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Abstract. It is shown that if a cellular automaton (CA) in two or
more dimensions supports growing “ladders” which can turn or block
each other, then it can express arbitrary boolean circuits. Thus the
problem of predicting the CA for a finite amount of time becomes
P-complete, the question of whether a finite configuration grows to
infinity is P-hard, and the long-term behavior of initial conditions
with a periodic background is undecidable.

This class includes the “Life Without Death” rule, in which cells
turn on if exactly three of their neighbors are on, and never turn off.

1. Introduction

Given the initial conditions of a d-dimensional cellular automaton (CA),
suppose we want to know the state at a site t time-steps in the future. We
can do this in O(td+1) steps on a serial computer, or O(t) steps on a parallel
one, simply by simulating the CA explicitly and filling in the light-cone above
the site in question. Thus CA prediction is in the class P of problems solvable
by a deterministic Turing machine in polynomial time [17].

A problem is hard for a complexity class if all other problems in that
class can be reduced to it, and complete if it is hard and in the class itself.
If a complete problem could be solved quickly, so could all other problems
in its class. Just as NP-complete problems are believed to require a super-
polynomial amount of search, P-complete problems are believed to be inher-
ently sequential, so that the work needs to be done in step-by-step order and
cannot be efficiently parallelized [6].

Nonlinear CAs with certain algebraic properties [11, 12] can be predicted
in O(log t) or O(log2 t), placing them in the parallel complexity class NC
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of efficiently parallelizable problems. But CA prediction is P-complete in
general, since CAs exist that can perform universal computation [4, 9]. A
number of other CAs and lattice systems have been shown to be P-complete,
including diffusion-limited aggregation, single spin-flip Ising dynamics, fluid
invasion, majority-voting CAs, lattice gases, and sandpiles [10, 13–15], vari-
ously in d ≥ 2 or d ≥ 3.

These systems are P-complete because the following problem can be re-
duced to them: Given a boolean circuit and the truth values of its inputs,
is its output true or false? This circuit value problem seems inherently se-
quential, since it is hard to imagine how one could calculate the output of
an arbitrary circuit without going through it level-by-level.

The proofs in [10, 13–15] work by showing that we can build “wires” to
carry truth values, and AND and OR gates to connect them, so that the
future state of a particular site corresponds to the output of the circuit. In
this paper, we do the same for a class of CAs where one-dimensional struc-
tures called “ladders” can grow, turn, and block each other. This includes
the “Life Without Death” rule, in which a cell turns on if exactly three of its
neighbors are on (as in Conway’s Life), but then never turns off again.

Thus the prediction problem for such CAs is P-complete. As corollaries
to this, we find that the question of whether a finite initial seed grows to in-
finity is P-hard, and whether an initial condition with a periodic background
evolves to a fixed point or not is undecidable.

2. Ladders

We call a ladder a one-dimensional periodic structure, which grows in one
direction in a straight horizontal or vertical line. Then we define a ladder
CA as one in which the following holds.

• There are finite seeds which give birth to horizontal or vertical ladders
and nothing else.

• Ladders can be turned: there are finite structures with which they can
collide, producing a new ladder 90◦ from the old one and nothing else.

• One ladder can block another: a horizontal ladder (say) can collide
with a vertical one which is already there in such a way that it stops
without generating anything else.

We assume that the CA rule is rotationally symmetric, so that ladders
and turns work in all four lattice directions. If these collisions are sensitive
to the spatial or temporal phase of the ladders, then we also require the
following.

• Ladders can be shifted or delayed so that their phase can be adjusted
as desired.

Two more behaviors follow from these requirements, as shown in Figure 1.
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Figure 1: Birth, turns, and blocking. With sequences of turns, we can
also delay ladders, or end them by blocking them with themselves.

• Ladders can be delayed by arbitrary times ∆t, by executing a sequence
of turns in a square of side O(∆t1/2).

• Ladders can end.

The blocking collision will be our main building block for boolean circuits.
If the presence or absence of a ladder corresponds to a wire being true or
false, blocking acts as a logical gate as shown in Figure 2, with inputs a and
b and outputs b and a ∧ b. (If necessary, we delay a so that it arrives after b
does if b is present.)

By setting a to true, that is, giving birth to a ladder which is always
there, we can use blocking to negate wires. Then by combining blocking
with negation, we can construct AND and OR gates, a ∧ b = a ∧ b and
a∨ b = a ∧ b. We can also make a wire “fan out” by making multiple copies
of it, so that it can be used as input for more than one gate.

In two dimensions, since our ladders cannot cross each other, our circuits
have to be planar. But if negation is available, we can simulate nonplanar
circuits by building a crossover gadget as shown in Figure 3; the reader can
check that with inputs a on the left and b on the right, the outputs are b
on the left and a on the right as advertised. (In contrast, the majority-vote
CA cannot express negation, and so can only express planar circuits in d = 2
[13].)

