
Controlling a-entropy with a Neural
a-Feature Detector

Ryotaro Kamimura*

Information Science Laboratory,
Tokai University,
1117 Kitakaname Hiratsuka,
Kanagawa 259-12, Japan

A neural a-feature detector is proposed and used to extract a small number
of main or essential features in input patterns. Features can be detected
by controlling a-entropy for a-feature detectors. The a-entropy is de-
fined by the difference between Rényi entropy and Shannon entropy. The
a-entropy controller aims at maximizing information contained in a few
important a-feature detectors, while information for all other feature de-
tectors is minimized. Thus, the a-entropy controller can maximize and
minimize information, depending on situations. The neural a-feature de-
tector is applied to four problems: an artificial F-H detection problem,
recognition of six alphabet characters, the feature detection of 26 alpha-
bet characters, and the inference of consonant cluster formation. Exper-
imental results confirm that by controlling a-entropy a small number of
principal features can be detected, which can be interpreted intuitively.
In addition, it is shown that generalization performance is improved by
minimizing a-entropy.

1. Introduction

Many attempts have been made to describe neural learning from the
information theoretic points of view [1–4]. In those information theo-
retic methods, information, appropriately defined, has been maximized
or minimized. Information maximization has been used to extract and
generate features or to interpret explicitly internal representations ob-
tained by learning [3, 5]. By maximizing information, information on
input patterns can be condensed in ways that are easy to interpret. On
the other hand, information minimization has been used to speed up
learning [6] and to improve generalization [7, 8]. By minimizing infor-
mation, unnecessary information—especially information on noises—is
reduced, leading to improved generalization.

Information maximization and minimization have until now been in-
dependently studied. However, we can definitely say that simple infor-

*Electronic mail address: ryo@cc.u-tokai.ac.jp.

Complex Systems, 11 (1997) 1–30; cÁ 1997 Complex Systems Publications, Inc.

2 R. Kamimura

mation maximization and minimization cannot explain our complex
cognitive processes. For example, information is maximized for some
parts and minimized for some other parts. Complex processes of infor-
mation maximization and minimization cooperate in our brain. The
neural a-feature detector is introduced in this paper to realize complex
processes of information processing. The feature detector is designed to
maximize and minimize information as the first approximation to our
cognitive process. Information about important features is maximized,
and information concerning unimportant features is decreased as much
as possible.

To realize this information maximization and minimization, our a-
feature detector is mainly composed of an a-entropy controller and
a-feature detectors. The a-entropy is used to maximize or minimize in-
formation of the a-feature detectors. More exactly, the entropy can be
controlled to maximize information only for a few important a-feature
detectors. For all other a-feature detectors, information is minimized.
The a-feature detectors with higher information are supposed to repre-
sent main or essential features in input patterns.

The paper is organized as follows. In section 2, we explain the
concept of a neural a-feature detector. More concretely, the section
is concerned with the explanation of basic mechanisms of the feature
detector and basic components composed of the feature detector and
how to realize the concept of the feature detector in an actual network
architecture. In section 3, we formulate and explain Shannon entropy,
Rényi entropy, and a-entropy. Especially, we explain how a-entropy is
used to maximize and minimize information. In section 4, we formu-
late a neural a-feature detector by borrowing a concept of information
and update rules are formulated to control a-entropy. In section 5,
we discuss three experimental results: an artificial F and H detection
problem, recognition of six alphabet characters, and recognition of 26
alphabet characters. In all experimental results, it is shown that main or
essential features in input patterns, which are intuitively interpretable,
can be detected. In section 6, the inference of consonant cluster forma-
tion is discussed. In this problem, in addition to the feature detection,
we show that generalization performance is improved by minimizing
a-entropy.

2. Concept of neural a-feature detector

A neural a-feature detector is proposed to detect a small number of
important features in input patterns. As shown in Figure 1, a neural
a-feature detector is basically composed of an input component, an a-
entropy controller, a feature detector (a-feature detectors and a common
feature detector), a feature generator (a-feature generators and common
feature generators), and an output component.

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 3

!" !"

Common
Feature
Detector

Detectors

Feature Feature

Generators

Common

Feature

Generators

Component

Input

Component

Feature

Generator

Feature Detector

Output
!"Entropy

Controller

Figure 1. Components of a neural a-feature detector: an input component,
an a-entropy controller, a feature detector (a-feature detectors and a common
feature detector), a feature generator (a-feature generators and common feature
generators), and an output component.

Components Elements Functions
Feature a-feature detectors detecting main and
detector essential features

common feature detector detecting common or
unnecessary features

a-Entropy a-entropy controllers controlling a-entropy to
controller maximize and minimize

information
Feature a-feature generators generating a-features
generator common feature generating common

generators features

Table 1. Summary of major components, elements, and functions of a neural
a-feature detector.

Table 1 summarizes the basic components, elements, and functions
of the feature detector. The most important component is a feature de-
tector with two elements: a-feature detectors and a common feature de-
tector. The a-feature detectors aim at detecting some important features
in input patterns. Feature detection by a-feature detectors is possible
by using the a-entropy controller. The controller is used to maximize
or minimize information in a-feature detectors. Figure 2 shows a basic
mechanism of the a-entropy controller. By controlling the a-entropy,
the first and the third (from the top) a-feature detector are forced to have
maximum information. On the other hand, information in the other
three a-feature detectors is minimized. The a-feature detectors with
higher information can be considered to be important feature detec-
tors. To understand what kind of features the feature detector actually
extracts, we should generate features from the feature detector. The
a-feature generators are used to generate features from a-feature detec-
tors. A common feature detector is devised to detect features common

Complex Systems, 11 (1997) 1–30

4 R. Kamimura

!"Entropy

Controller

Feature!"

Detector

Information

Maximization

Information

Minimization

Maximum

Information

Minimum

Information

Figure 2. The function of an a-entropy controller. The controller is used to
maximize information for the first and the third (from the top) a-feature detec-
tors (hidden units). On the other hand, information for the other detectors is
minimized.

to all input patterns. In some cases, the detector is used to detect unnec-
essary features in input patterns. Common feature generators are used
to generate features from the common feature detector. In an output
component, the performance of the a-feature detectors and the common
feature detector are evaluated by reproducing exactly input patterns.

Then, the next problem is how the concept can be realized in a neu-
ral network (NN) architecture. For the neural a-feature detector, we
have used an ordinary feed-forward network. Figure 3 shows a possi-
bility of the neural a-feature detector in a feed-forward network. As
shown in the figure, input-hidden connections are transformed into a-
entropy controllers. Thus, a-entropy controllers are used not only for
controlling a-entropy but also for decreasing errors between targets and
outputs. However, the main objective of the controllers is to control
a-entropy. Hidden units are replaced by a-feature detectors. Bias to
output units are transformed into a common feature detector. Hidden-
output connections and bias-output connections are a-feature genera-
tors and common feature generators respectively. Finally, an output
component is composed of usual output units.

