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Abstract. This paper deals with the problem of describing spatially
inhomogeneous gases by applying model Boltzmann equations. A
plane discrete velocity model is presented, capable of describing a gas
of particles with internal degrees of freedom. The number of particle
speeds is variable. All possible collisions, both elastic and inelastic,
are calculated. The corresponding equation system for 2L+1 speeds is
given explicitly, where L is a nonnegative integer. For the case L = 1
solutions in the form of shock waves are found numerically.

1. Introduction

Modern gas kinetics cannot be confined to spatially homogeneous gases. Typ-
ical problems such as the investigation of shockwaves require the investiga-
tion of anisotropic and inhomogeneous cases. Since the corresponding equa-
tions have a complicated mathematical structure, they are hard to work out.
Therefore, simplified models have become relevant in the study of relaxation
processes. Numerous methods, analytical as well as numerical, have been de-
veloped for examining inhomogeneous gases. For numerical solutions, Monte
Carlo methods and lattice gas automata are popular. Most activities in the
field of analytical solutions focus either on developing nonlinear perturba-
tion methods or on solving equations by using Lie groups. Moreover, the
discrete kinetic theory offers an alternative method for treating such prob-
lems. The reason for the growing interest in the study of discrete velocity
models (DVMs) is the hope of gaining new insight into kinetic theory and
fluid dynamics. Broadwell [1] presented his famous model in 1964, since
then many other models have been proposed. A survey on the results of the
discrete kinetic theory can be found, for example, in [2, 3].
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At present, there is a trend to extend the DVM to gas mixtures [4, 5]
as well as accounting for removal and source terms [6]. Not much is known
about including inelastic interactions [7] or chemical reactions [8].

The aim of this paper is to present a general DVM which is suitable
for describing a gas consisting of particles with internal degrees of freedom.
Contrary to other models, the number of particle speeds is variable. The cor-
responding equation system is valid in the range of three up to 2L+1 speeds
with L ∈ IN. Therefore the model is useful for analytical as well as numerical
investigations, depending on the chosen value of L. With increasing L, the
discrete model approaches a continuum description, but the velocity direc-
tions remain discrete. Such a model can be interpreted as an extension of the
multigroup method [9] to spatially inhomogeneous gases. Furthermore, the
problem of the ill temperature definition [10] can be overcome. The main
benefit of our model is in its simple way of considering inelastic collisions
without any additional assumptions or restrictions.

This paper is organized as follows. In section 2, the requirements that
must be considered in our model are defined. A general model, taking into
account these specifications, is presented. Its properties, in particular all
possible elastic collisions, are presented. For practical application, the model
has to be restricted, which is done in section 3, where the values of particle
speeds are confined to a special set. All remaining elastic as well as all
possible inelastic collisions are shown. The corresponding equation system
for 2L + 1 speeds is given in an explicit form. In section 4, the equation
system is solved numerically for binary elastic collisions and by allowing two
different velocity moduli. At infinity, the shock wave profiles obtained reach
exactly the Maxwell densities, which follow alternatively from the Rankine
Hugoniot equations.

2. The general model

We consider a gas, consisting of particles of identical mass m which pos-
sess translational and internal degrees of freedom. These particles are free
of external forces. Particles with different internal quantum states α estab-
lish different species. A change of internal energy Eα results from inelastic
collisions. The probability density for a collision process

(v1,v2)α,β → (v3,v4)
γ,δ, (1)

where two particles, one being in state α with a velocity v1 and the other
being in state β with a velocity v2, collide and change to states γ and δ with

velocities v3 and v4, is denoted by
(
W γ,δ

α,β

)v3,v4

v1,v2
. As is the case for continuum

gas kinetics, the probability density should obey two fundamental symmetries
[11], the interaction symmetry:

(W γ,δ
α,β)v3,v4

v1,v2
= (W δ,γ

β,α)v4,v3

v2,v1
(2)

and microscopic reversibility:

(W γ,δ
α,β)v3,v4

v1,v2
= (Wα,β

γ,δ )v1,v2

v3,v4
. (3)
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The principle of microscopic reversibility is only valid in this form for gases
consisting of particles with nondegenerate internal quantum states (which is
assumed here). For a binary collision as in equation (1), momentum and
energy conservation reads:

v1 + v2 = v3 + v4 (4)

and

v2
1 + v2

2 = v2
3 + v2

4 − 2qγ,δ
α,β . (5)

Furthermore, in a DVM, all particle velocities are restricted to a set M :

v1,v2,v3,v4 ∈ M. (6)

The difference in internal energy before and after the collision is given by:

mqγ,δ
α,β = Qγ,δ

α,β = (Eα + Eβ) − (Eγ + Eδ). (7)

To be suitable for describing a realistic gas, we expect our model to meet the
following conditions.

C1. Existence of inelastic collisions (qγ,δ
α,β %= 0), that is, collisions that comply

with momentum but not with energy conservation.

C2. The particle velocities of all species belong to the same set M.

C3. Existence of mixing speed (MS) collisions, that is, collisions where at
least one of the postcollisional speeds v3 or v4 differs from both precol-
lisional speeds v1 and v2.

C4. Proceeding from an initial state where all particles have the same speed,
but different flight directions, all other permitted velocities should be
attainable in a sequence of elastic collisions.