Because of this ability to do crossover, circuit value for planar circuits is
just as hard as the general case, and so is P-complete. So to complete our
proof, we just need to verify that there is a polynomial relationship between
the size of a planar circuit and the size and duration of the corresponding
CA evolution.
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Figure 2: The logical effect of a blocking collision. A ladder emerges
on the right only if a is present and b is not, so that it corresponds to
the truth value a ∧ b. If a is always present, blocking negates b. We
can also make multiple copies of a wire.
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Figure 3: A crossover gadget with eight blocking gates; perhaps a
smaller one can be found.
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Suppose our circuit has depth D and width W ; that is, it has D levels,
each of which has at most W gates. We wish to simulate it with t time-steps
of the CA in a rectangle of height h and width w (in pixels). We have to
delay the births on the last level by O(t) so that they arrive at the blocking
gates after the wires do, and smaller delays can synchronize the wires so that
they arrive in the proper order.

These delays can be made as shown in Figure 1, by folding sequences
of turns into square “egg timers” of side O(t1/2); each level then has width
w = O(Wt1/2) and height ∆h = h(D + 1) − h(D) = O(t1/2). In the worst
case, wires at each level have to travel a horizontal distance O(w) to meet
each other, as well as O(∆h) to get through the level; for wide circuits O(w)
dominates, and we have

t(D + 1) ∼ t(D) + w(D)

h(D + 1) ∼ h(D) + t(D)1/2

w(D) ∼ Wt(D)1/2

giving the leading behavior for large D and W

t(D) ∼ (WD)2

h(D) ∼ WD2

w(D) ∼ W 2D

so that the time and area of the CA grow as t ∼ n2 and hw ∼ n3 respectively
for circuits with WD = n gates. This is rather conservative; in a “nice”
planar circuit, such as one simulating a one-dimensional CA, wires only have
to travel a distance comparable to that of a single gate with egg timers to
meet their neighbors, so t(D + 1) ∼ t(D) + t(D)1/2 and we get a leading
behavior of

t(D) ∼ D2

h(D) ∼ D2

w(D) ∼ WD

which for a square circuit in which W = D = n1/2 gives time t ∼ n and area
hw ∼ n2.

In any case, the relationship is polynomial, and we have proved Proposi-
tion 1.

Proposition 1. Finite-time CA prediction is P-complete for ladder CAs.

Suppose we want to know whether a given finite seed will grow to infinity.
If we let the output ladder of the circuit grow and kill off all the others, a
circuit will grow to infinity if and only if its output is true. Thus we have
Corollary 1.

Corollary 1. Infinite growth from a finite seed is P-hard for ladder CAs.
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This problem would be P-complete if it were in P. However, if there
are structures that allow new ladders to be created (such as a “ladder gun”
analogous to the glider gun in Conway’s Life) it seems more likely that it is
undecidable.

We can also set up an infinite circuit, with a finite seed surrounded by a
periodic initial background. Such a circuit can simulate a computationally
universal one-dimensional CA that simulates a Turing machine (e.g., [9]).
If the Turing machine head disappears upon halting, then the ladder CA
ends in a fixed point if and only if the Turing machine halts. Thus we have
Corollary 2.

Corollary 2. The set of finite seeds and periodic backgrounds on an in-
finite lattice for which a ladder CA will end in a fixed point is recursively
enumerable but not recursive, and so long-term CA prediction with a periodic
background is undecidable for ladder CAs.

3. Life Without Death

We now show that the ladder CA design principles of section 2 can be im-
plemented using one of the simplest imaginable two-dimensional rules: Life
Without Death (LwoD).1

In this growth model an empty site becomes permanently occupied if
three of its eight nearest neighbors in the square lattice are occupied. The
remarkable behavior of LwoD is described in several recipes from the Pri-
mordial Soup Kitchen [7]; essential features have been noted over the years
by Packard and Wolfram [16] and various members of the LifeList Internet
group devoted to Conway’s Game of Life.

From suitable initial seeds one encounters complex dendritic crystal pat-
terns. The dynamics evolve as a pseudo-stochastic mix of the following three
ingredients.

1. Chaotic lava.

2. Horizontal and vertical ladders which advance at speed 1/3 by a weav-
ing motion and seem to outrun the surrounding lava.

3. Parasitic shoots which emerge from the lava but can only shoot along
the edges of ladders at speed 2/3.

The resulting interactions—for instance, when a shoot reaches the end of
a ladder it nips it in the bud, and causes a lava eruption—give rise to re-
markable self-organization in which very large regions of the growing crystal
can be cloned exactly in time. As one indication of sensitive dependence on
initial conditions, given any finite initial configuration A, LwoD can produce
configurations B and C, each consisting of at most 28 cells, such that A∪B
grows forever, but A ∪ C reaches a fixed point [5].

1Pronounced “El-wod.” It is related to the Hubbard model in physics.
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Figure 4: Birth of a ladder from an initial configuration of eight cells.

Figure 5: A ladder killed by a single cell.

Our objective here is to harness some of the complex phenomenology of
LwoD in order to construct the defining elementary collisions of a ladder CA:
births, turns, blocks, and phase shifts. In Figures 4 through 9 we present a
series of still frames which document the necessary interactions. We invite the
reader to download WinCA [3], or any of several other two-dimensional CA
simulators [8], to see the dynamics in action and confirm the constructions.
Java animations of the interactions are also available [7].