3. Shannon, Rényi, and a-entropy

In this section, we explain a-entropy in a general framework of informa-
tion theory. Let A take a finite number of possible values a1, a2, . . . , aR

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 5

v

v

v

1

2

3

s

s

s

Output
Units

w
j0

Detectors
Feature

Feature Detector

Controller

Entropy

ij
W

Generator
Feature

Output

Component
wjk

!"

!"entropy !"feature
generators

Common
Common

Feature
Detector

Ci

Feature

Generators

!"

#
k

sInput

Patterns
Os

i
$

i

s

TargetsOutputs

Input
Component

controllers

Figure 3. A neural a-feature detector realized by a feed-forward network.

with probabilities p(a1), p(a2), . . . , p(aR) respectively. Then, the uncer-
tainty H(A) [9–11] of the random variable A is defined by

H(A) = -
R‚

r=1

p(ar) log p(ar). (1)

Consider conditional uncertainty after observing another random vari-
able B, taking possible values b1, b2, . . . , bS with probabilities p(b1),
p(b2), . . . , p(bS) respectively. Conditional uncertainty H(A | B) [9–11]
can be defined as

H(A | B) = -
S‚

s=1

p(bs)
R‚

r=1

p(ar | bs) log p(ar | bs). (2)

We can easily verify that conditional uncertainty is always less than or
equal to initial uncertainty. Information for A obtained by observing B
is usually defined as the decrease of this uncertainty [10, 12, 13]

I(A | B) = H(A) -H(A | B)

= -
R‚

r=1

p(ar) log p(ar)

+
S‚

s=1

p(bs)
R‚

r=1

p(ar | bs) log p(ar | bs). (3)

Complex Systems, 11 (1997) 1–30

6 R. Kamimura

When prior uncertainty is maximum, that is, a prior probability is
equiprobable (1/R), then information is

I(A | B) = log R +
S‚

s=1

p(bs)
R‚

r=1

p(ar | bs) log p(ar | bs) (4)

where log R is the maximum uncertainty. Information theoretical meth-
ods, developed in NNs, have been concerned with this information
maximization or minimization [3, 6–8, 14]. Our neural a-feature de-
tector aims at maximizing and minimizing information, especially, in
terms of equation (4).

For information maximization and minimization, we use Rényi en-
tropy [14] of the random variable A, given B

H(A | B; a) =
1

1 - a

S‚
s=1

p(bs) log
R‚

r=1

pa(ar | bs) (5)

where a is the parameter and a ≥ 0. Note that we may use a simplified
expression H(a) instead of H(A | B; a). Concerning Shannon and Rényi
entropy, the following properties can easily be verified:

H(a) ≥ H for 0 £ a < 1
H(a) £ H for a > 1. (6)

It is easy to prove that Rényi entropy becomes Shannon entropy as
a Æ 1, that is,

lim
aÆ1

H(a) = H. (7)

Then, suppose that the parameter a for Rényi entropy ranges between
zero and one, namely, 0 £ a < 1, then Rényi entropy is always greater
than or equal to Shannon entropy. The difference between Shannon and
Rényi entropy

D(a) = H(a) -H (8)

is referred to as a-entropy. As the parameter a is smaller, uncertainty is
larger. When the parameter a is zero, a-entropy is written as

D(0) = log R +
S‚

s=1

p(bs)
R‚

r=1

p(ar | bs) log p(ar | bs) (9)

where log R is the maximum entropy. This means that the a-entropy
minimization corresponds to information minimization when the pa-
rameter a is zero.

When the parameter a is greater than or equal to zero, this a-entropy
minimization can be used to maximize and minimize information. When

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 7

information defined in equation (4) is maximized, only one symbol oc-
curs with a probability one, while the probability of the occurrence
of all other symbols is zero. On the other hand, when information is
minimized, the probability of the occurrence of all symbols is equiprob-
able. The minimum a-entropy is attained exactly when the information
defined in equation (4) is maximized or minimized.

Let us further explain the actual meaning of a-entropy minimization
by one of the simplest examples. Suppose a binary symmetric informa-
tion channel composed of two symbols {0,1} [9]. Then, p represents the
probability of receiving a symbol 0 for a transmitted symbol 1 and p̄
denotes the probability of receiving a symbol 1 for transmitted symbol
1. In this case, a-entropy is written as

D(a) =
S‚

s=1

p(bs)
ÏÔÔÌÔÔ
Ó

1
1 - a

log
R‚

r=1

pa(ar | bs) +
R‚

r=1

p(ar | bs) log p(ar | bs)
Ô̧Ô̋
ÔÔ
˛

=
1

1 - a
log 9pa + p̄a= + p log p + p̄ log p̄. (10)

When the parameter a is zero, the equation is transformed into

D(0) = log 2 + p log p + p̄ log p̄, (11)

which is just the definition of information.
Figure 4(a) shows Rényi and Shannon entropy for different values of

the parameter a. As shown in the figure, uncertainty (entropy) is mini-
mum when Shannon entropy is used. Then, uncertainty is increased as
the parameter a is decreased from 0.5 to 0.1, and finally the entropy
attains the maximum value (log 2) when the parameter a is zero. Fig-
ure 4(b) shows information (a = 0) in equation (11) and a-entropy for
different values of the parameter a. When a-entropy is minimized, a
probability should be one, zero (maximum information), or 0.5 (min-
imum information). In terms of information, when a-entropy is mini-
mized, information is maximized or minimized. Thus, we can say that
a-entropy is used to maximize and minimize information, depending on
situations.

4. Controlling a-entropy in neural networks

4.1 Minimizing a-entropy

The a-entropy controller is used to control a-entropy in a-feature detec-
tors. Especially, we attempt to minimize a-entropy (0 £ a < 1). Since
the parameter a is restricted to range between one and zero, this mini-
mization corresponds to information maximization and minimization.