Condition C1 serves to include the energy exchange between internal and
translational degrees of freedom in our model. Conditions C2 and C3 provide
for a realistic model. In connection with the existence of different particle
speeds, condition C3 allows a nontrivial description of the temperature of
the system. For instance, in systems with only two velocity moduli, there is
no exchange of energy between the “hot” subsystem, composed of particles
with faster speed and the “cold” subsystem of particles with slower speed.
The energy of hot and cold particles is separately conserved. By applying
condition C4, particles of all speeds can indirectly interact with each other by
means other than trivial collisions such as (v1,v2)α,β → (v1,v2)α,β . Other-
wise particles with certain velocities could exist, so that the particle densities
are completely independent of the value of all other particle densities. Since
those particles do not participate in the dynamical behavior of the system,
they are undesirable.
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In this paper, we confine ourselves to a plane model with eight velocity
directions. On the one hand this limits the size of the DVM equation system,
on the other hand it allows a variety of different collisions.

The set M of permitted velocities is the union of L disjoint subsets M i

and the zero velocity:

M :=




⋃

i=1,...,L

M i



 ∪ {0}. (8)

Every set M i consists of eight velocities:

M i :=

{

vi,m|vi,m =

(
0

Ai

)

,

(
Ai

Ai

)

,

(
Ai

0

)

,

(
Ai

−Ai

)

,

(
0

−Ai

)

,

(
−Ai

−Ai

)

,

(
−Ai

0

)

,

(
−Ai

Ai

)}

.

Note that

m = 1, 3, 5, 7 for |vi,m| = Ai, m = 2, 4, 6, 8 for |vi,m| =
√

2Ai (9)

with Ai ∈ IR+ \ {0}. The zero velocity is defined by:

0 = v0,m :=

(
0

0

)

. (10)

Thus the speed and direction of a particle velocity can be easily identified by
the two subscripts of the velocities vi,m. The second subscript m is related
to the directions as shown in Figure 1. The density of particles with velocity
vi,m and internal state α is denoted by Nα

i,m(r, t) and for particles at rest by
Rα(r, t).

Figure 1: Relation between the subscript m for the velocity vi,m and
the velocity direction.
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Table 1: Elastic collision types.

Number Collision type

[1]
(

Ai

0

)
+

(
−Ai

0

)
↔

(
0
Ai

)
+

(
0

−Ai

)
SS

[2]
(

Ai

Ai

)
+

(
−Ai

−Ai

)
↔

(
Ai

−Ai

)
+

(
−Ai

Ai

)
SS

[3]
(

Ai

Ai

)
+

(
−Ai

0

)
↔

(
Ai

0

)
+

(
−Ai

Ai

)
DS

[4]
(

Ai

Ai

)
+

(
−2Ai

0

)
↔

(
0

2Ai

)
+

(
−Ai

−Ai

)
DS

[5]
(

0
2Ai

)
+

(
2Aj

0

)
↔

(
Ai+Aj

Ai+Aj

)
+

(
Aj−Ai

−Aj+Ai

)
MS

[6]
(

Ai

−Ai

)
+

(
−Ai

Ai

)
↔

(√
2Ai

0

)
+

(
−
√

2Ai

0

)
SS

[7]
(

Ai

Ai

)
+

(
−Ai(2+

√
2)

0

)
↔

(
0

−
√

2Ai

)
+

(
−Ai(1+

√
2)

Ai(1+
√

2)

)
DS

[8]
(

Ai

Ai

)
+

(
−Ai(2−

√
2)

0

)
↔

(
0√
2Ai

)
+

(
−Ai(1−

√
2)

Ai(1−
√

2)

)
DS

[9]
(

2Ai

0

)
+

(
Ai(

√
5−3)

0

)
↔

(
0

−Ai(
√

5−1)

)
+

(
Ai(

√
5−1)

Ai(
√

5−1)

)
MS

[10]
(

2Ai

0

)
+

(
−Ai(

√
5+3)

0

)
↔

(
0

Ai(
√

5+1)

)
+

(
−Ai(

√
5+1)

−Ai(
√

5+1)

)
MS

[11]
(

2Ai

2Ai

)
+

(
−4Ai

0

)
↔

(
Ai(

√
5−1)

−Ai(
√

5−1)

)
+

(
−Ai(

√
5+1)

Ai(
√

5+1)

)
MS

The results of a systematic calculation of all possible elastic collisions in
this model are shown in Table 1. As can be seen, the general model permits
11 different types of collisions. Only one example of each type is displayed
in Table 1. All others can be found by applying the following symmetry
operations.

S1. Exchange x and y components for all velocities involved in the collision.

S2. Reflect the collision on the X-axis.

S3. Reflect the collision on the Y -axis.

