =
l∏

i=1

yji
i , (k = 0, . . . , n − 1), (A.4)

where Sk = ylyl−1 . . . y1 stands for the kth auxiliary string. The ordering of
the auxiliary strings S is the same as that of the corresponding l-bit strings
s, which has been defined above. The jth eigenvector of the mutation matrix
Ml is

vj = (ψj(S0), ψj(S1), . . . , ψj = (Sn−1))
t, (j = 0, . . . , n − 1), (A.5)

where t denotes transpose. The eigenvector corresponding to the maximum
eigenvalue 1 is given by v0 = (1, 1, . . . , 1)t.

Appendix B. Spectrum of the selection-mutation matrix

In this appendix we show that the eigenvalues of the selection-mutation ma-
trix A = MF are all real and the maximum eigenvalue is nondegenerate
and positive. We assume that fitness values fi are all positive. Since ele-
ments of the matrix A are given by Aij = Mijfj, they are all positive when
p *= 0, 1. The Perron–Frobenius theorem states that a matrix whose ele-
ments are all positive has a real and positive eigenvalue whose magnitude
is greater than the magnitudes of other eigenvalues. It has also been shown
that this eigenvalue is nondegenerate, and that one can choose all elements
of the corresponding eigenvector to be nonnegative.

Furthermore, we can show that the eigenvalues of A are all real. We define
a diagonal matrix F 1/2 such that F 1/2

jj = f 1/2
j . The eigenvalue equation which

we have to solve is

Avj = Wjvj,

where Wj and vj are the jth eigenvalue and eigenvector of A, respectively.
We rewrite this equation by multiplying the matrix F 1/2 from the left side:

F 1/2Avj = F 1/2MF 1/2(F 1/2vj) = Wj(F
1/2vj).

This is also an eigenvalue equation with the eigenvalue Wj and eigenvec-
tor F 1/2vj. Since the matrix F 1/2MF 1/2 is symmetric, we now know that
eigenvalues Wj are all real.
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Appendix C. Short review of the perturbation theory

We divide the n×n selection-mutation matrix A into the unperturbed part
A(0) and its perturbation Φ, A = A(0) + Φ. The matrix A(0) is a diagonal
matrix with λi ≡ A(0)

ii = Aii. The perturbation Φ = A−A(0) has nondiagonal
elements φij = Aij, and its diagonal elements are φii = 0. We already know
the eigenvalues and eigenvectors of A(0):

A(0)ui = λiui, ui = (0, . . . , 0, 1, 0, . . . , 0)t, (i = 0, . . . , n − 1),

where the ith element of the eigenvector ui is one, and other elements are all
zero. It is easy to show that the set of the eigenvectors ui is the orthonormal
basis, ut

i · uj = δij, for the n-dimensional vector space.
Since our concerns are the maximum eigenvalue of A, denoted by W , and

its corresponding eigenvector v, we derive the perturbation expansions of
them. We assume that the maximum eigenvalue of A(0) is λ0, and that its
eigenvector u0 is nondegenerate. It is not necessary to assume the nondegen-
eracy of other eigenvectors ui (i ≥ 1).

By introducing a parameter δ, we replace Φ by Φδ. The parameter δ is
set to one when the final results are obtained.

The eigenvalue W , eigenvector v, and selection-mutation matrix are writ-
ten

W = W (0) + W (1)δ + W (2)δ2 + · · · ,
v = v(0) + v(1)δ + v(2)δ2 + · · · ,
A = A(0) + Φδ, (C.1)

and are substituted into the eigenvalue equation

Av = Wv.

By comparing the coefficients of equal powers of δ on both sides, we can
obtain a set of equations:

(A(0) − W (0))v(0) = 0,

(A(0) − W (0))v(1) = (W (1) − Φ)v(0),

(A(0) − W (0))v(2) = (W (1) − Φ)v(1) + W (2)v(0), etc. (C.2)

From the first line of equation (C.2) we put

v(0) = u0, W (0) = λ0. (C.3)

It is to be noted from the left side of the equations in (C.2) that the vectors
v(k) can include an arbitrary multiple of v(0). We choose the condition for
v(k) such that

v(0)t · v(k) = 0, k ≥ 1. (C.4)

The first order term W (1) is given by taking the inner product of u0 and
the second line of equation (C.2)

W (1) = u0
t ·Φu0 = φ00 = 0. (C.5)
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We calculate the first order vector v(1) by expanding it in terms of the ui

v(1) =
n−1∑

j=0

a(1)
j uj .

From the condition of equation (C.4), it is shown that a(1)
0 = 0. We substitute

this expansion into the second line of equation (C.2), replace A(0)uj by λjuj ,
and multiply ut

i from the left to take the inner product. Then we obtain

a(1)
i =

φi0

λ0 − λi
, (i ≥ 1). (C.6)

The second order term W (2) is

W (2) = u0
t ·Φv(1) =

n−1∑

j=1

φ0jφj0

λ0 − λj
. (C.7)

The second order vector is also given by the expansion in terms of the uj

v(2) =
n−1∑

j=1

a(2)
j uj ,

where a(2)
0 = 0 from the condition of equation (C.4). Substituting the expan-

sion of v(2) into the third line of equation (C.2), we obtain

a(2)
i =

n−1∑

j=1

φijφj0

(λ0 − λi)(λ0 − λj)
, (i ≥ 1). (C.8)
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