To control a-entropy, we should compute an output from the jth
a-feature detector denoted by vs

j . Let xsk denote the kth element of the

Complex Systems, 11 (1997) 1–30

8 R. Kamimura

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
h

a
n

n
o

n
 a

n
d

 R
e

n
y
i
E

n
tr

o
p

y

Probability

Alpha=0.5
Alpha=0.3
Alpha=0.1

Alpha=0
Shannon Entropy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
lp

h
a

-e
n

tr
o

p
y

Probability

Alpha=0.5
Alpha=0.3
Alpha=0.1

Alpha=0

(a) (b)

Figure 4. Shannon, Rényi, and a-entropy for four different values of the pa-
rameter a as a function of a probability: (a) Shannon and Rényi entropy, (b)
a-entropy.

sth input pattern and wjk represent an a-entropy controller from the
kth input unit to the jth a-feature detector, then a net input to the jth
a-feature detector us

j is computed by

us
j =

L‚
k=0

wjkx
s
k (12)

where L is the number of input units, and wj0 is the bias to the jth
a-feature detector. Then, the jth a-feature detector produces an output

vs
j = f (us

j) (13)

where f is a sigmoid activation function defined by

f (us
j) =

1
1 + exp(-us

j)
. (14)

We deal with each a-feature detector separately. Suppose that the
probability of input patterns is equiprobable:

p(bs) ª
1
S

. (15)

The output from the jth a-feature detector can be considered to represent
a probability that the jth a-feature detector fires. Then, in formulating
a-entropy, the conditional probability p(ar|bs) is approximated by the
output from the a-feature detector vs

j :

p(ar|bs) ª vs
j . (16)

Then, a-entropy (Dj) for the jth a-feature detector, given the sth input

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 9

pattern, can be approximated by

Dj(a) =
S‚

s=1

p(bs)
ÏÔÔÌÔÔ
Ó

1
1 - a

log
R‚

r=1

pa(ar | bs)

+
R‚

r=1

p(ar | bs) log p(ar | bs)
Ô̧Ô̋
ÔÔ
˛

ª
1
S

S‚
s=1

C 1
1 - a

log 9(vs
j)
a + (v̄s

j)
a= + vs

j log vs
j + v̄s

j log v̄s
j G (17)

where

v̄s
j = 1 - vs

j . (18)

Since all a-feature detectors are treated separately, the total a-entropy
(Dtot) can be approximated by

Dtot(a) ª
M‚

j=1

ÈÍÍÍÍÍÍÍÍÍÍÎ

1
S

S‚
s=1

C 1
1 - a

log 9(vs
j)
a + (v̄s

j)
a=

+ vs
j log vs

j + v̄s
j log v̄s

j G ˘̇̇˙̇̇˙̇̇˙̊̇ . (19)

Differentiating the a-entropy function with respect to a-entropy con-
trollers wjk, we have

-bS
∂Dtot(a)
∂wjk

= -bS
S‚

s=1

ÈÍÍÍÍÍÍÍÍÍÎ
us

j +
a 9(vs

j)a-1 - (v̄s
j)a-1=

(1 - a) 9(vs
j)
a + (v̄s

j)
a=
˘̇̇
˙̇̇
˙̇̇
˙̊
vs

j v̄
s
jx

s
k (20)

where b is the parameter. Thus, update rules for a-entropy controllers
are

Dwjk = -b
S‚

s=1

ÈÍÍÍÍÍÍÍÍÍÎ
us

j +
a 9(vs

j)a-1 - (v̄s
j)a-1=

(1 - a) 9(vs
j)
a + (v̄s

j)
a=
˘̇̇
˙̇̇
˙̇̇
˙̊
vs

j v̄
s
jx

s
k

+h
S‚
s

ÏÔÔÌÔÔ
Ó

N‚
i

(zsi -Os
i)Wij

Ô̧Ô̋
ÔÔ
˛

vs
j v̄

s
jx

s
k (21)

where h is the learning parameter. Equation (21) was obtained by
differentiating a-entropy and the cross entropy defined in equation (27).

4.2 Common feature detector, generators, and output component

The common feature detector is a very special unit, which is always
turned on. The detector should capture features common to all input

Complex Systems, 11 (1997) 1–30

10 R. Kamimura

patterns. Let Ci be a common feature generator into the ith output unit,
then an output with only this feature generator is

Oc
i = f (Ci). (22)

The common feature detector should decrease the difference between
targets and outputs only with common feature generators. The dif-
ference between targets and outputs can be represented by the cross
entropy function [16–18]. Thus, an error function for the common
feature detector is defined by

Gc =
N‚

i=1

ÈÍÍÍÍÍÍÍÍÍÍÎ

1
S

S‚
s=1

;zsi log
zsi
Oc

i
+ z̄si log

z̄si
Ōc

i
?˘̇̇˙̇̇˙̇̇
˙̊̇

(23)

where zsi is a target to the actual output from the ith output unit, given
the sth input pattern, z̄si = 1 - zsi , Ōc

i = 1 - Ōc
i , and N is the number

of output units. Updating rules are obtained by differentiating a cross
entropy function with respect to common output connections,

DCi = -mS
∂G0

∂Ci
= m

S‚
s=1

Izsi -Oc
i M (24)

where m is the parameter.

4.3 Output component and a-feature generators

An output component is used to evaluate the performance of a-feature
detectors and the common feature detector. In formulating the output
component, we should compute a net input from a-feature detectors.
The ith output unit receives

hs
i =

M‚
j=1

Wij vs
j (25)

where Wij is an a-feature generator from the jth a-feature detector to
the ith output unit, and M is the number of a-feature detectors. Then,
the ith output unit produces the final output Os

i :

Os
i = f (hs

i). (26)

We use the cross entropy cost function

G =
N‚

i=1

ÈÍÍÍÍÍÍÍÍÍÍÎ

1
S

S‚
s=1

;zsi log
zsi
Os

i
+ z̄si log

z̄si
Ōs

i
?˘̇̇˙̇̇˙̇̇
˙̊̇

(27)

where zsi is a target for the ith output unit Os
i . For updating a-entropy

generators Wij, we must differentiate this cross entropy function with

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 11

respect to a-entropy generators Wij and obtain the usual update rules:

DWij = -hS
∂G
∂Wij

= h
S‚

s=1

(zsi -Os
i)v

s
j (28)

where h is the learning parameter.

5. Application to character recognition

5.1 F -H problem

In this problem, we made six simple input patterns transformed from
the two alphabet characters F and H. As shown in Figure 5, six patterns
are classified into two groups: F and H. The objective of this experi-
ment is to show that our a-feature detector explicitly extracts essential
features and classifies six patterns into two groups. It is also shown
that standard autoencoders always have difficulty in classifying these
six simple patterns.

Input patterns are represented in 8 ¥ 5 bits. Thus, the number of
input units, a-feature detectors, and output units were 40, 10, and
40 respectively. For simplicity, the parameter h for the cross entropy
function between targets and outputs and m for the cross entropy with
the common feature generators were kept to the small value 0.01 for all
experiments. We do this to examine the effect of the parameter b more
explicitly. Learning was considered to be finished when absolute errors
between targets and outputs were all below 0.1 for all input patterns or
the number of epochs was larger than 2000. We use the same parameter
values and stopping criteria in the following sections.