In the last column we distinguished between a mixing speed (MS), a dual
speed (DS), and a single speed (SS) collision. SS collision means that all
particles involved in the collision have the same speed before as well as after
the collision. Correspondingly, two different speeds occur in a DS collision.
We are not able to calculate the very general set of velocities of our model
that can be attained in accordance to condition C4. But we can show, at
least in the following collision sequence, that all velocities occurring in Table 1
are part of this general set. We cite only one of the precollision and one of
the postcollision partners according to Table 1 with the collision type and
symmetry operations labeled:
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(
Ai

0

) [5]−→
(

Ai

Ai

) [6],(S3)−→
(√

2Ai

0

) [5]−→
(√

2Ai√
2Ai

)

[5]

-
(

2Ai

0

) [5]−→
(

2Ai

2Ai

)






[5]−→
(

(2±
√

2)Ai

0

) [7],[8]−→
(

(1±
√

2)Ai

(1±
√

2)Ai

)

(
2Ai

2Ai

)

[5]

-
(

4Ai

0

)






[11]−→
(

(
√

5±1)Ai

(
√

5±1)Ai

) 




[9],[10]−→
(

(
√

5±3)Ai

0

)
.[5]

-
(

(
√

5±1)Ai

0

)

This sequence also shows an iterative way of finding the complete set of
velocities attained in accordance to condition C4. Instead of Ai, all velocity
components found in the collision sequence can be inserted in the first velocity
of the sequence. With these new initial values the next generation of velocities
according to condition C4 can be calculated.

3. The restricted model

The multitude of different collisions as represented in Table 1 is only possible
in a model where the velocity components Ai can take arbitrary values. For
two reasons a restriction of this scope is necessary for every model used to
find practical solutions. On the one hand, it is necessary to limit the size of
the DVM equation system as it depends strongly on the number of different
collisions taken into account. On the other hand, we have to confine the
permitted set of particle velocities to a known set of velocities according to
condition C4. Of the several different ways to confine the set, we examine
four different possibilities for qualification. In all four cases we define A1 = 1.

1. A velocity set M with velocity components Ai =
√

i, i ∈ IN shows
equidistant kinetic energy values. This offers the advantage that in
every collision which meets energy conservation, all velocities automat-
ically adhere to the given set M . Unfortunately, we cannot prove that
the required velocities form a set of velocities according to condition
C4.

2. In contrast, we can show that all velocities with components Ai = i, i ∈
IN establish a set M of velocities in accordance to condition C4. This
can be proved easily, by a sequence of type [5] collisions:

(
n
n

)
+

(
1
−1

)
−→

(
n+1

0

)
+

(
0

n−1

)

↑ ↓
(

0
0

)
+

(
n+1
n+1

)
←−

(
0

n+1

)
+

(
n+1

0

)
.
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It must be considered that only collisions of type [1], [2], [3], [4], and [5]
are possible for this set M . Furthermore, collision type [5] in the form

(
0

i

)

+

(
j

0

)

−→
( i+j

2
i+j
2

)

+

( j−i
2

−j−i
2

)

(11)

has to be restricted in such a manner that

i = even ⇐⇒ j = even

i = odd ⇐⇒ j = odd

is valid. For the inverse collision no such restrictions apply. Conditions
C1 through C5 are valid.

3. With velocity components Ai = i2, i ∈ IN no set of velocities according
to condition C4 can be found.

4. The velocities with components Ai = 2i, i ∈ IN form in combination
with the zero velocity a set M of velocities according to condition C4.
In this case, collision types [1], [2], [3], and [4] remain without any re-
striction. Collision type [5] is possible only when Ai = Aj or Aj = 0:

[5a]
(

Ai

0

)
+

(
0

Ai

)
↔

(
Ai

Ai

)
+

(
0
0

)

[5b]
(

Ai

Ai

)
+

(
−Ai

Ai

)
↔

(
0

2Ai

)
+

(
0
0

)
.

Conditions C1 through C5 are valid and easily proven.

For the following investigations we confine ourselves to case 4. Therefore
only collision types [1] through [4], [5a], and [5b] must be taken into account.

The next question that we have to answer is which inelastic collision types
are relevant under the restrictions of case 4. A systematic calculation results
in three different types as shown in Table 2.

Table 2: Inelastic collision types.

Number Collision type |qα,β
γ,δ |

[1]
(

Ai

0

)
+

(
−Ai

0

)
↔

(
Ak

0

)
+

(
−Ak

0

)
22i+1(22(k−i) − 1) for i < k

[2]
(

Ai

Ai

)
+

(
−Ai

−Ai

)
↔

(
Ak

Ak

)
+

(
−Ak

−Ak

)
22i+2(22(k−i) − 1) for i < k

[3a] (
Ai

0

)
+

(
−Ai

0

)
↔

(
Ak

Ak

)
+

(
−Ak

−Ak

) 22i+1(22(k−i)+1 − 1) for i ≤ k

[3b] 22k+1(22(i−k) − 2) for i > k
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Based on physical grounds, we have omitted all collisions where the rel-
ative particle speed either before or after the collision is zero. Table 2 also
displays the possible values of internal energy qγ,δ

α,β that can be achieved with
the corresponding collision type. As expected in a DVM, only a limited
number of discrete values for qγ,δ

α,β are possible. Another difference to the

continuum model is the fact that for a given value of qγ,δ
α,β, only one collision

(and of course its symmetric partners) exists and leads to this value. This is
because the difference in particle speed between adjacent sets of velocities Mi

and Mi+1 is larger than that between the lower set Mi and the zero vector.
This fact can only be met by examining another model. None of the four
cases mentioned previously is promising, as case 1 seems to be impossible
and case 2 shows the same problem but for other reasons.

The equation system for the restricted discrete model in continuous space
has the general form:

∂

∂t
Nα

i,m(r, t) + vi,m · ∇Nα
i,m(r, t) = Tα

i,m(r, t) (12)

with

Tα
i,m =

∑

β,γ,δ

∑

(j,n),(k,o),(l,p)

(
Wα,β

γ,δ

)(k,o),(l,p)

(i,m)(j,n)
(N γ

k,oN
δ
l,p − Nα

i,mNβ
j,n).

