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Abstract. Let ω = {0, 1, . . . , n − 1} be a finite alphabet, DN =
{1, 2, . . . ,N}, and BN = {x ∈ [0, 1] | ∃k ∈ ! : x = k/nN}.

A configuration is a function of the form: ξ : DN → ω, and CN is
the set of all configurations. Two configurations ξ1 and ξ2 are near if
d(ξ1, ξ2) = (N −A)/N is small, where A = sup{p | ∃i ∈ {0, 1, . . . ,N} :
∀k = i + 1, i + 2, . . . , i + p ≤ N ξ1(k) = ξ2(k)}.

The following results are proved.

1. There is no sequence of functions φN : CN → BN such that φN

and φ−1
N uniformly converge to continuous functions in such a

topology.

2. Evolutions of cellular automata (CA) cannot be approximated
by the superpositions of real continuous functions.

In the proofs of these results advantage was taken of some CA acting
in " and in DN with a stationary boundary condition.

1. Introduction and definitions

Cellular automata (CA) are general discrete models of natural processes such
as the process of heat transfer or spreading of waves, and simultaneously CA
are simple models of computations. CA were introduced by S. Ulam in [7]
and J. von Neumann in [6]. Since then different aspects of CA have been
investigated by many scientists (e.g., [8]).

One-dimensional CA of radius 1 is defined by the following.

1. Space ", having elements which are called cells.

2. Finite set ω1 = {a0} ∪ ω, of possible states of any cell, where ω =
{0, 1, . . . , n − 1}, n > 1.

3. Function A : ω3
1 → ω1, where A(x, y, z) = a0 iff y = a0.
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This CA determines the evolution of space so that the states of each cell i
evolve in time steps t = 0, 1, . . . according to the states of its neighborhood.
This dependence is determined by A provided the neighborhood of i consists
of three nearest cells: i − 1, i, and i + 1.

Note that one-dimensional CA with radius R ≥ 1 can be defined along
similar lines, only a function A will have the form A : ω2R+1

1 → ω1 and the
neighborhood of i will consist of the cells: i−R, i−R+1, . . . , i, i+1, . . . , i+R.

We shall treat evolutions of A in limited domains of space of the form:
DN = {1, 2, . . . , N}, n = 1, 2, . . . ,∞ with a stationary boundary condition.
Such an evolution is a function of the form: ξ : DN × ! → ω, where
∀t = 0, 1, . . . , i = 2, . . . , N − 1

ξ(t + 1, i) = A(ξ(t, i − 1), ξ(t, i), ξ(t, i + 1)), (1)

ξ(t + 1, 1) = A(a0, ξ(t, 1), ξ(t, 2)), (2)

ξ(t + 1, N ) = A(ξ(t,N − 1), ξ(t,N ), a0). (3)

Evolution in ! = D∞ is defined by equations (1) and (2), evolution in "
is defined by equation (1). The set of all possible configurations ξ : DN → ω
is denoted by CN . The configuration in moment t of evolution ξ(t, i) is
ξt = ξ(t, i). If b ∈ CN , b = ξ0, we designate ξ1 by (b)′, or by (b)′N .

S. Wolfram in 1984 asked the question: What is the relation between
CA and continuous systems? (see [8]). In particular, [2] and [5] deal with
treating CA as continuous functions, their applications to dynamical sys-
tems are treated in [3]. One of the possible relations between these two
types of mathematical objects was demonstrated in [4], where configurations
were represented by polynomials A(t)(x) =

∑
i ξ(t, i)x

i and CA action was
represented by multiplication of A(t)(x) by the fixed polynomial T (x), which
depends on the CA.

This paper shows the impossibility of having a simpler way with config-
urations represented by real numbers and each step of evolution represented
by the action of a continuous function.

2. Evolutions in unlimited domains

In this section we consider CA in unlimited domains ! = C∞ or ". Any
possible configuration b ∈ C∞ may be denoted as the sequence

b(1), b(2), . . .

of natural numbers from ω.
At first glance, the natural correspondence between possible configura-

tions b ∈ C∞ and real numbers x : 0 ≤ x ≤ 1 can be established if any con-
figuration b is associated with a real number xb which has arithmetic notation
0.b(1)b(2) . . . in an n-based number system with the figures 0, 1, . . . , n − 1.