The a-entropy controller aims at increasing or decreasing informa-
tion, depending on situations. Thus, we should examine information
for each a-feature detector, when a-entropy is significantly decreased.
Figure 6 shows the values of information for a standard method (a) and
for three different values of the parameter a: (b), (c), and (d). Note
that in the standard method the parameter b was set to zero, and the
ordinary bias to output units are used. Information (Dj(0)) for the jth
a-feature detector, given the sth input pattern, is computed by

Dj(0) = log 2 +
1
S

S‚
s=1

Ivs
j log vs

j + v̄s
j log v̄s

j M . (29)

As shown in Figure 6(a), by using a standard backpropagation (BP)
method (b = 0), the values of information fluctuate randomly, and it is
very difficult to detect some important a-feature detectors. Then, the
parameter a is set to 0.9 (Figure 6(b)). It can be immediately seen that
one important a-feature detector (fourth a-feature detector), containing

Complex Systems, 11 (1997) 1–30

12 R. Kamimura

Component

!"

Common
Feature
Detector

Detector
Feature

Feature
Generator

!"

Input Patterns

(2) (3)(1)

(4) (5) (6)

C>1

-1<C<1

C<-1

Generator
Feature
Common

Output

W<-1

-1<W<1

W>1

(a) |Wij| > 1

Component

!"

Common
Feature
Detector

Detector
Feature

Feature
Generator

Common
Feature
Generator

!"

Input Patterns

(2) (3)(1)

(4) (5) (6)

C>1

-1<C<1

C<-1

Output

W>4

-4<W<4

W<-4

(b) |Wij| > 4

Figure 5. An a-feature detector, a-feature generators, a common feature detector,
and common feature generators for the F-H problem. The parameter a is 0.3.
(a) The absolute strength of the generators is greater than one, (b) the absolute
strength of the a-feature detectors is greater than four.

almost maximum information, can be detected. When the parameter a
is decreased from 0.9 to 0.3 (Figure 6(c)), only the fourth a-feature de-
tector is close to maximum information (log 2), while all other a-feature
detectors tend to be close to zero information. Finally, when the param-
eter a is further decreased from 0.3 to 0.1, a typical state is obtained
in which all a-feature detectors tend to have small information. In this
case, the a-entropy controller is used only to minimize information.

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 13

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

In
fo

rm
a

ti
o

n

Hidden Unit

Standard Method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

In
fo

rm
a

ti
o

n

Alpha-feature Detector

Alpha=0.9

(a) Standard Method (b) a = 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

In
fo

rm
a

ti
o

n

Alpha-feature Detector

Alpha=0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

In
fo

rm
a

ti
o

n

Alpha-feature Detector

Alpha=0.1

(c) a = 0.3 (d) a = 0.1

Figure 6. The values of information for each hidden unit and each a-feature
detector for the six alphabet characters shown in Figure 5: (a) information for
a standard BP method (b = 0) and (b) a-entropy with a = 0.9(b = 0.2).

By examining a-feature generators from a-feature detectors, it can be
explicitly seen that the a-feature detector with maximum information
performs a principal role in feature detection. The a-feature detector
can detect a feature which classifies six patterns into two groups and
the common feature detector can extract a feature common to all input
patterns explicitly. Figure 5 shows the fourth a-feature detector (de-
tector with maximum information in Figure 6(c)), a-feature generators,
common feature detector, and common feature generators, when a is
0.3 and a-entropy is sufficiently small. When we examine a-feature
generators with absolute values greater than one (Figure 5(a)), it can be
seen that all features except a common feature (the leftmost column), de-
tected by the common feature generators, are represented in the feature
generators. This naturally means that all the information is compressed
into only one a-feature detector. However, when the absolute value is
much larger (from one to four, as shown in Figure 5(b)), it can be clearly
seen that the a-feature generator extracts a row at the top and a column

Complex Systems, 11 (1997) 1–30

14 R. Kamimura

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10

In
fo

rm
a

ti
o

n

Hidden Unit

Standard Method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

In
fo

rm
a

ti
o

n

Alpha-feature detector

Alpha=0.9

(a) Standard Method (b) a = 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

In
fo

rm
a

ti
o

n

Alpha-feature detector

Alpha=0.3

(c) a = 0.3

Figure 7. Information for 10 hidden units and a-feature detectors for the six
alphabet characters shown in Figure 8: (a) information values by a standard
method (b = 0), (b) information by a-entropy with a = 0.9 (b = 0.27), and (c)
information with a = 0.3, b = 0.04.

on the extreme right as an a-feature, which are essential factors to dis-
criminate between F and H. As already mentioned, the common feature
detector clearly detects the leftmost column as a common feature. In
addition, it can also be seen that parts at the middle are represented in
strongly negative connections, because these parts are not important for
the distinction of the patterns. These results show that the a-feature
detector extracts the main or essential features by which we can classify
six input patterns into two groups.

5.2 Feature detection for six alphabet characters

This method is applied to six alphabet characters as shown in Figure 8.
First, we examine information for each a-feature detector. Figure 7
shows values of information for all hidden units and all a-feature detec-
tors. Figure 7(a) shows information for 10 hidden units by the standard
BP method (b = 0). Values of information fluctuate randomly, and

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 15

(1) (2) (3)

(4) (5) (6)

!"

Common
Feature
Detector

Detector
Feature

Feature
Generator

Common
Feature
Generator

!"

Input Patterns

-2<C<2

C<-2

C>2

Component

Output

W>4

W<-4

-4<W<4

Figure 8. The sixth a-feature detector, a-feature generators, a common feature
detector, and common feature generators when the parameter a is 0.3.

it is extremely difficult to extract some important a-feature detectors.
Figure 7(b) shows information for 10 a-feature detectors when the pa-
rameter a is 0.9. As shown in the figure, two a-feature detectors tend
to have relatively higher information. Finally, when the parameter a is
decreased from 0.9 to 0.3, only one a-feature detector is close to maxi-
mum information, while all other a-feature detectors tend to have small
information values, as shown in Figure 7(c).

Figure 8 shows the sixth a-feature detector with maximum infor-
mation (a = 0.3), a-feature generators, a common feature detector, and
common feature generators. As shown in Figure 8, ana-feature detector
detects rows at the top and at the bottom as important features. In ad-
dition, three parts at the corner and a part at the center are also detected
as features. Thus, if the a-feature detector is strongly activated, three
letters C, G, and O are generated by the feature detector. A common
feature detector mainly detects a column on the extreme left as a feature.
In addition, some parts at the middle of feature generators are detected
as common features, because these parts are not used for input patterns.
The feature detection by a neural a-feature detector corresponds to our
intuition of six alphabet characters.

5.3 Feature detections for 26 alphabet characters

In this section, 26 alphabet characters shown in Figure 9 are given to
our neural a-feature detector. It is shown that salient features, corre-
sponding to our intuition, can be detected by our a-feature detector.