The probability density (Wα,β
γ,δ ) was defined in section 2. We wrote (i,m) for

vi,m and analogously for the other subscripts.
We need values of Wα,β

γ,δ that are realistic, simple, and meet the symme-
tries S2 and S3. This occurs if we set:

(Wα,β
γ,δ )(k,o),(l,p)

(i,m)(j,n) =






pe for elastic collisions
pi for inelastic collisions
0 for all other cases.

(13)

Here, all elastic collisions have the same probability regardless of the initial
and final states of the colliding particles. The same applies for inelastic
collisions.

Due to the limited number of different collision types, we can write the
right-hand side of equation (12), Tα

i,m, in a more explicit form. This form
should be useful especially for numerical evaluations.

We split the scattering term Tα
i,m into separate terms for SS, DS, MS,

and inelastic collisions. Inclusion of SS and/or DS collisions in the equation
system is optional. With the definition

[n] =

{
n for n ≤ 4
n − 4 for n > 4

(14)

and the abbreviation:
∑

β

S(α,β)(α,β) =
∑

β

(
S(α,β)(α,β) + S(α,β)(β,α)

)
(15)

we find the following for each type of collision.
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SS collisions

Tα
i,m

∣∣∣∣∣
SS

= pe






∑
β

S
(α,β)(α,β)

i,[2m] for m = 2, 4, 6, 8

∑
β

S
(α,β)(α,β)

i,[2m−1] for m = 1, 3, 5, 7

(16)

with the abbreviations:

S(α,β)(α,β)
i,1 := Nα

i,3N
β
i,7 − Nα

i,1N
β
i,5 S(α,β)(α,β)

i,2 := Nα
i,4N

β
i,8 − Nα

i,2N
β
i,6

S(α,β)(α,β)
i,3 := Nα

i,1N
β
i,5 − Nα

i,3N
β
i,7 S(α,β)(α,β)

i,4 := Nα
i,2N

β
i,6 − Nα

i,4N
β
i,8.

(17)

DS collisions

Tα
i,m

∣∣∣∣∣
DS

=

pe






∑
β

(
D

(α,β)(α,β)

i,m −D
(β,α)(α,β)

i,[m+3] +D
(α,β)(β,α)

i,[m+2]+4−D
(β,α)(α,β)

i,m+4

)
for m = 2, 4, 6, 8

∑
β

(
D

(α,β)(β,α)

i,m+2 −D
(α,β)(α,β)

i,[m] −D
(α,β)(α,β)

i−1,[m+1]+4+D
(α,β)(α,β)

i−1,m+4

)
for m = 1, 3, 5, 7

(18)

with the abbreviations:

D(α,β)(α,β)
i,1 := Nα

i,1N
β
i,4 − Nα

i,2N
β
i,5 D(α,β)(α,β)

i,5 := Nα
i+1,7N

β
i,2 − Nα

i+1,1N
β
i,6

D(α,β)(α,β)
i,2 := Nα

i,3N
β
i,6 − Nα

i,4N
β
i,7 D(α,β)(α,β)

i,6 := Nα
i+1,1N

β
i,4 − Nα

i+1,3N
β
i,8

D(α,β)(α,β)
i,3 := Nα

i,5N
β
i,8 − Nα

i,6N
β
i,1 D(α,β)(α,β)

i,7 := Nα
i+1,3N

β
i,6 − Nα

i+1,5N
β
i,2

D(α,β)(α,β)
i,4 := Nα

i,7N
β
i,2 − Nα

i,8N
β
i,3 D(α,β)(α,β)

i,8 := Nα
i+1,5N

β
i,8 − Nα

i+1,7N
β
i,4.

(19)

MS collisions

Tα
i,m

∣∣∣∣∣
MS

=

pe






∑
β

(
M

(α,β)(α,β)

i,2m − M
(β,α)(α,β)

i,2m−1 − M
(α,β)(α,β)

i,2[m+1]−1

)
for m = 2, 4, 6, 8

∑
β

(
M

(α,β)(α,β)

i−1,2m−1 − M
(α,β)(α,β)

i,2m − M
(β,α)(α,β)

i,2[m+3]

)
for m = 1, 3, 5, 7

(20)

Tα
0,m

∣∣∣∣∣
MS

= pe

∑

β

∑

i

8∑

m=1

M
(α,β)(β,α)

i,m (21)
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with the abbreviations:

M (α,β)(α,β)
i,1 := Nα

i,8N
β
i,2 − Nα

i+1,1R
β M (α,β)(α,β)

i,2 := Nα
i,1N

β
i,3 − Nα

i,2R
β

M (α,β)(α,β)
i,3 := Nα

i,2N
β
i,4 − Nα

i+1,3R
β M (α,β)(α,β)

i,4 := Nα
i,3N

β
i,5 − Nα

i,4R
β

M (α,β)(α,β)
i,5 := Nα

i,4N
β
i,6 − Nα

i+1,5R
β M (α,β)(α,β)

i,6 := Nα
i,5N

β
i,7 − Nα

i,6R
β

M (α,β)(α,β)
i,7 := Nα

i,6N
β
i,8 − Nα

i+1,7R
β M (α,β)(α,β)

i,8 := Nα
i,7N

β
i,1 − Nα

i,8R
β.