The function x : C∞ → [0, 1] defined by

x(b) = 0.b(1)b(2) . . .

is a direct arithmetic notation of configurations.
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The idea, in outline, is to associate with CA A the special real function
fA(x) of the form [0, 1] → [0, 1] defined by the following

fA(x(b)) = x((b)′∞). (4)

This approach has the grave drawback that there are different configura-
tions of the form

b̄ = (t1, t2, . . . , tk, n − 1, n − 1, . . .), tk < n − 1 and

c̄ = (t1, t2, . . . , tk + 1, 0, 0, . . .),

where x(b̄) = x(c̄) and so the natural definition by equation (4) is incorrect for
the majority of cases. Moreover, this approach can give only discontinuous
functions.

A function A from the definition of CA induces the mapping on the set
of all configurations which will be denoted by the same letter A.

We say that a function fA : B → B, where B = # or B = [0, 1] is a
real presentation (RP) of a CA A if there exists one-to-one correspondence
φ : B → C∞ such that the following diagram is closed:

C∞
A−−−−→ C∞

φ

"
"φ

B −−−−→
fA

B

Theorem 1. There exists CA A with no continuous RP.

Proof. For any function F let F s denote its iteration: F 0(x) = x, F s+1 =
F (F s(x)). For any RP fA and s ∈ ! we have:

∀ξ ∈ C∞ As(ξ) = φ(f s
A(φ−1(ξ))).

Let A(i, j, k) ≡ j + 1(mod n). Then A : C∞ → C∞ has no fixed point
and An is identical. Thus, if fA is continuous, it must be ∀x ∈ B fA(x) < x
or ∀x ∈ B fA(x) > x. Then f r

A cannot be identical for any r = 1, 2, . . .,
which is a contradiction. Theorem 1 is proved.

The case of cyclicity of A can be excluded if we extend the notion of RP.
Let s ∈ !. A real function FA : B → B is called a real s-presentation
(RS-P) of CA A, if the diagram

C∞
As

−−−−→ C∞

φ

"
"φ

B −−−−→
FA

B

is closed for some one-to-one mapping φ.
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Theorem 2. There exists CA A such that for any s ∈ ! A lacks continuous
RS-P.

Proof. First, consider the case D = ". Let A be left shift: A(i, j, k) = k.
Suppose that A has RS-P FA. Then FA is a one-to-one mapping like A
and thus FA is monotone. Therefore for any x ∈ B either F 2

A(x) = x or
∀l = 1, 2, . . . F l

A(x) -= x and the same possibilities take place for As playing
the role of FA. But it is impossible because for a configuration

a(i) =
{

1, if i ≡ 0(mod p),
0, if i -≡ 0(mod p)

and p = 2s + 1 A2s(a) -= a but A2s+1(a) = a. Case D = " is considered.
Now let D = !. The alphabet ω for A consists of all pairs (a

b
), a, b ∈

{0, 1}. We define the CA A by the following equalities: A((a
b
), ( c

d
), ( e

f
)) =

( a
f ), A(a0, (

a
b ), (

c
d)) = ( b

d). Again, A induces one-to-one mapping on the
set of all configurations, FA is monotone, and we have the same two possi-
bilities for A and FA. Define a(i) by the following equations: a(i) = (1

1),
if i ≡ 0 (mod p), a(i) = (0

0), if i -≡ 0 (mod p). Then we have A2s(a) -=
a, A2s+1(a) = a as above. Theorem 2 is proved.

Stronger assertions about RPs can be obtained if we set some limits on
a function φ and on a domain of space for the CA. The case of unlimited
domain D = ! is quite simple.

Let us introduce a topology based on the system of vicinities of the form

U(q, i1, i2, . . . , ip) = {ξ ∈ C | ∀j = 1, 2, . . . , p ξ(q + j) = ij}.

Then the convergence ξp → ξ (p → ∞) in this topology implies that ∀N ∃P ∀p ≥
P ∀i = 0, 1, . . . , N

ξp(i) = ξ(i). (5)

Any one-to-one mapping φ : C∞ → [0, 1] must have an infinitely large
number of points of discontinuity in this topology, because otherwise equa-
tion (5) is violated.

3. The case of limited domains

Let BN = {x ∈ [0, 1] | ∃k ∈ ! x = k/nN} and let φN be a one-to-one
mapping of the form

φN : CN → BN . (6)

The main question: Is there any sequence of one-to-one mappings of the
form in equation (6) such that both sequences φN and φ−1

N converge uniformly
if N → ∞? The notion of uniform convergence must be defined more exactly.
If ξ1 ∈ CN1 , ξ2 ∈ CN2 , N = min{N1, N2}, we put d(ξ1, ξ2) = (N−A)/N , where
A = sup{p | ∃i ∈ {0, 1, . . . , N} : ∀k = i+1, i+2, . . . , i+p ≤ N ξ1(k) = ξ2(k)}.
If N1 = N2, then d is a metric on the set CN .
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Let the sequence of mapping in equation (6) have the following properties.