The number of input units, a-feature detectors, and output units
were 35, 20, and 35 respectively. The a-entropy was decreased as much
as possible. Figure 10 shows information (Dj(0)) for 20 hidden units
or a-feature detectors. When a standard method (b = 0) is used, it

Complex Systems, 11 (1997) 1–30

16 R. Kamimura

Figure 9. 26 alphabet characters given to a neural a-feature detector.

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

In
fo

rm
a

ti
o

n

Hidden Unit

Standard Method

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

In
fo

rm
a

ti
o

n

Alpha-Feature Detecor

Alpha=0.9

(a) Standard Method (b) a = 0.9

0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14 16 18 20

In
fo

rm
a

ti
o

n

Alpha-Feature Detecor

Alpha=0.3

(c) a = 0.3

Figure 10. Information for 20 hidden units and a-feature detectors: (a) by a
standard method, (b) by a-entropy with a = 0.9, b = 0.27, and (c) with
a = 0.3, b = 0.04.

is impossible to detect some important a-feature detectors. When the
parameter a is set to 0.9, some characteristics can be seen, but it is still
impossible to detect important a-feature detectors. Finally, when the
parameter a is decreased from 0.9 to 0.3, only two a-feature detectors
with higher information can be seen.

We should also examine what kind of features a-feature detectors
extract. Figure 11(b) shows the third a-feature detector with a-feature
generators (the highest information detector) and a common feature

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 17

Input

Unit

Bias

Hidden-Output

Connections

Bias-Output

Connections

Unit

Output

Unit
Hidden

v<-1

-1<v<1

v>1

W<-1

1<W<1

W>1

(a) Standard Method

!"

Common
Feature
Detector

Detector
Feature

Feature
Generator

Common
Feature
Generator

!"

Controller
Entropy!"

Component

Input

C>1

-1<C<1

C>1

Component

Output

W>2

-2<W<2

W<-2

(b) a = 0.3

Figure 11. (a) Hidden-outputand bias-outputconnections into a hidden unit with
the highest information; (b) the third a-feature detector, a-feature generators,
common feature detector, and common feature generators. The parameters a
and b were 0.3 and 0.04 respectively.

detector with common feature generators. As clearly shown in the
figure, the a-feature detector extracts two columns at both sides as
fundamental features. A common feature detector extracts parts not
mainly used as features in the 26 alphabet characters. This means that
the common feature detector aims at detecting unnecessary parts in
input patterns. On the other hand, Figure 11(a) shows hidden-output
connections and bias-output connections from the highest information

Complex Systems, 11 (1997) 1–30

18 R. Kamimura

Input

Unit

Bias

Hidden-Output

Connections

Bias-Output

Connections

Unit

Output

Unit
Hidden

v<-1

-1<v<1

v>1

W>1

-1<W<1

W<-1

(a) Standard Method

Component

!"

Common
Feature
Detector

Detector
Feature

Feature
Generator

Common
Feature
Generator

!"

Controller
Entropy!"

Component

Input

C>1

-1<C<1

C>1

Output

-2<W<2

W<-2

W>2

(b) a = 0.3

Figure 12. (a) Hidden-output and bias-output connections with the highest in-
formation. (b) The fourth a-feature detector, a-feature generators, common
feature detector, and common feature generators. The parameters a and b are
0.3 and 0.04 respectively.

hidden unit by a standard method (b = 0). The strength of hidden-
output and bias-output connections are rather small, and it is impossible
to detect some features in the connections.

The second highest information detector is the fourth a-feature de-
tector. As shown in Figure 12(b), the a-feature generator shows the
same patterns as those obtained in the previous six-character recogni-
tion problem (Figure 8). In addition, we can see that the third and fourth

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 19

a-feature detectors are complementary to each other. Both a-feature de-
tectors jointly detect the outmost parts in input patterns. On the other
hand, it is also shown that a standard method always has ambiguous
patterns in hidden-output and bias-output connections, as can be seen
in Figure 12(a).

As already shown in Figure 10(c), the third and fourth a-feature
detectors are main a-feature detectors. As information is lower, detected
features become more obscure. However, we can still interpret features
detected by smaller information detectors.

6. Application to consonant cluster well-formedness

In this section we demonstrate the performance of the neural a-feature
detector by applying the method to the inference of the well-formedness
of consonant clusters. We think that one of the ultimate objectives for
NNs is to describe and explain human intellectual activities. Natural
language is surely one of the most important aspects composed of intel-
lectual activities. Thus, it is important to clarify the process of natural
language understanding by NNs. However, at the present stage of de-
velopment, it is impossible to cope with syntactic and semantic aspects
of natural languages. We focus now upon phonetic or phonological
aspects of natural languages.

The problem is the inference of the well-formedness of consonant
clusters. Human beings can perfectly and very easily infer the well-
formedness of given words or sentences. However, this simple fact
cannot easily be explained by a traditional rules-specification approach.
In addition to linguistic aspects governed by perfect rules, many kinds of
exceptions are easily pointed out, as is the case with many other aspects
of human behavior. Thus, the problem is well suited to NNs, which can
cope with exceptional cases by learning [18]. Though the problem dis-
cussed in this section is simple, this should be considered to be the first
step toward a basic understanding of human natural languages by NNs.

6.1 Inference by sonority

It is known that in natural languages consonants or vowels are not ran-
domly connected with each other but combined in regular or systematic
ways to produce actual words or sentences. One of the explanations
for consonant cluster formation is the sonority principle. According to
this principle each consonant has its own sonority value, for an example
see Appendix A.1. As the sonority value of a consonant is higher, the
consonant should be closer to a vowel. For example, the sonority of a
phoneme /p/ is lower than the sonority of /r/. Thus, a consonant cluster
such as /pr/ (present) is well-formed. Figure 13(a) shows that a network
must be trained to produce yes, because a consonant cluster observes the

Complex Systems, 11 (1997) 1–30

20 R. Kamimura

sonority principle. In the figure, each consonant is represented in five
bits using a phonological representation from [18]. The actual represen-
tation is shown in Appendix A.2. On the other hand, /rp/ is ill-formed,
because the sonority of /r/ is larger than that of /p/. Figure 13(b) shows
an ill-formed case in which a network must be trained to produce no
because of the violation of the sonority principle.

There are many exceptions to this sonority principle. We first take
the most familiar case of /sp/ (speak). The sonority of /s/ is lower
than that of /p/. Thus, /sp/ is ill-formed according to the sonority
principle. However, a consonant cluster /sp/ at the beginning of words
is used in the English language. Though many exceptions are known,
we suppose for simplicity that the sonority principle is strictly observed
in our experiments.