(22)

Inelastic collisions

In the restricted model, all inelastic collisions have the form

(
(i,m)(i, n)

)

α,β
→

(
(k, o)(k, p)

)γ,δ
.

For every given and realizable qα,β
γ,δ , one can easily find the corresponding

values î, k̂ for the subscripts i, k. Inelastic collisions will therefore occur only
in the scattering terms for particle densities Nα

î,m
and Nα

k̂,m
. Moreover, it has

to be considered that for a given state α there might be several combinations
of β, γ, δ which lead to the same value of qα,β

γ,δ , depending on the structure
of the internal energy states. We did not make a regulation here. Taking
this fact into account, we define the summation

∑∗
γ,δ as the summation over

all combinations of β, γ, δ that result in identical values for qα,β
γ,δ . If no such

combination exists, the summation vanishes. With the definition

〈n〉 =

{
1 for n ≤ 2
0 for n > 2

(23)

the scattering term for the inelastic collision types [3a] and [3b] according to
Table 2 reads:

Tα
i,m

∣∣∣∣∣
IN

= pi






δ(k̂ − i)
∑
γ,δ

∗
(
I(γ,δ)(α,β)

î,k̂,m
+ I(γ,δ)(β,α)

î,k̂,[m+2]

)
for m = 2, 4, 6, 8

δ(̂i−i)
∑
γ,δ

∗
(
I(α,β)(γ,δ)

î,k̂,[2m−1+〈m〉]+I(β,α)(γ,δ)

î,k̂,[2m−〈m〉]

)
for m = 1, 3, 5, 7

(24)

with the abbreviations:

I(α,β)(γ,δ)

î,k̂,1
:= Nβ

î,1
Nα

î,5
− N γ

k̂,2
N δ

k̂,6
I(α,β)(γ,δ)

î,k̂,2
:= Nα

î,1
Nβ

î,5
− N γ

k̂,4
N δ

k̂,8

I(α,β)(δ,γ)

î,k̂,3
:= Nβ

î,3
Nα

î,7
− N δ

k̂,2
N γ

k̂,6
I(α,β)(δ,γ)

î,k̂,4
:= Nα

î,3
Nβ

î,7
− N δ

k̂,4
N γ

k̂,8
.

(25)



A General Discrete Velocity Model 427

4. Application

In the case of binary elastic scattering and allowing only two velocity mod-
uli, but eight directions, we found numerical solutions in the form of shock
waves. It turned out that the values of these density profiles at ±∞ are in
exact agreement with those obtained from the Rankine Hugoniot equations
(RHEs).

From now on, we will only consider a one component gas with the velocity
moduli |v1,m| = A1 = v for m = 1, 3, 5, 7, and |v1,m| =

√
2A1 =

√
2v for

m = 2, 4, 6, 8 (Figure 1 for i = 1). The particles interact by collisions of
types [1], [2], and [3] (Table 1 including symmetry operations S1, S2, and
S3):

v
(

1
−1

)
+ v

(
−1
0

)
↔ v

(
1
0

)
+ v

(
−1
−1

)

v
(
−1
1

)
+ v

(
0
−1

)
↔ v

(
0
1

)
+ v

(
−1
−1

)

v
(

1
1

)
+ v

(
0
−1

)
↔ v

(
0
1

)
+ v

(
1
−1

)
.

(26)

The probability density Wvh,vk
vi,vj

for the collisions (vi,vj) ↔ (vh,vk) is re-
lated to the corresponding transition probability density wvh,vk

vi,vj
through the

relation

Wvh,vk
vi,vj

= S|vi − vj|wvh,vk
vi,vj

, (27)

where
∑8

h,k=1 wvh,vk
vi,vj

= 1 for all i, j = 1, . . . , 8 and S denotes the cross-
sectional area. If all q admissible outputs referred to the input (vi,vj) are
assumed to be equally probable, then

wvh,vk
vi,vj

=

{
1
q for admissible collisions
0 otherwise.

(28)

In our case, q = 2 corresponding to equation (26). The case of simple ex-
change of velocities between the two particles is included in this number.
The discrete Boltzmann equations resulting from this model read as:

∂
∂tN1 + v ∂

∂yN1 = R1,
∂
∂tN2 + v( ∂

∂x + ∂
∂y )N2 = R2

∂
∂tN3 + v ∂

∂xN3 = R3,
∂
∂tN4 + v( ∂

∂x − ∂
∂y )N4 = R4

∂
∂t

N5 − v ∂
∂y

N5 = R5, ∂
∂t

N6 − v( ∂
∂x

+ ∂
∂y

)N6 = R6

∂
∂t

N7 − v ∂
∂x

N7 = R7, ∂
∂t

N8 − v( ∂
∂x

− ∂
∂y

)N8 = R8

(29)
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with

R1 = Sv[(N3N7 − N1N5) +
√

5
2

(N8N5 − N6N1) +
√

5
2

(N2N5 − N1N4)]

R2 = Sv[
√

2(N4N8 − N2N6) +
√

5
2 (N1N4 − N2N5) +

√
5

2 (N8N3 − N7N2)]

R3 = Sv[(N1N5 − N3N7) +
√

5
2 (N7N2 − N8N3) +

√
5

2 (N4N7 − N3N6)]