To begin, Figure 4 shows one seed of size 8 which gives birth to a ladder.
(The pentomino piece actually spawns a two-sided ladder, and then interac-
tion with the other three cells kills its left branch.) Note that the horizontal
spatial periodicity of the ladder is 4. In fact, the head cycles through 12
distinct patterns in order to weave its periodic pattern, the last six of which
are vertical flips of the first six.

Recall that a separate killing mechanism is not needed in a ladder CA
since ladders can block themselves after three turns. Nevertheless, as further
evidence of the sensitive dependence of LwoD, Figure 5 shows that its ladders
can be stopped by a single well-placed cell!

Next, Figures 6 and 7 show two static configurations which cause an LwoD
ladder to execute a 90◦ turn to the right, while otherwise causing only a local
disturbance. The turn in Figure 6 is instructive, since it involves typical
instabilities which must be controlled after a collision. The actual ladder
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Figure 6: A turn.

Figure 7: Another turn.

turn is caused by the single isolated cell, but without further engineering
another ladder would turn to the left and a shoot would race back along the
lower edge of the incoming horizontal ladder. The 29-cell blob blocks the
former effect, and the row of three cells stops the latter while causing only a
small transient lava flow. Figure 7 shows a turn which is both more elegant
and mysterious: four carefully placed cells induce a brief burst of lava which
leads to a right ladder turn without any undesirable side-effects.

Blocking in LwoD raises the most delicate issues of the construction since
a horizontal ladder crashing into the side of a vertical one creates uncontrolled
shoots and lava unless the collision has the right timing. So let us denote
the eight possible phases of such an interaction as (h, v), where h ∈ !4 and
v ∈ !2 are the horizontal and vertical spatial phases. We represent h by the
shape of the head of the horizontal ladder the first time it advances to a new
column, while v is 0 or 1 depending on whether the top row of the horizontal
ladder lines up with an occupied or unoccupied cell on the left edge of the
vertical ladder.

Figure 8 shows the two clean blocking collisions which arise. If we label
the lower one as (0,0), the upper one is (2,1) since the head of its horizontal
ladder has an identical shape but is two cells further to the left, while it has
opposite parity with respect to the boundary of the vertical ladder. (There
are also two “dirty” collisions, which create small transient eruptions of lava,
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Figure 8: The two clean blocking collisions, with phases (h, v) = (0, 0)
and (2, 1).

but these are not needed for our purposes.) Note that the final fates of the
two collisions are mirror images; this is a consequence of the flip symmetry
of the head after half a cycle. To complete our verification of the ladder
CA axioms, we need to show that any ladder headed for the side of another
already present can be phase-shifted to guarantee a clean block.

Our solution combines the turns of Figures 6 and 7 into a two-turn pertur-
bation induced by the static debris of the middle frame in Figure 9. The top
and middle frames show the same horizontal ladder approaching the same
vertical one, while the bottom frame shows the result of collision with the
debris. The net effect is an advance of the same head one cell horizontally
and a change of vertical parity, shifting (h, v) by (−1, 1) = (3, 1). This action
partitions the group !4×!2 into a subgroup consisting of phases of the form
(even, even) and (odd, odd), and another coset comprised of the remaining
phases. Since one of the clean blocks in Figure 8 belongs to the subgroup,
and the other to the complementary coset, it follows that an arbitrary ladder
can be phase-shifted to achieve a clean block by applying between 0 and 3
of these shifts. This completes the demonstration.

We now conclude with a few additional remarks. First, the inevitable
question: Are there other ladder CA rules? A number of minor variants of
LwoD admit ladders with similar but slightly different architectures. Four
alternatives on the 8-cell Moore neighborhood2 we know of have the same
birth rule, but preclude survival for certain population counts: 8, 7, 7 or 8,
and 1 or 3. These slight differences no doubt destabilize many, if not all, of
the elementary interactions just described, so it remains an open question
whether any of these variants satisfies our axioms. We invite the reader
with an insatiable appetite for experimental mathematics to investigate these
or other candidates. Another interesting rule (see [7], recipe48.html) has
birth with two or five occupied neighbors, and certain survival. In that case
there are diagonal ladders, but we have not investigated the possibilities for
turns and other complex collisions. Clearly a ladder CA can be designed
to have precisely the desired properties by including sufficiently many states
and/or sites in the rule table; the appeal of LwoD and its cousins lies in their

2No relation.
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Figure 9: A (−1, 1) phase-shift.

mathematical simplicity and their ability to emulate circuits on their own
terms.

Finally, we pose an intriguing open question about LwoD: Is there any
initial seed that fills the lattice with a positive asymptotic density? Exper-
iments from large lattice balls suggest there is, but we know of no way to
prove this other than to construct a “ladder gun” or a space-filler such as in
[1]. This would require far greater ingenuity than the above constructions,
but we think there is a good chance that one is possible.
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