In addition to the inference of the well-formedness of consonant
clusters by the sonority principle, networks were trained to exactly
reproduce input patterns. As can be seen in Figure 13, output units
are divided into two parts: the reproduction part and the inference
part. The number of a-feature detectors is 15 in the experiments, which
is very redundant. Thus, it is not difficult for networks to reproduce
input patterns. Our objective is to examine whether networks can
discriminate between the inference and reproduction part, and if they
can extract linguistic rules for the inference part.

6.2 Improved generalization performance

We have shown that the neural a-feature detector can clearly extract
important features from input patterns. We think that the explicit ex-
traction of salient features is concerned with improved generalization.
In this section, we examine whether generalization performance can be
improved by a-entropy minimization.

First, we examined whether the a-entropy minimization is correlated
with improved generalization. In experiments, the number of input,
hidden, and output units were 10, 15, and 11 respectively, as shown in
Figure 13. The number of training, validation, and generalization data
is 50. Learning was considered to be finished when the absolute error
between targets and outputs is smaller than 0.1 for all input patterns and
all output units. In addition, generalization performance was evaluated
by using validation and test sets.

Figure 14(a) shows the a-entropy as a function of the parameter b.
The parameter a was set to 0.3 as the first approximation because ex-
perimental results in the previous sections confirmed better performance
with a = 0.3. As can be seen in the figure, a-entropy is naturally de-
creased as the parameter b is increased. Figure 14(b) shows validation,
generalization, and training errors as a function of the parameter b. It
can be seen in the figure that generalization errors are quickly decreased

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 21

Bias

Units

Output

feature

Detector

!"

Common

Feature

Detector

Input

Units
Inference

Reproduction

/r/

/p/

/r/

/p/

Yes

(a) /pr/

Bias

Units

Output

feature

Detector

!"

Common

Feature

Detector

Input

Units
Inference

Reproduction

No

/p/

/r/

/p/

/r/

(b) /rp/

Figure 13. Inference of well-formedness of consonant clusters and reproduction
of consonant clusters by NNs. (a) To this network, a well-formed input /pr/
(present) is given. Thus, the network is trained to produce yes. (b) Since /rp/ is
ill-formed, the network must produce no.

Complex Systems, 11 (1997) 1–30

22 R. Kamimura

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.001 0.002 0.003 0.004 0.005

A
lp

h
a

-E
n

tr
o

p
y

Beta

Alpha-entropy

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 0.001 0.002 0.003 0.004 0.005

V
a

lid
a

ti
o

n
 a

n
d

 G
e

n
e

ra
liz

a
ti
o

n
 E

rr
o

r

Beta

Validation
Generalization

Training

(a) (b)

Figure 14. a-entropy, validation, generalization, and training error: (a)a-entropy
as a function of the parameter b; (b) validation, generalization, and training error
as a function of the parameter b. The parameter a is 0.3.

in direct proportion to the decrease of a-entropy. However, it can also
be observed that generalization and validation errors are inversely in-
creased when the parameter b is much larger. This is explained by the
fact that the training error is significantly increased in this case. Thus,
we can say that generalization performance can be improved in direct
proportion to the decrease of a-entropy under the condition that the
training error is sufficiently small.

Then, we compared the generalization performance of the neural
a-feature detector with the performance of other methods. Table 2
shows generalization comparisons. Average values were averages over
10 runs with 10 different initial conditions. The weight elimination
method used was developed in [19] and has a good reputation for
improved generalization. In all methods, including the standard BP
method (b = 0), validation sets were used to control learning.

As shown in Table 2, generalization errors in the root mean squared
(RMS) error are significantly decreased from 0.090 by a standard BP
method to 0.054 by weight decay, and to 0.047 by weight elimination.
By using the neural a-feature detector, generalization errors are further
decreased. As the parameter a is zero, namely, the simple information
minimization is used, the generalization error is decreased to 0.048,
which is approximately equivalent to the performance of weight elimi-
nation. When the parametera is further increased to 0.2 or 0.3, the best
performance (0.40) can be obtained. Then, when the parameter is fur-
ther increased, generalization performance is inversely decreased, and
the standard deviation is significantly increased. This means that as the
parameter a is increased, results are dependent upon initial conditions.

In addition to the performance comparison by the RMS, the error
rate was computed for the intuitive interpretation of experimental re-
sults. The error rate denotes the number of incorrectly estimated input

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 23

Generalization Error
RMS Error Rate

Standard Standard
Method Average Deviation Average Deviation

Standard Method 0.090 0.010 0.160 0.068
Weight Decay 0.054 0.004 0.038 0.015
Weight Elimination 0.047 0.012 0.036 0.035
a-feature Detector

a = 0.0 0.048 0.007 0.030 0.025
a = 0.1 0.041 0.004 0.016 0.013
a = 0.2 0.040 0.003 0.014 0.010
a = 0.3 0.040 0.002 0.018 0.006
a = 0.4 0.041 0.002 0.018 0.006
a = 0.5 0.043 0.005 0.024 0.013
a = 0.6 0.050 0.014 0.040 0.033
a = 0.7 0.051 0.016 0.050 0.055

Table 2. Comparison of generalization by different methods. RMS denotes
the root mean squared error. The error rate shows the number of incorrectly
estimated patterns divided by the total number of patterns.

patterns divided by the total number of patterns. For simplicity, outputs
larger than or equal to 0.5 were set to one, and outputs less than 0.5
were set to zero. We now examine the error rates in Table 2. When the
standard BP method is used, the error rate is 0.160, a significantly large
error rate. In other words, only 84% of total input patterns are cor-
rectly estimated. When weight decay and weight elimination are used,
the error rate is decreased to 0.038 and 0.036 respectively. When the
neural a-feature detector is used, the error rate is further decreased to
0.014, the minimum error rate for a = 0.2. These results confirm that
generalization performance can be significantly increased by using the
neural a-feature detector.

6.3 Feature detection and interpretation

In this section, we examine whether the neural a-feature detector can
discriminate between the reproduction part and the inference part, and
that it can extract the main features of consonant cluster formation.

Figure 15(b) shows information (Dj(0)) for 15 a-feature detectors.
As can be seen in the figure, just one a-feature detector; that is, the
fifteenth detector, has much larger information. The value of infor-
mation of all other detectors is close to zero. Thus, we only have to
examine this feature detector with sufficiently large information. On the
other hand, the values of information of hidden units by the standard
method are relatively higher than the neural feature detector, as shown
in Figure 15(a).