R4 = Sv[
√

2(N2N6 − N4N8) +
√

5
2 (N3N6 − N4N7) +

√
5

2 (N2N5 − N1N4)]

R5 = Sv[(N3N7 − N1N5) +
√

5
2 (N1N4 − N2N5) +

√
5

2 (N6N1 − N5N8)]

R6 = Sv[
√

2(N4N8 − N2N6) +
√

5
2

(N5N8 − N6N1) +
√

5
2

(N4N7 − N3N6)]

R7 = Sv[(N1N5 − N3N7) +
√

5
2 (N3N6 − N4N7) +

√
5

2 (N8N3 − N7N2)]

R8 = Sv[
√

2(N2N6 − N4N8) +
√

5
2

(N7N2 − N8N3) +
√

5
2

(N6N1 − N5N8)].

(30)

The corresponding collisional invariants [12]

ψ1 = (1, 1, 1, 1, 1, 1, 1, 1)

ψ2 = 1
v (0, v, v, v, 0,−v,−v,−v)

ψ3 = 1
v (v, v, 0,−v,−v,−v, 0, v)

ψ4 = 1
v2 (v2, 2v2, v2, 2v2, v2, 2v2, v2, 2v2)

(31)

satisfying the relations

−ψ1 +ψ3 −ψ5 +ψ7 = 0
ψ2 −ψ4 +ψ6 −ψ8 = 0
ψ2 −ψ3 +ψ5 +ψ7 −ψ8 = 0

−ψ1 +ψ5 −ψ6 +ψ8 = 0
−ψ3 +ψ4 −ψ6 +ψ7 = 0

ψ1 −ψ2 +ψ4 −ψ5 = 0

(32)

have the physical meaning of conservation of mass, conservation of the x-
and y-component of momentum, and conservation of energy. The vectors

φ1 = (1, 1, 1, 1, 1, 1, 1, 1)
φ2 = (0, 1, 1, 1, 0,−1,−1,−1)
φ3 = (1, 1, 0,−1,−1,−1, 0, 1)
φ4 = (1, 2, 1, 2, 1, 2, 1, 2)

(33)

represent a basis in the space F of collisional invariants with dimF = 4.
Since log N̂ is a collisional invariant [12], the maxwellian densities, which are
responsible for the vanishing of the collision term in the Boltzmann equation,
can be calculated by the relation

N̂ = exp
4∑

i=1

hiφ
i, (34)
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and have the explicit form

N̂1 = Aeh3+h4 N̂5 = Ae−h3+h4

N̂2 = Aeh2+h3+2h4 N̂6 = Ae−h2−h3+2h4

N̂3 = Aeh2+h4 N̂7 = Ae−h2+h4

N̂4 = Aeh2−h3+2h4 N̂8 = Ae−h2+h3+2h4

(35)

where A = eh1 . Next, we assume that Ni does not depend on the y-coordinate
and N1 = N5, N2 = N4, and N6 = N8. Because of this simplification
h3 = 0 in equation (35) (the maxwellians), and equation (29) (the Boltzmann
equations) simplify to

∂
∂tN1 = Sv(N3N7 − N 2

1 )
∂
∂tN2 + v ∂

∂xN2 = Sv
√

5
2 (N6N3 − N7N2)

∂
∂t

N3 + v ∂
∂x

N3 = Sv[(N 2
1 − N3N7) +

√
5(N7N2 − N6N3)]

∂
∂tN6 − v ∂

∂xN6 = Sv
√

5
2 (N7N2 − N6N3)

∂
∂t

N7 − v ∂
∂x

N7 = Sv[(N 2
1 − N3N7) +

√
5(N6N3 − N7N2)].

(36)

This system of nonlinear partial differential equations can be transformed by
the substitution

z = x + ξt

into a system of nonlinear ordinary differential equations. In other words,
from a physical point of view, we are looking for shock wave solutions, where
ξ is the speed of the shock wave. With the abbreviation β = ξ/v (speed
of the shock wave in terms of the particle speed v) the following system of
ordinary differential equations is obtained:

dN1
dz

= S
β
(N3N7 − N 2

1 )
dN2
dz = S

β+1

√
5

2 (N6N3 − N7N2)
dN3
dz = S

β+1 [(N
2
1 − N3N7) +

√
5(N7N2 − N6N3)]

dN6
dz

= S
β−1

√
5

2
(N7N2 − N6N3)

dN7
dz = S

β−1 [(N
2
1 − N3N7) +

√
5(N6N3 − N7N2)].

(37)

The transformation

z → y = ez−1
ez+1

z ∈ [−∞,∞] → y ∈ [−1, 1]
(38)

on a finite interval [4] yields, from the mathematical point of view, an alter-
native system of differential equations in order to look for solitonic solutions:

dN1
dy (1 − y2) = 2S

β (N3N7 − N 2
1 )

dN2
dy

(1 − y2) = S
β+1

√
5(N6N3 − N7N2)

dN3
dy (1 − y2) = 2S

β+1 [(N
2
1 − N3N7) +

√
5(N7N2 − N6N3)]

dN6
dy (1 − y2) = S

β−1

√
5(N7N2 − N6N3)

dN7
dy (1 − y2) = 2S

β−1 [(N
2
1 − N3N7) +

√
5(N6N3 − N7N2)].