P1. ∀ε > 0 ∃δ > 0, N0 ∈ ! ∀N1, N2 > N0, ξ1 ∈ CN1 , ξ2 ∈ CN2 if d(ξ1, ξ2) <
δ, then |φN1(ξ1) − φN2(ξ2)| < ε.

P2. ∀ε > 0 ∃δ > 0, N0 ∈ ! ∀N1, N2 > N0, x1 ∈ BN1, x2 ∈ BN2 if |x1−x2| <
ε then d(φ−1

N1
(x1),φ

−1
N2

(x2)) < δ.

Then we say that the sequence of mapping in equation (6) is a real finite
approximation (RFA) of configurations.

RFA, if it exists, would establish a correspondence between real numbers
and words in a finite alphabet with natural topology. However, we shall see
that such a correspondence is impossible.

Theorem 3. RFA does not exist.

Proof. Let equation (6) be RFA, A be CA, and fA,N be a function which
makes the following diagram closed:

CN
A−−−−→ CN

φN

%
%φN

BN −−−−→
fA,N

BN
(7)

Then P1 and P2 imply that the sequence fA,N converges uniformly to the
continuous function fA on [0, 1] if N → ∞.

A function A is called s-reversible if there exists N0 ∈ ! such that CA A
is reversible on all sets CN , N > N0.

Let A be s-reversible and N > N0. Then the function A from equation (7)
is reversible and the functions fA,N have reverse functions f−1

A,N which con-
verge uniformly to the continuous function f−1

A , when N → ∞. Therefore,
fA is monotone. We denote fA by f .

Lemma 1. If CA A is s-reversible then there are the following three possi-
bilities.

1. f (x) = x for any x ∈ [0, 1].

2. f (x) = f−1(x) for any x ∈ [0, 1].

3. ∃N ∈ !, x0 ∈ BN , ε > 0 ∀p = 1, 2, . . . ,∀M > N |f p
A,M(x0) − x0| > ε.

Proof. We shall prove that when f is nondecreasing there are two possibilities:
1 or 3, and if f is decreasing then either 2 or 3.

Case 1. f is a nondecreasing function (Figure 1).
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Figure 1: Nondecreasing f .

Figure 2: Decreasing f .

If possibility 1 does not occur, it is sufficient to take x0 such that |f (x0)−
x0| > 0, ε = |f (x0) − x0|/2 and find suitable N using P1 and P2.

Case 2. f is a decreasing function (Figure 2).

If possibility 2 does not occur, it is suffucient to take x0 such that |f (x0)−
f−1(x0)| > 0 and put ε = max {|f (x0)− f−1(x0)|, |f 2(x0)−x0)|, |f−2(x0)−
x0)|}/2, where f−2(x) = f−1(f−1(x)) and after that find appropriate N using
P1 and P2. Lemma 1 is proved.

Now let us define CA B.
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The new alphabet ω′ ∪ {a0} is introduced by ω′ = ω × ω. Elements of ω′

are denoted by ( ai

aj
), ai, aj ∈ ω.

Rules for CA B have the following forms:

B
((

a

b

)
,
(

c

d

)
,

(
e

g

))

=
(

e

b

)
,

B
(

a0,
( c

d

)
,

(
e

g

))

=
(e

c

)
,

B
((

a

b

)
,
(

c

d

)
, a0

)
=

(
d

b

)

.

Lemma 2. This automaton B is s-reversible and the function f = fB is such
that ∃x ∈ [0, 1] : f (x) -= x, f (x) -= f−1(x).

Proof. Let ξN ∈ CN be a configuration such that ∀i = 1, 2, . . . , N ξN(i) =
( si

xi
), where the word s̄N = s1s2 . . . sN does not contain any occurrence of

the nonempty word of the form Al, l > 2. This word s̄N exists for any
N ∈ ! (e.g., [1]). We have ∃ N1 ∀N > N1 d(ξN ,B(ξN)), d(ξN ,B2(ξN)) >
1/2. Consequently, in view of P1 and P2, if x is a limit point of the set
{φN(ξN) | N = 1, 2, . . .}, then f (x) -= x, f (x) -= f−1(x).

Lemma 2 is proved.
Now it is sufficient to note that for any N ∈ ! ∀x ∈ BN fN

B,N(x) = x and
we obtain a contradiction with Lemma 1. Theorem 3 is proved.
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