Complex Systems, 11 (1997) 1–30

24 R. Kamimura

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12 14

In
fo

rm
a

ti
o

n

Hidden Unit

Standard Method

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12 14

In
fo

rm
a

ti
o

n

Alpha-feature Detector

Alpha=0.3

(a) (b)

Figure 15. Information by the standard method and the neurala-feature detector;
(a) information for 15 hidden units by the standard method (b = 0), and (b)
information for 15 a-feature detectors. The parameter a was 0.3.

We have shown that one a-feature detector with large information
can be detected. Figure 16 shows a skeleton network obtained by the
neural a-feature detector. For simplicity, only an input component, a-
entropy controllers, and a feature detector are plotted. In making a
skeleton network as shown in Figure 16(b), only a-entropy controllers
or input-hidden connections greater than 1 (|wjk | > 1) are plotted, and
all other controllers are completely eliminated. As can be seen in the
figure, only five a-entropy controllers or input-hidden connections are
extracted in the skeleton network. This reduction in the number of a-
entropy controllers or input-hidden connections are surely concerned
with improved generalization. Then, by examining a-entropy con-
trollers closely, we can see that the inference on consonant cluster for-
mation is based upon the manner and the voicing of consonants, which
is compatible with linguistic analysis [20, 21] and with our intuition.
For further explanation of the inference mechanism, see Appendix A.3.

7. Conclusion

A neural a-feature detector as been proposed. The neural a-feature
detector is used to detect main or essential features observed in input
patterns. A neural a-feature detector is basically composed of an in-
put component, a feature detector (a-feature detectors and a common
feature detector), an a-entropy controller, a feature generator (a-feature
generators and common feature generators), and an output component.
The a-entropy controller is used to control a-entropy in a-feature detec-
tors. Controlling a-entropy corresponds to information maximization
and minimization. If an a-feature detector is considered to be an impor-
tant detector, information contained in the detector is maximized. On
the other hand, if an a-feature detector is not considered to be impor-

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 25

/p/

Bias

/r/

feature

Detector

!"

Common

Feature

Detector

Input

Units

feature

Detector

!"

Common

Feature

Detector

Input

Units

Place

Voicing

|w >1jk|

Bias

Minimizing

Place

!"entropy

Manner

Voicing

Manner

/p/

/r/

(a) (b)

Figure 16. Skeletonization by minimizing a-entropy: (a) original network and
(b) a skeleton network obtained by minimizing a-entropy.

tant, the information of the a-feature detector is decreased as much as
possible.

The neural a-feature detector has been applied to four problems: an
artificial F-H problem, recognition of six alphabet characters, recogni-
tion of 26 alphabet characters, and the inference of the well-formedness
of consonant clusters. In all problems, salient features in input pat-
terns have been successfully extracted, which can be interpreted intu-
itively. In addition, in the last experiments on the inference of consonant
cluster formation, results confirmed that generalization performance is
improved in direct proportion to the decrease of a-entropy.

Many attempts to describe and explain human cognitive processes
have been made from the information theoretic point of view. One of
the main problems with these attempts is that information is exclusively
maximized or minimized, depending on the situation. Our neural a-
feature detector is concerned with information maximization and min-
imization. The brain is naturally expected to do different mechanisms
of optimization on different levels. Thus, we can say that our feature
detector is a much better model for representing complex optimization
in human intellectual activities in general.

Complex Systems, 11 (1997) 1–30

26 R. Kamimura

Appendix

A. Well-formedness by sonority principle

A.1 Sonority order

As briefly discussed in section 6, we suppose that consonant cluster for-
mation must strictly observe a sonority principle. The sonority principle
states that each consonant has its own sonority value, as shown in Ta-
ble 3 [20, 21]. The principle can be summarized as follows. Suppose
that two consonants C1C2 must be placed at the beginning of words.
If the sonority of the precedent consonant C1 is smaller than that of
the following consonant C2, then consonant clusters are well-formed
or permitted at the beginning of words. Otherwise, consonant clusters
are not permitted at the beginning of words, that is, ill-formed. For
example, a consonant cluster /pr/ is well-formed, because the sonority
of /p/ (sonority=1) is less than the sonority of /r/ (sonority=7). On the
other hand, a consonant cluster /rp/ is ill-formed, because the sonority
(sonority=1) of /p/ is less than the sonority (sonority=7) of /r/.

A.2 Phonological representation

The number of input units was 10 for the experiments of the consonant
formation discussed in section 6. Each consonant was represented in
five bits by using a phonological representation from [18], as shown in
Table 4.

A.3 Interpretation of internal representation

The basic mechanism of consonant formation inference is briefly ex-
plained in section 6. We now explain the inference mechanism in greater
detail. Figure 17 shows a skeleton network obtained by minimizing a-
entropy. It can be immediately seen in the figure that when a given

Order Features Examples
1 Voiceless Stop [p, t, k]
2 Voiced Stop [b, d, g]
3 Voiceless Fricative [f, q, s]
4 Voiced Fricative [v, d, z]
5 Nasal [m, n, h]
6 Lateral [l]
7 Retroflex [r]
8 Semivowel [y, w]

Table 3. An example of the sonority order of consonants [20]. Our artificial
language is supposed to strictly observe this sonority principle.

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 27

Phonological Features
Sonority Phoneme Voicing Manner Place

1 /p/ 0 1 1 1 1
1 /t/ 0 1 1 1 0
1 /k/ 0 1 1 0 0
2 /b/ 1 1 1 1 1
2 /d/ 1 1 1 1 0
2 /g/ 1 1 1 0 0
3 /f/ 0 1 0 1 1
3 /q/ 0 1 0 1 0
3 /s/ 0 1 0 0 1
4 /v/ 1 1 0 1 1
4 /d/ 1 1 0 1 0
4 /z/ 1 1 0 0 1
5 /m/ 1 0 0 1 1
5 /n/ 1 0 0 1 0
5 /h/ 1 0 0 0 0
6 /l/ 1 0 1 1 0
7 /r/ 1 0 1 0 1
8 /y/ 1 0 1 0 0
8 /w/ 1 0 1 1 1

Table 4. A phonological representation used in our experiments. This represen-
tation was made by following the representation in [18].

consonant cluster is well-formed, the a-feature detector must be turned
on, which makes the corresponding output unit on by the strongly posi-
tive a-feature generator or hidden-output connections (9.0). One of the
easiest ways to turn the a-feature detector on is to turn on two man-
ner input units, which are combined with strongly positive a-feature
detectors or input-hidden connections (11.76 and 12.38) to turn the
a-feature detector on. This means that the stop consonants such as
/p,t,k,d,b/ should be placed at the front part of the consonant cluster,
because the manner units are represented in 11 for these consonants.
These stop consonants have lower sonority values, as shown in Table 3.
Thus, the inference by the neural a-feature detector is compatible with
our intuition.