(39)
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The system of equation (39) is now defined over a finite interval, which is
an advantage for solving this system numerically. We expect, of course,
that the retransformed solution of equation (39) agrees with the solution of
equation (37).

With the aid of the basis vectors (equation (33)) of the space F of collision
invariants, the conservation equations are obtained by projecting the left-
hand side of the Boltzmann equations (equation (36)) on these vectors:

∂
∂t(2N1 + 2N2 + N3 + 2N6 + N7) + v ∂

∂x(2N2 + N3 − 2N6 − N7) = 0
∂
∂t

(2N2 + N3 − 2N6 − N7) + v ∂
∂x

(2N2 + N3 + 2N4 + 2N6 + N7) = 0
∂
∂t(2N1 + 4N2 + N3 + 4N6 + N7) + v ∂

∂x(4N2 + N3 − 4N6 − N7) = 0.

(40)

Introducing again the variable z = x + ξt and the dimensionless speed
of the shock wave β = ξ/v in equation (40) and integrating them over z ∈
[−∞,∞], one yields the RHEs

2βN+
1 + 2(β + 1)N+

2 + (β + 1)N+
3 + 2(β − 1)N+

6 + (β − 1)N+
7 = α

2(β + 1)N+
2 + (β + 1)N+

3 − 2(β − 1)N+
6 − (β − 1)N+

7 = η

2βN+
1 + 4(β + 1)N+

2 + (β + 1)N+
3 + 4(β − 1)N+

6 + (β − 1)N+
7 = γ

(41)

with the abbreviations

α := 2βN−
1 + 2(β + 1)N−

2 + (β + 1)N−
3 + 2(β − 1)N−

6 + (β − 1)N−
7

η := 2(β + 1)N−
2 + (β + 1)N−

3 − 2(β − 1)N−
6 − (β − 1)N−

7

γ := 2βN−
1 + 4(β + 1)N−

2 + (β + 1)N−
3 + 4(β − 1)N−

6 + (β − 1)N−
7 .

(42)

The densities at ±∞, N−
i = Ni(z = −∞), and N+

i = Ni(z = +∞), are
not independent; they are coupled over the RHEs. By assuming equilibrium
densities for N−

i and N+
1 with h3 = 0 and g3 = 0, respectively,

N̂−
1 = Aeh4 N̂+

1 = Geg4

N̂−
2 = Aeh2+2h4 N̂+

2 = Geg2+2g4

N̂−
3 = Aeh2+h4 N̂+

3 = Geg2+g4

N̂−
6 = Ae−h2+2h4 N̂+

6 = Ge−g2+2g4

N̂−
7 = Ae−h2+h4 N̂+

7 = Ge−g2+g4

(43)

with A = eh1 and G = eg1, we obtain from equations (41) and (42) a
system of three transcendental equations relating the equilibrium constants
(h1, h2, h4; g1, g2, g4) and the speed of the shock wave β:

α = 2βGeg4 + 2G(2eg4 + 1)eg4 [β cosh g2 + sinh g2]

η = 2G(2eg4 + 1)eg4 [β sinh g2 + cosh g2]

γ = 2Gβeg4 + 2Geg4(4eg4 + 1)[β cosh g2 + sinh g2]

(44)
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Table 3: Given values for the Maxwell exponents h1, h2, and h4 at z =
−∞ and g2 at z = +∞; calculated values of the Maxwell exponents
g2 and g4 at z = +∞, and the shock wave velocity β from the RHEs
for three examples.

Example h1, h2, h4, g1, g2, g4, β N−
i N+

i

h1=0.8,h2=0.7,h4=0.6 N−
1 =4.055199966845 N+

1 =2.975243914392

g1=0.941281314301 N−
2 =14.879731724873 N+

2 =3.453439645391

1 g2=0 N−
3 =8.166169912568 N+

3 =2.975243914392

g4=0.149044709367 N−
6 =3.669296667619 N+

6 =3.453439645391

β1=−0.962918011040 N−
7 =2.013752707470 N+

7 =2.975243914392

h1=0.8,h2=0.7,h4=0.6 N−
1 =4.055199966845 N+

1 =3.607707398590

g1=0.891508496163 N−
2 =14.879731724873 N+

2 =7.961651918351

2 g2=0.4 N−
3 =8.166169912568 N+

3 =5.382066999080

g4=0.391564004797 N−
6 =3.669296667619 N+

6 =3.577400809135

β2=−0.973781404422 N−
7 =2.013752707470 N+

7 =2.418318589506

h1=1,h2=2,h4=2 N−
1 =20.085536923188 N+

1 =12.407597826058

g1=1.930718354165 N−
2 =1096.633158428459 N+

2 =27.273067358466

3 g2=0.2 N−
3 =148.413159102577 N+

3 =15.154674206889

g4=0.587590658713 N−
6 =20.085536923188 N+

6 =18.281683767260

β3=−0.996631975589 N−
7 =2.718281828459 N+

7 =10.158481912017

with the abbreviations

α = 2βAeh4 + 2A(2eh4 + 1)eh4[β coshh2 + sinh h2]

η = 2A(2eh4 + 1)eh4[β sinh h2 + coshh2]

γ = 2Aβeh4 + 2Aeh4(4eh4 + 1)[β coshh2 + sinh h2].