Then, let us examine the second part of the input unit. It can be seen
in the figure that one of the manner inputs of the second consonant C2 is
strongly negative (-11.87). If this input is on, the a-feature detector has
the possibility of being turned off by the bias (-13.76). As can be seen
in Tables 3 and 4, the manner of the fricative and nasal consonants such
as /f,q,s,v,d,z,w,n,h/ are represented in 10 or 00. Thus, these consonants
cannot use the strongly negativea-controller (-13.76), and the a-feature
detector has a high possibility of being turned on. This means that the
fricative and nasal consonants tend to be the second consonant C2. As

Complex Systems, 11 (1997) 1–30

28 R. Kamimura

Bias

Input

Manner

Manner/r/

/p/ 12.38

9.0
Yes

Output

Units

Units

11.76

-11.87

-13.76

feature

Detector

!"
/p/

/r/

c
1

c2

c1

c2

Negative

Bias from

Other

Detectors

1.86

(a) /pr/

Bias

Input

Manner

Manner

12.38

9.0

Output

Units

Units

11.76

-11.87

-13.76

/p/

/r/

/p/

/r/

No

Negative

Bias from

Other

Detectors

feature!"

Detector

1.86

(b) /rp/

Figure 17. A skeleton network obtained by minimizing a-entropy: (a) the well-
formed cluster /pr/, and (b) the ill-formed cluster /rp/.

the sonority values of these consonants are higher than the sonority of
the stop consonants, this inference corresponds to our intuition.

The manner of the lateral, retroflex, and semivowel consonants such
as /l,r,y,w/ is represented in 01, meaning that by the strongly nega-
tive a-controller (-13.76) the a-feature detector tends to be turned off.
However, these consonants have the highest sonority, meaning that these
should be the second consonant. At this moment the voicing input unit

Complex Systems, 11 (1997) 1–30

Controlling a-entropy with a Neural a-Feature Detector 29

is used. By the positive a-entropy controller (1.86) from the voicing
input unit, the a-feature detector tends to be turned on in spite of the
strongly negative a-entropy controller (-11.87).

We now describe an example of the use of the voicing input unit.
Figure 17(a) shows an internal state of the skeleton network for a well-
formed consonant cluster /pr/. The first consonant is a stop consonant,
whose manner input units are on (11.76 + 12.38 = 24.14). However,
by the strongly negative a-entropy controller with the bias (-13.76 -
11.87 = -25.63) the a-feature detector tends to be turned off (-25.63+
24.14 = -1.49). This is contrary to the sonority principle, because
the consonant cluster /pr/ is well-formed. However, since the second
consonant /r/ is a voiced consonant, by the a-entropy controller (1.86)
from the voicing input unit the net input to the a-feature detector is
positive (1.86 - 1.49 = 0.37), making the a-feature detector not fully
turned on but slightly activated. Because of the strongly positive a-
feature generator (9.0) the output is finally on.

Figure 17(b) shows an ill-formed case. This case is easy to understand
and is one of the typical ill-formed cases. The first consonant /r/ cannot
turn on two manner input units, meaning that the a-feature detector
cannot be turned on because of the strongly negative bias (-13.76).
In addition, the second consonant /p/ generates the strongly negative
a-entropy controller (-11.87), making the a-entropy controller off.

References

[1] H. B. Barlow, “Unsupervised Learning,” Neural Computation, 1 (1989)
295–311.

[2] H. B. Barlow, T. P. Kaushal, and G. J. Mitchison, “Finding Minimum
Entropy Code,” Neural Computation, 1 (1989) 412–423.

[3] R. Linsker, “Self-organization in a Perceptual Network,” Computer, 21
(1988) 105–117.

[4] A. N. Redlich, “Redundancy Reduction as a Strategy for Unsupervised
Learning,” Neural Computation, 5 (1993) 289–304.

[5] Ryotaro Kamimura, “Hidden Information Maximization for Feature De-
tection and Rule Discovery,” Network, 6 (1995) 577–622.

[6] Y. Akiyama and T. Furuya, “An Extension of the Back-propagation Learn-
ing which Performs Entropy Maximization as well as Error Minimiza-
tion,” Technical Report NC91-6, Institute of Electronics, Information,
and Communication Engineers, 1991.

[7] G. Deco, W. Finnof, and H. G. Zimmermann, “Unsupervised Mutual In-
formation Criterion for Elimination in Supervised Multilayer Networks,”
Neural Computation, 7 (1995) 86–107.

Complex Systems, 11 (1997) 1–30

30 R. Kamimura

[8] Ryotaro Kamimura and Shohachiro Nakanishi, “Improving Generaliza-
tion Performance by Information Minimization,” Institute of Electronics,
Information, and Communication Engineers Transactions on Information
and Systems, E78-D (1995) 163–173.

[9] N. Abramson, Information Theory and Coding (McGraw-Hill, New
York, 1963).

[10] R. Ash, Information Theory, (John Wiley & Sons, New York, 1965).

[11] C. E. Shannon and W. Weaver, The Mathematical Theory of Communi-
cation (University of Illinois Press, Champaign, 1949).

[12] L. Brillouin, Science and Information Theory (Academic Press, New York,
1962).

[13] L. L. Gatlin, Information Theory and Living Systems (Columbia Univer-
sity Press, New York, 1972).

[14] K. Kunisawa, Information Theory (Kyoritsu Publisher, Tokyo, 1983).

[15] Y. Kato, Y. Tan, and T. Ejima, “A Comparative Study with Feedforward
PDP Models for Alphanumeric Character Recognition,” The Transaction
of the Institute of Electronics, Information, and Communications Engi-
neers, J73-DII (1990) 1249–1254.

[16] S. A. Solla and M. Fleisher, “Accelerated Learning in Layered Neural
Networks,” Complex Systems, 2 (1988) 625–639.

[17] Y. Tan, Y. Kato, and T. Ejima, “Error Functions to Improve Learning
Speed in PDP Models: A Comparative Study,” The Transactions of the
Institute of Electronics, Information, and Communications Engineers,
J73-DII (1990) 2022–2028.

[18] K. Plunkett and V. Marchman, “U-shaped Learning and Frequency Effects
in a Multilayered Perceptron: Implication for Child Language Acquisi-
tion,” Cognition, 38 (1991) 43–102.

[19] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization by
Weight-elimination with Application to Forecasting,” in Neural Informa-
tion Processing Systems, volume 3, (Morgan Kaufmann Publishers, San
Mateo, CA, 1991).

[20] H. Nema, “Phonotactics and Sonority,” Senshu Journal of Foreign Lan-
guage and Education, 23 (1994) 65–94.

[21] H. Nema, “Phonotactics and Syllabification,” Journal of the Senshu Uni-
versity Research Society, 56 (1995) 23–61.

Complex Systems, 11 (1997) 1–30