(45)

At first, we assume the exponents h1, h2, and h4 of the maxwellians at
z = −∞ and g2 at z = +∞ as given quantities and solve the RHEs in
equation (44) for the unknowns g1, g4, and β numerically by means of the
Newton–Raphson method. This is done both in the case of vanishing and
nonvanishing drift velocity at z = +∞. Drift equal to zero means that the
gas is at rest, the drift velocity U = 1

n

∑8
i=1 Nivi, n =

∑8
i=1 Ni, vanishes. The

assumed values for h1, h2, h4, and g2 and the calculated values g1, g4, and β
for three examples are shown in Table 3. The Maxwell densities at z = −∞
and at z = +∞ are obtained with equation (43).

In the next step the systems of differential equations (equations (37)
and (39)) are solved for S = 1 by two integration algorithms, namely the
Runge–Kutta method (rkqs) [13] and semi-implicit Euler discretization with
h-extrapolation (eulsim).1 Now the maxwellian exponents h1, h2, h4, and the

1The integrator eulsim was written by P. Deuflhard, U. Nowak, and U. Poehle
of Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Numerical Software
Development.
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Table 4: Comparison between the densities obtained from the RHEs
and from the integration of the Boltzmann equations (equations (37)
and (39)). The system in equation (37) is always solved with rkqs.
The system in equation (39) is solved in the first example with eulsim
and in the second example with rkqs.

Example
Densities from the Solution of equation (37) Solution of equation (39)

solution of the RHE Ni(z) Ni(z)

N+
1 =2.975243914392 N+

1 =2.975243914391 N+
1 =2.975243914341

N+
2 =3.453439645391 N+

2 =3.453439645425 N+
2 =3.453439645356

1 N+
3 =2.975243914392 N+

3 =2.975243914304 N+
3 =2.975243914367

N+
6 =3.453439645391 N+

6 =3.453439645391 N+
6 =3.453439645356

N+
7 =2.975243914392 N+

7 =2.975243914391 N+
7 =2.975243914381

N+
1 =3.607707398590 N+

1 =3.607707398591 N+
1 =3.607707398591

N+
2 =7.961651918351 N+

2 =7.961651918379 N+
2 =7.961651918400

2 N+
3 =5.382066999080 N+

3 =5.382066999006 N+
3 =5.382066998950

N+
6 =3.577400809135 N+

6 =3.577400809134 N+
6 =3.577400809134

N+
7 =2.418318589506 N+

7 =2.418318589507 N+
7 =2.418318589506

N+
1 =12.407597826058 N+

1 =12.407597826057

N+
2 =27.273067358466 N+

2 =27.273067358858

3 N+
3 =15.154674206889 N+

3 =15.154674206018

N+
6 =18.281683767260 N+

6 =18.281683767261

N+
7 =10.158481912017 N+

7 =10.158481912016

shock wave velocity β are assumed as given quantities (Table 3). The solu-
tions Ni(y) found by integrating the system in equation (39) are transformed
into solutions Ni(z) by applying the inverse transformation of equation (38).
The maxwellian densities at z = +∞ obtained by solving the system of
differential equations (equations (37) and (39)) and the solutions N+

i of the
RHE are compared in Table 4. We would like to emphasize that the densities
N+

i of the initial value problem (equations (37) and (39), respectively), at
z = +∞ coincide with the solutions N+

i of the RHE in the order of 10−8.

The density profiles resulting from the integration of the system in equa-
tion (39) with eulsim (Table 3, Example 1) are shown in Figure 2. By
integrating the corresponding system in equation (37) with rkqs we obtained
identical density profiles. The profiles obtained by integrating the system in
equation (37) with rkqs (Table 3, Examples 2 and 3) are shown in Figures 3,
4, and 5. The profiles obtained by integrating the system in equation (39)
with rkqs in Example 2 coincide with the density profiles in Figure 3. For
special values of the Maxwell exponents h1, h2, h4 and the shock wave ve-
locity β (Example 3), we obtained some overshooting for the density N3 as
can be seen in Figure 4. In Figure 5 a detail from Figure 4 is shown with a
higher resolution.
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Figure 2: Density profiles Ni(z), obtained by integrating the system
in equation (39) with the eulsim algorithm (Example 1 in Tables 3
and 4).
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Figure 3: Density profiles Ni(z), obtained by integrating the system in
equation (39) with the rkqs algorithm (Example 2 in Tables 3 and 4).

5. Conclusion

It is well known that the Boltzmann equation for spatially inhomogeneous
gases is too complex for finding analytical solutions in general. A promising
way to overcome this problem is to find discrete models that are on the one
hand easier to describe, and on the other hand keep the most important
features of the real gases. A plane discrete velocity model with a variable
number of particle speeds has been presented. The particles can interact
elastically as well as inelastically. For the case of particles which have the
velocity moduli v and

√
2v and which can interact by binary elastic collisions,

we found density profiles in the form of shock waves numerically. The values
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Figure 4: Density profiles Ni(z), obtained by integrating the system in
equation (37) with the rkqs algorithm (Example 3 in Tables 3 and 4).
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Figure 5: Density profiles Ni(z) (detail from Figure 4 in higher reso-
lution) obtained by integrating the system in equation (37) with the
rkqs algorithm (Example 3 in Tables 3 and 4).

of these solutions at ±∞ are in good agreement with the equilibrium values
resulting from the Rankine Hugoniot equations. Further work on these topics
is encouraged.
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